SemaType.cpp revision f3a41af4d5c98a72a1d6720bbbfd658e57ef2541
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/Diagnostic.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
23/// type object.  This returns null on error.
24QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
25  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
26  // checking.
27  QualType Result;
28
29  switch (DS.getTypeSpecType()) {
30  default: assert(0 && "Unknown TypeSpecType!");
31  case DeclSpec::TST_void:
32    Result = Context.VoidTy;
33    break;
34  case DeclSpec::TST_char:
35    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
36      Result = Context.CharTy;
37    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
38      Result = Context.SignedCharTy;
39    else {
40      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
41             "Unknown TSS value");
42      Result = Context.UnsignedCharTy;
43    }
44    break;
45  case DeclSpec::TST_wchar:
46    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
47      Result = Context.WCharTy;
48    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
49      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
50        << DS.getSpecifierName(DS.getTypeSpecType());
51      Result = Context.getSignedWCharType();
52    } else {
53      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
54        "Unknown TSS value");
55      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
56        << DS.getSpecifierName(DS.getTypeSpecType());
57      Result = Context.getUnsignedWCharType();
58    }
59    break;
60  case DeclSpec::TST_unspecified:
61    // "<proto1,proto2>" is an objc qualified ID with a missing id.
62    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
63      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
64                                              DS.getNumProtocolQualifiers());
65      break;
66    }
67
68    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
69    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
70    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
71    // Note that the one exception to this is function definitions, which are
72    // allowed to be completely missing a declspec.  This is handled in the
73    // parser already though by it pretending to have seen an 'int' in this
74    // case.
75    if (getLangOptions().ImplicitInt) {
76      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
77                                       DeclSpec::PQ_TypeSpecifier |
78                                       DeclSpec::PQ_TypeQualifier)) == 0)
79        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
80    } else {
81      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
82      // "At least one type specifier shall be given in the declaration
83      // specifiers in each declaration, and in the specifier-qualifier list in
84      // each struct declaration and type name."
85      if (!DS.hasTypeSpecifier())
86        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
87    }
88
89    // FALL THROUGH.
90  case DeclSpec::TST_int: {
91    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
92      switch (DS.getTypeSpecWidth()) {
93      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
94      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
95      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
96      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
97      }
98    } else {
99      switch (DS.getTypeSpecWidth()) {
100      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
101      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
102      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
103      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
104      }
105    }
106    break;
107  }
108  case DeclSpec::TST_float: Result = Context.FloatTy; break;
109  case DeclSpec::TST_double:
110    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
111      Result = Context.LongDoubleTy;
112    else
113      Result = Context.DoubleTy;
114    break;
115  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
116  case DeclSpec::TST_decimal32:    // _Decimal32
117  case DeclSpec::TST_decimal64:    // _Decimal64
118  case DeclSpec::TST_decimal128:   // _Decimal128
119    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
120  case DeclSpec::TST_class:
121  case DeclSpec::TST_enum:
122  case DeclSpec::TST_union:
123  case DeclSpec::TST_struct: {
124    Decl *D = static_cast<Decl *>(DS.getTypeRep());
125    assert(D && "Didn't get a decl for a class/enum/union/struct?");
126    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
127           DS.getTypeSpecSign() == 0 &&
128           "Can't handle qualifiers on typedef names yet!");
129    // TypeQuals handled by caller.
130    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
131    break;
132  }
133  case DeclSpec::TST_typedef: {
134    Decl *D = static_cast<Decl *>(DS.getTypeRep());
135    assert(D && "Didn't get a decl for a typedef?");
136    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
137           DS.getTypeSpecSign() == 0 &&
138           "Can't handle qualifiers on typedef names yet!");
139    DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers();
140
141    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
142    // we have this "hack" for now...
143    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
144      if (PQ == 0) {
145        Result = Context.getObjCInterfaceType(ObjCIntDecl);
146        break;
147      }
148
149      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
150                                                     (ObjCProtocolDecl**)PQ,
151                                                 DS.getNumProtocolQualifiers());
152      break;
153    } else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
154      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl) && PQ) {
155        // id<protocol-list>
156        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
157                                                DS.getNumProtocolQualifiers());
158        break;
159      }
160    }
161    // TypeQuals handled by caller.
162    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
163    break;
164  }
165  case DeclSpec::TST_typeofType:
166    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
167    assert(!Result.isNull() && "Didn't get a type for typeof?");
168    // TypeQuals handled by caller.
169    Result = Context.getTypeOfType(Result);
170    break;
171  case DeclSpec::TST_typeofExpr: {
172    Expr *E = static_cast<Expr *>(DS.getTypeRep());
173    assert(E && "Didn't get an expression for typeof?");
174    // TypeQuals handled by caller.
175    Result = Context.getTypeOfExpr(E);
176    break;
177  }
178  }
179
180  // Handle complex types.
181  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
182    Result = Context.getComplexType(Result);
183
184  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
185         "FIXME: imaginary types not supported yet!");
186
187  // See if there are any attributes on the declspec that apply to the type (as
188  // opposed to the decl).
189  if (const AttributeList *AL = DS.getAttributes())
190    ProcessTypeAttributeList(Result, AL);
191
192  // Apply const/volatile/restrict qualifiers to T.
193  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
194
195    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
196    // or incomplete types shall not be restrict-qualified."  C++ also allows
197    // restrict-qualified references.
198    if (TypeQuals & QualType::Restrict) {
199      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
200        QualType EltTy = PT->getPointeeType();
201
202        // If we have a pointer or reference, the pointee must have an object or
203        // incomplete type.
204        if (!EltTy->isIncompleteOrObjectType()) {
205          Diag(DS.getRestrictSpecLoc(),
206               diag::err_typecheck_invalid_restrict_invalid_pointee)
207            << EltTy.getAsString() << DS.getSourceRange();
208          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
209        }
210      } else {
211        Diag(DS.getRestrictSpecLoc(),
212             diag::err_typecheck_invalid_restrict_not_pointer)
213          << Result.getAsString() << DS.getSourceRange();
214        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
215      }
216    }
217
218    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
219    // of a function type includes any type qualifiers, the behavior is
220    // undefined."
221    if (Result->isFunctionType() && TypeQuals) {
222      // Get some location to point at, either the C or V location.
223      SourceLocation Loc;
224      if (TypeQuals & QualType::Const)
225        Loc = DS.getConstSpecLoc();
226      else {
227        assert((TypeQuals & QualType::Volatile) &&
228               "Has CV quals but not C or V?");
229        Loc = DS.getVolatileSpecLoc();
230      }
231      Diag(Loc, diag::warn_typecheck_function_qualifiers)
232        << Result.getAsString() << DS.getSourceRange();
233    }
234
235    // C++ [dcl.ref]p1:
236    //   Cv-qualified references are ill-formed except when the
237    //   cv-qualifiers are introduced through the use of a typedef
238    //   (7.1.3) or of a template type argument (14.3), in which
239    //   case the cv-qualifiers are ignored.
240    if (DS.getTypeSpecType() == DeclSpec::TST_typedef &&
241        TypeQuals && Result->isReferenceType()) {
242      TypeQuals &= ~QualType::Const;
243      TypeQuals &= ~QualType::Volatile;
244    }
245
246    Result = Result.getQualifiedType(TypeQuals);
247  }
248  return Result;
249}
250
251/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
252/// instances.
253QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
254  // long long is a C99 feature.
255  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
256      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
257    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
258
259  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
260
261  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
262  // are ordered from the identifier out, which is opposite of what we want :).
263  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
264    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
265    switch (DeclType.Kind) {
266    default: assert(0 && "Unknown decltype!");
267    case DeclaratorChunk::BlockPointer:
268      if (DeclType.Cls.TypeQuals)
269        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
270      if (!T.getTypePtr()->isFunctionType())
271        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
272      else
273        T = Context.getBlockPointerType(T);
274      break;
275    case DeclaratorChunk::Pointer:
276      if (T->isReferenceType()) {
277        // C++ 8.3.2p4: There shall be no ... pointers to references ...
278        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
279         << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
280        D.setInvalidType(true);
281        T = Context.IntTy;
282      }
283
284      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
285      // object or incomplete types shall not be restrict-qualified."
286      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
287          !T->isIncompleteOrObjectType()) {
288        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
289          << T.getAsString();
290        DeclType.Ptr.TypeQuals &= QualType::Restrict;
291      }
292
293      // Apply the pointer typequals to the pointer object.
294      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
295      break;
296    case DeclaratorChunk::Reference: {
297      // Whether we should suppress the creation of the reference.
298      bool SuppressReference = false;
299      if (T->isReferenceType()) {
300        // C++ [dcl.ref]p4: There shall be no references to references.
301        //
302        // According to C++ DR 106, references to references are only
303        // diagnosed when they are written directly (e.g., "int & &"),
304        // but not when they happen via a typedef:
305        //
306        //   typedef int& intref;
307        //   typedef intref& intref2;
308        //
309        // Parser::ParserDeclaratorInternal diagnoses the case where
310        // references are written directly; here, we handle the
311        // collapsing of references-to-references as described in C++
312        // DR 106 and amended by C++ DR 540.
313        SuppressReference = true;
314      }
315
316      // C++ [dcl.ref]p1:
317      //   A declarator that specifies the type “reference to cv void”
318      //   is ill-formed.
319      if (T->isVoidType()) {
320        Diag(DeclType.Loc, diag::err_reference_to_void);
321        D.setInvalidType(true);
322        T = Context.IntTy;
323      }
324
325      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
326      // object or incomplete types shall not be restrict-qualified."
327      if (DeclType.Ref.HasRestrict &&
328          !T->isIncompleteOrObjectType()) {
329        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
330          << T.getAsString();
331        DeclType.Ref.HasRestrict = false;
332      }
333
334      if (!SuppressReference)
335        T = Context.getReferenceType(T);
336
337      // Handle restrict on references.
338      if (DeclType.Ref.HasRestrict)
339        T.addRestrict();
340      break;
341    }
342    case DeclaratorChunk::Array: {
343      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
344      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
345      ArrayType::ArraySizeModifier ASM;
346      if (ATI.isStar)
347        ASM = ArrayType::Star;
348      else if (ATI.hasStatic)
349        ASM = ArrayType::Static;
350      else
351        ASM = ArrayType::Normal;
352
353      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
354      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
355      if (T->isIncompleteType()) {
356        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type)
357          << T.getAsString();
358        T = Context.IntTy;
359        D.setInvalidType(true);
360      } else if (T->isFunctionType()) {
361        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions)
362          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
363        T = Context.getPointerType(T);
364        D.setInvalidType(true);
365      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
366        // C++ 8.3.2p4: There shall be no ... arrays of references ...
367        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references)
368          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
369        T = RT->getPointeeType();
370        D.setInvalidType(true);
371      } else if (const RecordType *EltTy = T->getAsRecordType()) {
372        // If the element type is a struct or union that contains a variadic
373        // array, reject it: C99 6.7.2.1p2.
374        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
375          Diag(DeclType.Loc, diag::err_flexible_array_in_array)
376            << T.getAsString();
377          T = Context.IntTy;
378          D.setInvalidType(true);
379        }
380      } else if (T->isObjCInterfaceType()) {
381        Diag(DeclType.Loc, diag::warn_objc_array_of_interfaces)
382        << T.getAsString();
383      }
384
385      // C99 6.7.5.2p1: The size expression shall have integer type.
386      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
387        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
388          << ArraySize->getType().getAsString() << ArraySize->getSourceRange();
389        D.setInvalidType(true);
390        delete ArraySize;
391        ATI.NumElts = ArraySize = 0;
392      }
393      llvm::APSInt ConstVal(32);
394      if (!ArraySize) {
395        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
396      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
397                 !T->isConstantSizeType()) {
398        // Per C99, a variable array is an array with either a non-constant
399        // size or an element type that has a non-constant-size
400        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
401      } else {
402        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
403        // have a value greater than zero.
404        if (ConstVal.isSigned()) {
405          if (ConstVal.isNegative()) {
406            Diag(ArraySize->getLocStart(),
407                 diag::err_typecheck_negative_array_size)
408              << ArraySize->getSourceRange();
409            D.setInvalidType(true);
410          } else if (ConstVal == 0) {
411            // GCC accepts zero sized static arrays.
412            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
413              << ArraySize->getSourceRange();
414          }
415        }
416        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
417      }
418      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
419      if (!getLangOptions().C99 &&
420          (ASM != ArrayType::Normal ||
421           (ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
422        Diag(D.getIdentifierLoc(), diag::ext_vla);
423      break;
424    }
425    case DeclaratorChunk::Function:
426      // If the function declarator has a prototype (i.e. it is not () and
427      // does not have a K&R-style identifier list), then the arguments are part
428      // of the type, otherwise the argument list is ().
429      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
430
431      // C99 6.7.5.3p1: The return type may not be a function or array type.
432      if (T->isArrayType() || T->isFunctionType()) {
433        Diag(DeclType.Loc, diag::err_func_returning_array_function)
434          << T.getAsString();
435        T = Context.IntTy;
436        D.setInvalidType(true);
437      }
438
439      if (FTI.NumArgs == 0) {
440        if (getLangOptions().CPlusPlus) {
441          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
442          // function takes no arguments.
443          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
444        } else {
445          // Simple void foo(), where the incoming T is the result type.
446          T = Context.getFunctionTypeNoProto(T);
447        }
448      } else if (FTI.ArgInfo[0].Param == 0) {
449        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
450        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
451      } else {
452        // Otherwise, we have a function with an argument list that is
453        // potentially variadic.
454        llvm::SmallVector<QualType, 16> ArgTys;
455
456        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
457          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
458          QualType ArgTy = Param->getType();
459          assert(!ArgTy.isNull() && "Couldn't parse type?");
460          //
461          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
462          // This matches the conversion that is done in
463          // Sema::ActOnParamDeclarator(). Without this conversion, the
464          // argument type in the function prototype *will not* match the
465          // type in ParmVarDecl (which makes the code generator unhappy).
466          //
467          // FIXME: We still apparently need the conversion in
468          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
469          // it should be driving off the type being created here.
470          //
471          // FIXME: If a source translation tool needs to see the original type,
472          // then we need to consider storing both types somewhere...
473          //
474          if (ArgTy->isArrayType()) {
475            ArgTy = Context.getArrayDecayedType(ArgTy);
476          } else if (ArgTy->isFunctionType())
477            ArgTy = Context.getPointerType(ArgTy);
478
479          // Look for 'void'.  void is allowed only as a single argument to a
480          // function with no other parameters (C99 6.7.5.3p10).  We record
481          // int(void) as a FunctionTypeProto with an empty argument list.
482          else if (ArgTy->isVoidType()) {
483            // If this is something like 'float(int, void)', reject it.  'void'
484            // is an incomplete type (C99 6.2.5p19) and function decls cannot
485            // have arguments of incomplete type.
486            if (FTI.NumArgs != 1 || FTI.isVariadic) {
487              Diag(DeclType.Loc, diag::err_void_only_param);
488              ArgTy = Context.IntTy;
489              Param->setType(ArgTy);
490            } else if (FTI.ArgInfo[i].Ident) {
491              // Reject, but continue to parse 'int(void abc)'.
492              Diag(FTI.ArgInfo[i].IdentLoc,
493                   diag::err_param_with_void_type);
494              ArgTy = Context.IntTy;
495              Param->setType(ArgTy);
496            } else {
497              // Reject, but continue to parse 'float(const void)'.
498              if (ArgTy.getCVRQualifiers())
499                Diag(DeclType.Loc, diag::err_void_param_qualified);
500
501              // Do not add 'void' to the ArgTys list.
502              break;
503            }
504          } else if (!FTI.hasPrototype) {
505            if (ArgTy->isPromotableIntegerType()) {
506              ArgTy = Context.IntTy;
507            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
508              if (BTy->getKind() == BuiltinType::Float)
509                ArgTy = Context.DoubleTy;
510            }
511          }
512
513          ArgTys.push_back(ArgTy);
514        }
515        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
516                                    FTI.isVariadic, FTI.TypeQuals);
517      }
518      break;
519    }
520
521    // See if there are any attributes on this declarator chunk.
522    if (const AttributeList *AL = DeclType.getAttrs())
523      ProcessTypeAttributeList(T, AL);
524  }
525
526  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
527    const FunctionTypeProto *FnTy = T->getAsFunctionTypeProto();
528    assert(FnTy && "Why oh why is there not a FunctionTypeProto here ?");
529
530    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
531    // for a nonstatic member function, the function type to which a pointer
532    // to member refers, or the top-level function type of a function typedef
533    // declaration.
534    if (FnTy->getTypeQuals() != 0 &&
535        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
536        (D.getContext() != Declarator::MemberContext ||
537         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
538
539      if (D.isFunctionDeclarator())
540        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
541      else
542        Diag(D.getIdentifierLoc(),
543             diag::err_invalid_qualified_typedef_function_type_use);
544
545      // Strip the cv-quals from the type.
546      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
547                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
548    }
549  }
550
551  // If there were any type attributes applied to the decl itself (not the
552  // type, apply the type attribute to the type!)
553  if (const AttributeList *Attrs = D.getAttributes())
554    ProcessTypeAttributeList(T, Attrs);
555
556  return T;
557}
558
559/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
560/// declarator
561QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
562  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
563  QualType T = MDecl->getResultType();
564  llvm::SmallVector<QualType, 16> ArgTys;
565
566  // Add the first two invisible argument types for self and _cmd.
567  if (MDecl->isInstance()) {
568    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
569    selfTy = Context.getPointerType(selfTy);
570    ArgTys.push_back(selfTy);
571  }
572  else
573    ArgTys.push_back(Context.getObjCIdType());
574  ArgTys.push_back(Context.getObjCSelType());
575
576  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
577    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
578    QualType ArgTy = PDecl->getType();
579    assert(!ArgTy.isNull() && "Couldn't parse type?");
580    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
581    // This matches the conversion that is done in
582    // Sema::ActOnParamDeclarator().
583    if (ArgTy->isArrayType())
584      ArgTy = Context.getArrayDecayedType(ArgTy);
585    else if (ArgTy->isFunctionType())
586      ArgTy = Context.getPointerType(ArgTy);
587    ArgTys.push_back(ArgTy);
588  }
589  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
590                              MDecl->isVariadic(), 0);
591  return T;
592}
593
594/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types (FIXME:
595/// or pointer-to-member types) that may be similar (C++ 4.4),
596/// replaces T1 and T2 with the type that they point to and return
597/// true. If T1 and T2 aren't pointer types or pointer-to-member
598/// types, or if they are not similar at this level, returns false and
599/// leaves T1 and T2 unchanged. Top-level qualifiers on T1 and T2 are
600/// ignored. This function will typically be called in a loop that
601/// successively "unwraps" pointer and pointer-to-member types to
602/// compare them at each level.
603bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2)
604{
605  const PointerType *T1PtrType = T1->getAsPointerType(),
606                    *T2PtrType = T2->getAsPointerType();
607  if (T1PtrType && T2PtrType) {
608    T1 = T1PtrType->getPointeeType();
609    T2 = T2PtrType->getPointeeType();
610    return true;
611  }
612
613  // FIXME: pointer-to-member types
614  return false;
615}
616
617Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
618  // C99 6.7.6: Type names have no identifier.  This is already validated by
619  // the parser.
620  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
621
622  QualType T = GetTypeForDeclarator(D, S);
623
624  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
625
626  // Check that there are no default arguments (C++ only).
627  if (getLangOptions().CPlusPlus)
628    CheckExtraCXXDefaultArguments(D);
629
630  // In this context, we *do not* check D.getInvalidType(). If the declarator
631  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
632  // though it will not reflect the user specified type.
633  return T.getAsOpaquePtr();
634}
635
636
637
638//===----------------------------------------------------------------------===//
639// Type Attribute Processing
640//===----------------------------------------------------------------------===//
641
642/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
643/// specified type.  The attribute contains 1 argument, the id of the address
644/// space for the type.
645static void HandleAddressSpaceTypeAttribute(QualType &Type,
646                                            const AttributeList &Attr, Sema &S){
647  // If this type is already address space qualified, reject it.
648  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
649  // for two or more different address spaces."
650  if (Type.getAddressSpace()) {
651    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
652    return;
653  }
654
655  // Check the attribute arguments.
656  if (Attr.getNumArgs() != 1) {
657    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
658    return;
659  }
660  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
661  llvm::APSInt addrSpace(32);
662  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
663    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
664      << ASArgExpr->getSourceRange();
665    return;
666  }
667
668  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
669  Type = S.Context.getASQualType(Type, ASIdx);
670}
671
672void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
673  // Scan through and apply attributes to this type where it makes sense.  Some
674  // attributes (such as __address_space__, __vector_size__, etc) apply to the
675  // type, but others can be present in the type specifiers even though they
676  // apply to the decl.  Here we apply type attributes and ignore the rest.
677  for (; AL; AL = AL->getNext()) {
678    // If this is an attribute we can handle, do so now, otherwise, add it to
679    // the LeftOverAttrs list for rechaining.
680    switch (AL->getKind()) {
681    default: break;
682    case AttributeList::AT_address_space:
683      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
684      break;
685    }
686  }
687}
688
689
690