SemaType.cpp revision f712c48ce80763f3c0bbc2e1b0afe6ed3b5b88cb
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_ObjCGC:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_ObjCOwnership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_ObjCGC: \
97    case AttributeList::AT_ObjCOwnership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_NoReturn: \
102    case AttributeList::AT_CDecl: \
103    case AttributeList::AT_FastCall: \
104    case AttributeList::AT_StdCall: \
105    case AttributeList::AT_ThisCall: \
106    case AttributeList::AT_Pascal: \
107    case AttributeList::AT_Regparm: \
108    case AttributeList::AT_Pcs \
109
110namespace {
111  /// An object which stores processing state for the entire
112  /// GetTypeForDeclarator process.
113  class TypeProcessingState {
114    Sema &sema;
115
116    /// The declarator being processed.
117    Declarator &declarator;
118
119    /// The index of the declarator chunk we're currently processing.
120    /// May be the total number of valid chunks, indicating the
121    /// DeclSpec.
122    unsigned chunkIndex;
123
124    /// Whether there are non-trivial modifications to the decl spec.
125    bool trivial;
126
127    /// Whether we saved the attributes in the decl spec.
128    bool hasSavedAttrs;
129
130    /// The original set of attributes on the DeclSpec.
131    SmallVector<AttributeList*, 2> savedAttrs;
132
133    /// A list of attributes to diagnose the uselessness of when the
134    /// processing is complete.
135    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
136
137  public:
138    TypeProcessingState(Sema &sema, Declarator &declarator)
139      : sema(sema), declarator(declarator),
140        chunkIndex(declarator.getNumTypeObjects()),
141        trivial(true), hasSavedAttrs(false) {}
142
143    Sema &getSema() const {
144      return sema;
145    }
146
147    Declarator &getDeclarator() const {
148      return declarator;
149    }
150
151    unsigned getCurrentChunkIndex() const {
152      return chunkIndex;
153    }
154
155    void setCurrentChunkIndex(unsigned idx) {
156      assert(idx <= declarator.getNumTypeObjects());
157      chunkIndex = idx;
158    }
159
160    AttributeList *&getCurrentAttrListRef() const {
161      assert(chunkIndex <= declarator.getNumTypeObjects());
162      if (chunkIndex == declarator.getNumTypeObjects())
163        return getMutableDeclSpec().getAttributes().getListRef();
164      return declarator.getTypeObject(chunkIndex).getAttrListRef();
165    }
166
167    /// Save the current set of attributes on the DeclSpec.
168    void saveDeclSpecAttrs() {
169      // Don't try to save them multiple times.
170      if (hasSavedAttrs) return;
171
172      DeclSpec &spec = getMutableDeclSpec();
173      for (AttributeList *attr = spec.getAttributes().getList(); attr;
174             attr = attr->getNext())
175        savedAttrs.push_back(attr);
176      trivial &= savedAttrs.empty();
177      hasSavedAttrs = true;
178    }
179
180    /// Record that we had nowhere to put the given type attribute.
181    /// We will diagnose such attributes later.
182    void addIgnoredTypeAttr(AttributeList &attr) {
183      ignoredTypeAttrs.push_back(&attr);
184    }
185
186    /// Diagnose all the ignored type attributes, given that the
187    /// declarator worked out to the given type.
188    void diagnoseIgnoredTypeAttrs(QualType type) const {
189      for (SmallVectorImpl<AttributeList*>::const_iterator
190             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
191           i != e; ++i)
192        diagnoseBadTypeAttribute(getSema(), **i, type);
193    }
194
195    ~TypeProcessingState() {
196      if (trivial) return;
197
198      restoreDeclSpecAttrs();
199    }
200
201  private:
202    DeclSpec &getMutableDeclSpec() const {
203      return const_cast<DeclSpec&>(declarator.getDeclSpec());
204    }
205
206    void restoreDeclSpecAttrs() {
207      assert(hasSavedAttrs);
208
209      if (savedAttrs.empty()) {
210        getMutableDeclSpec().getAttributes().set(0);
211        return;
212      }
213
214      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
215      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
216        savedAttrs[i]->setNext(savedAttrs[i+1]);
217      savedAttrs.back()->setNext(0);
218    }
219  };
220
221  /// Basically std::pair except that we really want to avoid an
222  /// implicit operator= for safety concerns.  It's also a minor
223  /// link-time optimization for this to be a private type.
224  struct AttrAndList {
225    /// The attribute.
226    AttributeList &first;
227
228    /// The head of the list the attribute is currently in.
229    AttributeList *&second;
230
231    AttrAndList(AttributeList &attr, AttributeList *&head)
232      : first(attr), second(head) {}
233  };
234}
235
236namespace llvm {
237  template <> struct isPodLike<AttrAndList> {
238    static const bool value = true;
239  };
240}
241
242static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
243  attr.setNext(head);
244  head = &attr;
245}
246
247static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
248  if (head == &attr) {
249    head = attr.getNext();
250    return;
251  }
252
253  AttributeList *cur = head;
254  while (true) {
255    assert(cur && cur->getNext() && "ran out of attrs?");
256    if (cur->getNext() == &attr) {
257      cur->setNext(attr.getNext());
258      return;
259    }
260    cur = cur->getNext();
261  }
262}
263
264static void moveAttrFromListToList(AttributeList &attr,
265                                   AttributeList *&fromList,
266                                   AttributeList *&toList) {
267  spliceAttrOutOfList(attr, fromList);
268  spliceAttrIntoList(attr, toList);
269}
270
271static void processTypeAttrs(TypeProcessingState &state,
272                             QualType &type, bool isDeclSpec,
273                             AttributeList *attrs);
274
275static bool handleFunctionTypeAttr(TypeProcessingState &state,
276                                   AttributeList &attr,
277                                   QualType &type);
278
279static bool handleObjCGCTypeAttr(TypeProcessingState &state,
280                                 AttributeList &attr, QualType &type);
281
282static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
283                                       AttributeList &attr, QualType &type);
284
285static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
286                                      AttributeList &attr, QualType &type) {
287  if (attr.getKind() == AttributeList::AT_ObjCGC)
288    return handleObjCGCTypeAttr(state, attr, type);
289  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
290  return handleObjCOwnershipTypeAttr(state, attr, type);
291}
292
293/// Given that an objc_gc attribute was written somewhere on a
294/// declaration *other* than on the declarator itself (for which, use
295/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
296/// didn't apply in whatever position it was written in, try to move
297/// it to a more appropriate position.
298static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
299                                          AttributeList &attr,
300                                          QualType type) {
301  Declarator &declarator = state.getDeclarator();
302  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
303    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
304    switch (chunk.Kind) {
305    case DeclaratorChunk::Pointer:
306    case DeclaratorChunk::BlockPointer:
307      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
308                             chunk.getAttrListRef());
309      return;
310
311    case DeclaratorChunk::Paren:
312    case DeclaratorChunk::Array:
313      continue;
314
315    // Don't walk through these.
316    case DeclaratorChunk::Reference:
317    case DeclaratorChunk::Function:
318    case DeclaratorChunk::MemberPointer:
319      goto error;
320    }
321  }
322 error:
323
324  diagnoseBadTypeAttribute(state.getSema(), attr, type);
325}
326
327/// Distribute an objc_gc type attribute that was written on the
328/// declarator.
329static void
330distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
331                                            AttributeList &attr,
332                                            QualType &declSpecType) {
333  Declarator &declarator = state.getDeclarator();
334
335  // objc_gc goes on the innermost pointer to something that's not a
336  // pointer.
337  unsigned innermost = -1U;
338  bool considerDeclSpec = true;
339  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
340    DeclaratorChunk &chunk = declarator.getTypeObject(i);
341    switch (chunk.Kind) {
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344      innermost = i;
345      continue;
346
347    case DeclaratorChunk::Reference:
348    case DeclaratorChunk::MemberPointer:
349    case DeclaratorChunk::Paren:
350    case DeclaratorChunk::Array:
351      continue;
352
353    case DeclaratorChunk::Function:
354      considerDeclSpec = false;
355      goto done;
356    }
357  }
358 done:
359
360  // That might actually be the decl spec if we weren't blocked by
361  // anything in the declarator.
362  if (considerDeclSpec) {
363    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
364      // Splice the attribute into the decl spec.  Prevents the
365      // attribute from being applied multiple times and gives
366      // the source-location-filler something to work with.
367      state.saveDeclSpecAttrs();
368      moveAttrFromListToList(attr, declarator.getAttrListRef(),
369               declarator.getMutableDeclSpec().getAttributes().getListRef());
370      return;
371    }
372  }
373
374  // Otherwise, if we found an appropriate chunk, splice the attribute
375  // into it.
376  if (innermost != -1U) {
377    moveAttrFromListToList(attr, declarator.getAttrListRef(),
378                       declarator.getTypeObject(innermost).getAttrListRef());
379    return;
380  }
381
382  // Otherwise, diagnose when we're done building the type.
383  spliceAttrOutOfList(attr, declarator.getAttrListRef());
384  state.addIgnoredTypeAttr(attr);
385}
386
387/// A function type attribute was written somewhere in a declaration
388/// *other* than on the declarator itself or in the decl spec.  Given
389/// that it didn't apply in whatever position it was written in, try
390/// to move it to a more appropriate position.
391static void distributeFunctionTypeAttr(TypeProcessingState &state,
392                                       AttributeList &attr,
393                                       QualType type) {
394  Declarator &declarator = state.getDeclarator();
395
396  // Try to push the attribute from the return type of a function to
397  // the function itself.
398  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
399    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
400    switch (chunk.Kind) {
401    case DeclaratorChunk::Function:
402      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                             chunk.getAttrListRef());
404      return;
405
406    case DeclaratorChunk::Paren:
407    case DeclaratorChunk::Pointer:
408    case DeclaratorChunk::BlockPointer:
409    case DeclaratorChunk::Array:
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      continue;
413    }
414  }
415
416  diagnoseBadTypeAttribute(state.getSema(), attr, type);
417}
418
419/// Try to distribute a function type attribute to the innermost
420/// function chunk or type.  Returns true if the attribute was
421/// distributed, false if no location was found.
422static bool
423distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
424                                      AttributeList &attr,
425                                      AttributeList *&attrList,
426                                      QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // Put it on the innermost function chunk, if there is one.
430  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
431    DeclaratorChunk &chunk = declarator.getTypeObject(i);
432    if (chunk.Kind != DeclaratorChunk::Function) continue;
433
434    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
435    return true;
436  }
437
438  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
439    spliceAttrOutOfList(attr, attrList);
440    return true;
441  }
442
443  return false;
444}
445
446/// A function type attribute was written in the decl spec.  Try to
447/// apply it somewhere.
448static void
449distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
450                                       AttributeList &attr,
451                                       QualType &declSpecType) {
452  state.saveDeclSpecAttrs();
453
454  // Try to distribute to the innermost.
455  if (distributeFunctionTypeAttrToInnermost(state, attr,
456                                            state.getCurrentAttrListRef(),
457                                            declSpecType))
458    return;
459
460  // If that failed, diagnose the bad attribute when the declarator is
461  // fully built.
462  state.addIgnoredTypeAttr(attr);
463}
464
465/// A function type attribute was written on the declarator.  Try to
466/// apply it somewhere.
467static void
468distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
469                                         AttributeList &attr,
470                                         QualType &declSpecType) {
471  Declarator &declarator = state.getDeclarator();
472
473  // Try to distribute to the innermost.
474  if (distributeFunctionTypeAttrToInnermost(state, attr,
475                                            declarator.getAttrListRef(),
476                                            declSpecType))
477    return;
478
479  // If that failed, diagnose the bad attribute when the declarator is
480  // fully built.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// \brief Given that there are attributes written on the declarator
486/// itself, try to distribute any type attributes to the appropriate
487/// declarator chunk.
488///
489/// These are attributes like the following:
490///   int f ATTR;
491///   int (f ATTR)();
492/// but not necessarily this:
493///   int f() ATTR;
494static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
495                                              QualType &declSpecType) {
496  // Collect all the type attributes from the declarator itself.
497  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
498  AttributeList *attr = state.getDeclarator().getAttributes();
499  AttributeList *next;
500  do {
501    next = attr->getNext();
502
503    switch (attr->getKind()) {
504    OBJC_POINTER_TYPE_ATTRS_CASELIST:
505      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
506      break;
507
508    case AttributeList::AT_NSReturnsRetained:
509      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
510        break;
511      // fallthrough
512
513    FUNCTION_TYPE_ATTRS_CASELIST:
514      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
515      break;
516
517    default:
518      break;
519    }
520  } while ((attr = next));
521}
522
523/// Add a synthetic '()' to a block-literal declarator if it is
524/// required, given the return type.
525static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
526                                          QualType declSpecType) {
527  Declarator &declarator = state.getDeclarator();
528
529  // First, check whether the declarator would produce a function,
530  // i.e. whether the innermost semantic chunk is a function.
531  if (declarator.isFunctionDeclarator()) {
532    // If so, make that declarator a prototyped declarator.
533    declarator.getFunctionTypeInfo().hasPrototype = true;
534    return;
535  }
536
537  // If there are any type objects, the type as written won't name a
538  // function, regardless of the decl spec type.  This is because a
539  // block signature declarator is always an abstract-declarator, and
540  // abstract-declarators can't just be parentheses chunks.  Therefore
541  // we need to build a function chunk unless there are no type
542  // objects and the decl spec type is a function.
543  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
544    return;
545
546  // Note that there *are* cases with invalid declarators where
547  // declarators consist solely of parentheses.  In general, these
548  // occur only in failed efforts to make function declarators, so
549  // faking up the function chunk is still the right thing to do.
550
551  // Otherwise, we need to fake up a function declarator.
552  SourceLocation loc = declarator.getLocStart();
553
554  // ...and *prepend* it to the declarator.
555  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
556                             /*proto*/ true,
557                             /*variadic*/ false,
558                             /*ambiguous*/ false, SourceLocation(),
559                             /*args*/ 0, 0,
560                             /*type quals*/ 0,
561                             /*ref-qualifier*/true, SourceLocation(),
562                             /*const qualifier*/SourceLocation(),
563                             /*volatile qualifier*/SourceLocation(),
564                             /*mutable qualifier*/SourceLocation(),
565                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
566                             /*parens*/ loc, loc,
567                             declarator));
568
569  // For consistency, make sure the state still has us as processing
570  // the decl spec.
571  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
572  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
573}
574
575/// \brief Convert the specified declspec to the appropriate type
576/// object.
577/// \param state Specifies the declarator containing the declaration specifier
578/// to be converted, along with other associated processing state.
579/// \returns The type described by the declaration specifiers.  This function
580/// never returns null.
581static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
582  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
583  // checking.
584
585  Sema &S = state.getSema();
586  Declarator &declarator = state.getDeclarator();
587  const DeclSpec &DS = declarator.getDeclSpec();
588  SourceLocation DeclLoc = declarator.getIdentifierLoc();
589  if (DeclLoc.isInvalid())
590    DeclLoc = DS.getLocStart();
591
592  ASTContext &Context = S.Context;
593
594  QualType Result;
595  switch (DS.getTypeSpecType()) {
596  case DeclSpec::TST_void:
597    Result = Context.VoidTy;
598    break;
599  case DeclSpec::TST_char:
600    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
601      Result = Context.CharTy;
602    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
603      Result = Context.SignedCharTy;
604    else {
605      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
606             "Unknown TSS value");
607      Result = Context.UnsignedCharTy;
608    }
609    break;
610  case DeclSpec::TST_wchar:
611    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
612      Result = Context.WCharTy;
613    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
614      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
615        << DS.getSpecifierName(DS.getTypeSpecType());
616      Result = Context.getSignedWCharType();
617    } else {
618      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
619        "Unknown TSS value");
620      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
621        << DS.getSpecifierName(DS.getTypeSpecType());
622      Result = Context.getUnsignedWCharType();
623    }
624    break;
625  case DeclSpec::TST_char16:
626      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
627        "Unknown TSS value");
628      Result = Context.Char16Ty;
629    break;
630  case DeclSpec::TST_char32:
631      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
632        "Unknown TSS value");
633      Result = Context.Char32Ty;
634    break;
635  case DeclSpec::TST_unspecified:
636    // "<proto1,proto2>" is an objc qualified ID with a missing id.
637    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
638      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
639                                         (ObjCProtocolDecl**)PQ,
640                                         DS.getNumProtocolQualifiers());
641      Result = Context.getObjCObjectPointerType(Result);
642      break;
643    }
644
645    // If this is a missing declspec in a block literal return context, then it
646    // is inferred from the return statements inside the block.
647    // The declspec is always missing in a lambda expr context; it is either
648    // specified with a trailing return type or inferred.
649    if (declarator.getContext() == Declarator::LambdaExprContext ||
650        isOmittedBlockReturnType(declarator)) {
651      Result = Context.DependentTy;
652      break;
653    }
654
655    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
656    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
657    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
658    // Note that the one exception to this is function definitions, which are
659    // allowed to be completely missing a declspec.  This is handled in the
660    // parser already though by it pretending to have seen an 'int' in this
661    // case.
662    if (S.getLangOpts().ImplicitInt) {
663      // In C89 mode, we only warn if there is a completely missing declspec
664      // when one is not allowed.
665      if (DS.isEmpty()) {
666        S.Diag(DeclLoc, diag::ext_missing_declspec)
667          << DS.getSourceRange()
668        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
669      }
670    } else if (!DS.hasTypeSpecifier()) {
671      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
672      // "At least one type specifier shall be given in the declaration
673      // specifiers in each declaration, and in the specifier-qualifier list in
674      // each struct declaration and type name."
675      // FIXME: Does Microsoft really have the implicit int extension in C++?
676      if (S.getLangOpts().CPlusPlus &&
677          !S.getLangOpts().MicrosoftExt) {
678        S.Diag(DeclLoc, diag::err_missing_type_specifier)
679          << DS.getSourceRange();
680
681        // When this occurs in C++ code, often something is very broken with the
682        // value being declared, poison it as invalid so we don't get chains of
683        // errors.
684        declarator.setInvalidType(true);
685      } else {
686        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
687          << DS.getSourceRange();
688      }
689    }
690
691    // FALL THROUGH.
692  case DeclSpec::TST_int: {
693    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
694      switch (DS.getTypeSpecWidth()) {
695      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
696      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
697      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
698      case DeclSpec::TSW_longlong:
699        Result = Context.LongLongTy;
700
701        // long long is a C99 feature.
702        if (!S.getLangOpts().C99)
703          S.Diag(DS.getTypeSpecWidthLoc(),
704                 S.getLangOpts().CPlusPlus0x ?
705                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
706        break;
707      }
708    } else {
709      switch (DS.getTypeSpecWidth()) {
710      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
711      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
712      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
713      case DeclSpec::TSW_longlong:
714        Result = Context.UnsignedLongLongTy;
715
716        // long long is a C99 feature.
717        if (!S.getLangOpts().C99)
718          S.Diag(DS.getTypeSpecWidthLoc(),
719                 S.getLangOpts().CPlusPlus0x ?
720                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
721        break;
722      }
723    }
724    break;
725  }
726  case DeclSpec::TST_int128:
727    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
728      Result = Context.UnsignedInt128Ty;
729    else
730      Result = Context.Int128Ty;
731    break;
732  case DeclSpec::TST_half: Result = Context.HalfTy; break;
733  case DeclSpec::TST_float: Result = Context.FloatTy; break;
734  case DeclSpec::TST_double:
735    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
736      Result = Context.LongDoubleTy;
737    else
738      Result = Context.DoubleTy;
739
740    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
741      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
742      declarator.setInvalidType(true);
743    }
744    break;
745  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
746  case DeclSpec::TST_decimal32:    // _Decimal32
747  case DeclSpec::TST_decimal64:    // _Decimal64
748  case DeclSpec::TST_decimal128:   // _Decimal128
749    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
750    Result = Context.IntTy;
751    declarator.setInvalidType(true);
752    break;
753  case DeclSpec::TST_class:
754  case DeclSpec::TST_enum:
755  case DeclSpec::TST_union:
756  case DeclSpec::TST_struct:
757  case DeclSpec::TST_interface: {
758    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
759    if (!D) {
760      // This can happen in C++ with ambiguous lookups.
761      Result = Context.IntTy;
762      declarator.setInvalidType(true);
763      break;
764    }
765
766    // If the type is deprecated or unavailable, diagnose it.
767    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
768
769    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
770           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
771
772    // TypeQuals handled by caller.
773    Result = Context.getTypeDeclType(D);
774
775    // In both C and C++, make an ElaboratedType.
776    ElaboratedTypeKeyword Keyword
777      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
778    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
779    break;
780  }
781  case DeclSpec::TST_typename: {
782    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
783           DS.getTypeSpecSign() == 0 &&
784           "Can't handle qualifiers on typedef names yet!");
785    Result = S.GetTypeFromParser(DS.getRepAsType());
786    if (Result.isNull())
787      declarator.setInvalidType(true);
788    else if (DeclSpec::ProtocolQualifierListTy PQ
789               = DS.getProtocolQualifiers()) {
790      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
791        // Silently drop any existing protocol qualifiers.
792        // TODO: determine whether that's the right thing to do.
793        if (ObjT->getNumProtocols())
794          Result = ObjT->getBaseType();
795
796        if (DS.getNumProtocolQualifiers())
797          Result = Context.getObjCObjectType(Result,
798                                             (ObjCProtocolDecl**) PQ,
799                                             DS.getNumProtocolQualifiers());
800      } else if (Result->isObjCIdType()) {
801        // id<protocol-list>
802        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
803                                           (ObjCProtocolDecl**) PQ,
804                                           DS.getNumProtocolQualifiers());
805        Result = Context.getObjCObjectPointerType(Result);
806      } else if (Result->isObjCClassType()) {
807        // Class<protocol-list>
808        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
809                                           (ObjCProtocolDecl**) PQ,
810                                           DS.getNumProtocolQualifiers());
811        Result = Context.getObjCObjectPointerType(Result);
812      } else {
813        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
814          << DS.getSourceRange();
815        declarator.setInvalidType(true);
816      }
817    }
818
819    // TypeQuals handled by caller.
820    break;
821  }
822  case DeclSpec::TST_typeofType:
823    // FIXME: Preserve type source info.
824    Result = S.GetTypeFromParser(DS.getRepAsType());
825    assert(!Result.isNull() && "Didn't get a type for typeof?");
826    if (!Result->isDependentType())
827      if (const TagType *TT = Result->getAs<TagType>())
828        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
829    // TypeQuals handled by caller.
830    Result = Context.getTypeOfType(Result);
831    break;
832  case DeclSpec::TST_typeofExpr: {
833    Expr *E = DS.getRepAsExpr();
834    assert(E && "Didn't get an expression for typeof?");
835    // TypeQuals handled by caller.
836    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
837    if (Result.isNull()) {
838      Result = Context.IntTy;
839      declarator.setInvalidType(true);
840    }
841    break;
842  }
843  case DeclSpec::TST_decltype: {
844    Expr *E = DS.getRepAsExpr();
845    assert(E && "Didn't get an expression for decltype?");
846    // TypeQuals handled by caller.
847    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
848    if (Result.isNull()) {
849      Result = Context.IntTy;
850      declarator.setInvalidType(true);
851    }
852    break;
853  }
854  case DeclSpec::TST_underlyingType:
855    Result = S.GetTypeFromParser(DS.getRepAsType());
856    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
857    Result = S.BuildUnaryTransformType(Result,
858                                       UnaryTransformType::EnumUnderlyingType,
859                                       DS.getTypeSpecTypeLoc());
860    if (Result.isNull()) {
861      Result = Context.IntTy;
862      declarator.setInvalidType(true);
863    }
864    break;
865
866  case DeclSpec::TST_auto: {
867    // TypeQuals handled by caller.
868    Result = Context.getAutoType(QualType());
869    break;
870  }
871
872  case DeclSpec::TST_unknown_anytype:
873    Result = Context.UnknownAnyTy;
874    break;
875
876  case DeclSpec::TST_atomic:
877    Result = S.GetTypeFromParser(DS.getRepAsType());
878    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
879    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
880    if (Result.isNull()) {
881      Result = Context.IntTy;
882      declarator.setInvalidType(true);
883    }
884    break;
885
886  case DeclSpec::TST_error:
887    Result = Context.IntTy;
888    declarator.setInvalidType(true);
889    break;
890  }
891
892  // Handle complex types.
893  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
894    if (S.getLangOpts().Freestanding)
895      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
896    Result = Context.getComplexType(Result);
897  } else if (DS.isTypeAltiVecVector()) {
898    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
899    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
900    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
901    if (DS.isTypeAltiVecPixel())
902      VecKind = VectorType::AltiVecPixel;
903    else if (DS.isTypeAltiVecBool())
904      VecKind = VectorType::AltiVecBool;
905    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
906  }
907
908  // FIXME: Imaginary.
909  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
910    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
911
912  // Before we process any type attributes, synthesize a block literal
913  // function declarator if necessary.
914  if (declarator.getContext() == Declarator::BlockLiteralContext)
915    maybeSynthesizeBlockSignature(state, Result);
916
917  // Apply any type attributes from the decl spec.  This may cause the
918  // list of type attributes to be temporarily saved while the type
919  // attributes are pushed around.
920  if (AttributeList *attrs = DS.getAttributes().getList())
921    processTypeAttrs(state, Result, true, attrs);
922
923  // Apply const/volatile/restrict qualifiers to T.
924  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
925
926    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
927    // or incomplete types shall not be restrict-qualified."  C++ also allows
928    // restrict-qualified references.
929    if (TypeQuals & DeclSpec::TQ_restrict) {
930      if (Result->isAnyPointerType() || Result->isReferenceType()) {
931        QualType EltTy;
932        if (Result->isObjCObjectPointerType())
933          EltTy = Result;
934        else
935          EltTy = Result->isPointerType() ?
936                    Result->getAs<PointerType>()->getPointeeType() :
937                    Result->getAs<ReferenceType>()->getPointeeType();
938
939        // If we have a pointer or reference, the pointee must have an object
940        // incomplete type.
941        if (!EltTy->isIncompleteOrObjectType()) {
942          S.Diag(DS.getRestrictSpecLoc(),
943               diag::err_typecheck_invalid_restrict_invalid_pointee)
944            << EltTy << DS.getSourceRange();
945          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
946        }
947      } else {
948        S.Diag(DS.getRestrictSpecLoc(),
949               diag::err_typecheck_invalid_restrict_not_pointer)
950          << Result << DS.getSourceRange();
951        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
952      }
953    }
954
955    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
956    // of a function type includes any type qualifiers, the behavior is
957    // undefined."
958    if (Result->isFunctionType() && TypeQuals) {
959      // Get some location to point at, either the C or V location.
960      SourceLocation Loc;
961      if (TypeQuals & DeclSpec::TQ_const)
962        Loc = DS.getConstSpecLoc();
963      else if (TypeQuals & DeclSpec::TQ_volatile)
964        Loc = DS.getVolatileSpecLoc();
965      else {
966        assert((TypeQuals & DeclSpec::TQ_restrict) &&
967               "Has CVR quals but not C, V, or R?");
968        Loc = DS.getRestrictSpecLoc();
969      }
970      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
971        << Result << DS.getSourceRange();
972    }
973
974    // C++ [dcl.ref]p1:
975    //   Cv-qualified references are ill-formed except when the
976    //   cv-qualifiers are introduced through the use of a typedef
977    //   (7.1.3) or of a template type argument (14.3), in which
978    //   case the cv-qualifiers are ignored.
979    // FIXME: Shouldn't we be checking SCS_typedef here?
980    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
981        TypeQuals && Result->isReferenceType()) {
982      TypeQuals &= ~DeclSpec::TQ_const;
983      TypeQuals &= ~DeclSpec::TQ_volatile;
984    }
985
986    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
987    // than once in the same specifier-list or qualifier-list, either directly
988    // or via one or more typedefs."
989    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
990        && TypeQuals & Result.getCVRQualifiers()) {
991      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
992        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
993          << "const";
994      }
995
996      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
997        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
998          << "volatile";
999      }
1000
1001      // C90 doesn't have restrict, so it doesn't force us to produce a warning
1002      // in this case.
1003    }
1004
1005    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1006    Result = Context.getQualifiedType(Result, Quals);
1007  }
1008
1009  return Result;
1010}
1011
1012static std::string getPrintableNameForEntity(DeclarationName Entity) {
1013  if (Entity)
1014    return Entity.getAsString();
1015
1016  return "type name";
1017}
1018
1019QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1020                                  Qualifiers Qs) {
1021  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1022  // object or incomplete types shall not be restrict-qualified."
1023  if (Qs.hasRestrict()) {
1024    unsigned DiagID = 0;
1025    QualType ProblemTy;
1026
1027    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1028    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1029      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1030        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1031        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1032      }
1033    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1034      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1035        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1036        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1037      }
1038    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1039      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1040        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1041        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1042      }
1043    } else if (!Ty->isDependentType()) {
1044      // FIXME: this deserves a proper diagnostic
1045      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1046      ProblemTy = T;
1047    }
1048
1049    if (DiagID) {
1050      Diag(Loc, DiagID) << ProblemTy;
1051      Qs.removeRestrict();
1052    }
1053  }
1054
1055  return Context.getQualifiedType(T, Qs);
1056}
1057
1058/// \brief Build a paren type including \p T.
1059QualType Sema::BuildParenType(QualType T) {
1060  return Context.getParenType(T);
1061}
1062
1063/// Given that we're building a pointer or reference to the given
1064static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1065                                           SourceLocation loc,
1066                                           bool isReference) {
1067  // Bail out if retention is unrequired or already specified.
1068  if (!type->isObjCLifetimeType() ||
1069      type.getObjCLifetime() != Qualifiers::OCL_None)
1070    return type;
1071
1072  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1073
1074  // If the object type is const-qualified, we can safely use
1075  // __unsafe_unretained.  This is safe (because there are no read
1076  // barriers), and it'll be safe to coerce anything but __weak* to
1077  // the resulting type.
1078  if (type.isConstQualified()) {
1079    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1080
1081  // Otherwise, check whether the static type does not require
1082  // retaining.  This currently only triggers for Class (possibly
1083  // protocol-qualifed, and arrays thereof).
1084  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1085    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1086
1087  // If we are in an unevaluated context, like sizeof, skip adding a
1088  // qualification.
1089  } else if (S.isUnevaluatedContext()) {
1090    return type;
1091
1092  // If that failed, give an error and recover using __strong.  __strong
1093  // is the option most likely to prevent spurious second-order diagnostics,
1094  // like when binding a reference to a field.
1095  } else {
1096    // These types can show up in private ivars in system headers, so
1097    // we need this to not be an error in those cases.  Instead we
1098    // want to delay.
1099    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1100      S.DelayedDiagnostics.add(
1101          sema::DelayedDiagnostic::makeForbiddenType(loc,
1102              diag::err_arc_indirect_no_ownership, type, isReference));
1103    } else {
1104      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1105    }
1106    implicitLifetime = Qualifiers::OCL_Strong;
1107  }
1108  assert(implicitLifetime && "didn't infer any lifetime!");
1109
1110  Qualifiers qs;
1111  qs.addObjCLifetime(implicitLifetime);
1112  return S.Context.getQualifiedType(type, qs);
1113}
1114
1115/// \brief Build a pointer type.
1116///
1117/// \param T The type to which we'll be building a pointer.
1118///
1119/// \param Loc The location of the entity whose type involves this
1120/// pointer type or, if there is no such entity, the location of the
1121/// type that will have pointer type.
1122///
1123/// \param Entity The name of the entity that involves the pointer
1124/// type, if known.
1125///
1126/// \returns A suitable pointer type, if there are no
1127/// errors. Otherwise, returns a NULL type.
1128QualType Sema::BuildPointerType(QualType T,
1129                                SourceLocation Loc, DeclarationName Entity) {
1130  if (T->isReferenceType()) {
1131    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1132    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1133      << getPrintableNameForEntity(Entity) << T;
1134    return QualType();
1135  }
1136
1137  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1138
1139  // In ARC, it is forbidden to build pointers to unqualified pointers.
1140  if (getLangOpts().ObjCAutoRefCount)
1141    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1142
1143  // Build the pointer type.
1144  return Context.getPointerType(T);
1145}
1146
1147/// \brief Build a reference type.
1148///
1149/// \param T The type to which we'll be building a reference.
1150///
1151/// \param Loc The location of the entity whose type involves this
1152/// reference type or, if there is no such entity, the location of the
1153/// type that will have reference type.
1154///
1155/// \param Entity The name of the entity that involves the reference
1156/// type, if known.
1157///
1158/// \returns A suitable reference type, if there are no
1159/// errors. Otherwise, returns a NULL type.
1160QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1161                                  SourceLocation Loc,
1162                                  DeclarationName Entity) {
1163  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1164         "Unresolved overloaded function type");
1165
1166  // C++0x [dcl.ref]p6:
1167  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1168  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1169  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1170  //   the type "lvalue reference to T", while an attempt to create the type
1171  //   "rvalue reference to cv TR" creates the type TR.
1172  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1173
1174  // C++ [dcl.ref]p4: There shall be no references to references.
1175  //
1176  // According to C++ DR 106, references to references are only
1177  // diagnosed when they are written directly (e.g., "int & &"),
1178  // but not when they happen via a typedef:
1179  //
1180  //   typedef int& intref;
1181  //   typedef intref& intref2;
1182  //
1183  // Parser::ParseDeclaratorInternal diagnoses the case where
1184  // references are written directly; here, we handle the
1185  // collapsing of references-to-references as described in C++0x.
1186  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1187
1188  // C++ [dcl.ref]p1:
1189  //   A declarator that specifies the type "reference to cv void"
1190  //   is ill-formed.
1191  if (T->isVoidType()) {
1192    Diag(Loc, diag::err_reference_to_void);
1193    return QualType();
1194  }
1195
1196  // In ARC, it is forbidden to build references to unqualified pointers.
1197  if (getLangOpts().ObjCAutoRefCount)
1198    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1199
1200  // Handle restrict on references.
1201  if (LValueRef)
1202    return Context.getLValueReferenceType(T, SpelledAsLValue);
1203  return Context.getRValueReferenceType(T);
1204}
1205
1206/// Check whether the specified array size makes the array type a VLA.  If so,
1207/// return true, if not, return the size of the array in SizeVal.
1208static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1209  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1210  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1211  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1212  public:
1213    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1214
1215    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1216    }
1217
1218    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1219      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1220    }
1221  } Diagnoser;
1222
1223  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1224                                           S.LangOpts.GNUMode).isInvalid();
1225}
1226
1227
1228/// \brief Build an array type.
1229///
1230/// \param T The type of each element in the array.
1231///
1232/// \param ASM C99 array size modifier (e.g., '*', 'static').
1233///
1234/// \param ArraySize Expression describing the size of the array.
1235///
1236/// \param Brackets The range from the opening '[' to the closing ']'.
1237///
1238/// \param Entity The name of the entity that involves the array
1239/// type, if known.
1240///
1241/// \returns A suitable array type, if there are no errors. Otherwise,
1242/// returns a NULL type.
1243QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1244                              Expr *ArraySize, unsigned Quals,
1245                              SourceRange Brackets, DeclarationName Entity) {
1246
1247  SourceLocation Loc = Brackets.getBegin();
1248  if (getLangOpts().CPlusPlus) {
1249    // C++ [dcl.array]p1:
1250    //   T is called the array element type; this type shall not be a reference
1251    //   type, the (possibly cv-qualified) type void, a function type or an
1252    //   abstract class type.
1253    //
1254    // C++ [dcl.array]p3:
1255    //   When several "array of" specifications are adjacent, [...] only the
1256    //   first of the constant expressions that specify the bounds of the arrays
1257    //   may be omitted.
1258    //
1259    // Note: function types are handled in the common path with C.
1260    if (T->isReferenceType()) {
1261      Diag(Loc, diag::err_illegal_decl_array_of_references)
1262      << getPrintableNameForEntity(Entity) << T;
1263      return QualType();
1264    }
1265
1266    if (T->isVoidType() || T->isIncompleteArrayType()) {
1267      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1268      return QualType();
1269    }
1270
1271    if (RequireNonAbstractType(Brackets.getBegin(), T,
1272                               diag::err_array_of_abstract_type))
1273      return QualType();
1274
1275  } else {
1276    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1277    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1278    if (RequireCompleteType(Loc, T,
1279                            diag::err_illegal_decl_array_incomplete_type))
1280      return QualType();
1281  }
1282
1283  if (T->isFunctionType()) {
1284    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1285      << getPrintableNameForEntity(Entity) << T;
1286    return QualType();
1287  }
1288
1289  if (T->getContainedAutoType()) {
1290    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1291      << getPrintableNameForEntity(Entity) << T;
1292    return QualType();
1293  }
1294
1295  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1296    // If the element type is a struct or union that contains a variadic
1297    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1298    if (EltTy->getDecl()->hasFlexibleArrayMember())
1299      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1300  } else if (T->isObjCObjectType()) {
1301    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1302    return QualType();
1303  }
1304
1305  // Do placeholder conversions on the array size expression.
1306  if (ArraySize && ArraySize->hasPlaceholderType()) {
1307    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1308    if (Result.isInvalid()) return QualType();
1309    ArraySize = Result.take();
1310  }
1311
1312  // Do lvalue-to-rvalue conversions on the array size expression.
1313  if (ArraySize && !ArraySize->isRValue()) {
1314    ExprResult Result = DefaultLvalueConversion(ArraySize);
1315    if (Result.isInvalid())
1316      return QualType();
1317
1318    ArraySize = Result.take();
1319  }
1320
1321  // C99 6.7.5.2p1: The size expression shall have integer type.
1322  // C++11 allows contextual conversions to such types.
1323  if (!getLangOpts().CPlusPlus0x &&
1324      ArraySize && !ArraySize->isTypeDependent() &&
1325      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1326    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1327      << ArraySize->getType() << ArraySize->getSourceRange();
1328    return QualType();
1329  }
1330
1331  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1332  if (!ArraySize) {
1333    if (ASM == ArrayType::Star)
1334      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1335    else
1336      T = Context.getIncompleteArrayType(T, ASM, Quals);
1337  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1338    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1339  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1340              !T->isConstantSizeType()) ||
1341             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1342    // Even in C++11, don't allow contextual conversions in the array bound
1343    // of a VLA.
1344    if (getLangOpts().CPlusPlus0x &&
1345        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1346      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1347        << ArraySize->getType() << ArraySize->getSourceRange();
1348      return QualType();
1349    }
1350
1351    // C99: an array with an element type that has a non-constant-size is a VLA.
1352    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1353    // that we can fold to a non-zero positive value as an extension.
1354    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1355  } else {
1356    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1357    // have a value greater than zero.
1358    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1359      if (Entity)
1360        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1361          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1362      else
1363        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1364          << ArraySize->getSourceRange();
1365      return QualType();
1366    }
1367    if (ConstVal == 0) {
1368      // GCC accepts zero sized static arrays. We allow them when
1369      // we're not in a SFINAE context.
1370      Diag(ArraySize->getLocStart(),
1371           isSFINAEContext()? diag::err_typecheck_zero_array_size
1372                            : diag::ext_typecheck_zero_array_size)
1373        << ArraySize->getSourceRange();
1374
1375      if (ASM == ArrayType::Static) {
1376        Diag(ArraySize->getLocStart(),
1377             diag::warn_typecheck_zero_static_array_size)
1378          << ArraySize->getSourceRange();
1379        ASM = ArrayType::Normal;
1380      }
1381    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1382               !T->isIncompleteType()) {
1383      // Is the array too large?
1384      unsigned ActiveSizeBits
1385        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1386      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1387        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1388          << ConstVal.toString(10)
1389          << ArraySize->getSourceRange();
1390    }
1391
1392    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1393  }
1394  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1395  if (!getLangOpts().C99) {
1396    if (T->isVariableArrayType()) {
1397      // Prohibit the use of non-POD types in VLAs.
1398      QualType BaseT = Context.getBaseElementType(T);
1399      if (!T->isDependentType() &&
1400          !BaseT.isPODType(Context) &&
1401          !BaseT->isObjCLifetimeType()) {
1402        Diag(Loc, diag::err_vla_non_pod)
1403          << BaseT;
1404        return QualType();
1405      }
1406      // Prohibit the use of VLAs during template argument deduction.
1407      else if (isSFINAEContext()) {
1408        Diag(Loc, diag::err_vla_in_sfinae);
1409        return QualType();
1410      }
1411      // Just extwarn about VLAs.
1412      else
1413        Diag(Loc, diag::ext_vla);
1414    } else if (ASM != ArrayType::Normal || Quals != 0)
1415      Diag(Loc,
1416           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1417                                     : diag::ext_c99_array_usage) << ASM;
1418  }
1419
1420  return T;
1421}
1422
1423/// \brief Build an ext-vector type.
1424///
1425/// Run the required checks for the extended vector type.
1426QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1427                                  SourceLocation AttrLoc) {
1428  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1429  // in conjunction with complex types (pointers, arrays, functions, etc.).
1430  if (!T->isDependentType() &&
1431      !T->isIntegerType() && !T->isRealFloatingType()) {
1432    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1433    return QualType();
1434  }
1435
1436  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1437    llvm::APSInt vecSize(32);
1438    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1439      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1440        << "ext_vector_type" << ArraySize->getSourceRange();
1441      return QualType();
1442    }
1443
1444    // unlike gcc's vector_size attribute, the size is specified as the
1445    // number of elements, not the number of bytes.
1446    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1447
1448    if (vectorSize == 0) {
1449      Diag(AttrLoc, diag::err_attribute_zero_size)
1450      << ArraySize->getSourceRange();
1451      return QualType();
1452    }
1453
1454    return Context.getExtVectorType(T, vectorSize);
1455  }
1456
1457  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1458}
1459
1460/// \brief Build a function type.
1461///
1462/// This routine checks the function type according to C++ rules and
1463/// under the assumption that the result type and parameter types have
1464/// just been instantiated from a template. It therefore duplicates
1465/// some of the behavior of GetTypeForDeclarator, but in a much
1466/// simpler form that is only suitable for this narrow use case.
1467///
1468/// \param T The return type of the function.
1469///
1470/// \param ParamTypes The parameter types of the function. This array
1471/// will be modified to account for adjustments to the types of the
1472/// function parameters.
1473///
1474/// \param NumParamTypes The number of parameter types in ParamTypes.
1475///
1476/// \param Variadic Whether this is a variadic function type.
1477///
1478/// \param HasTrailingReturn Whether this function has a trailing return type.
1479///
1480/// \param Quals The cvr-qualifiers to be applied to the function type.
1481///
1482/// \param Loc The location of the entity whose type involves this
1483/// function type or, if there is no such entity, the location of the
1484/// type that will have function type.
1485///
1486/// \param Entity The name of the entity that involves the function
1487/// type, if known.
1488///
1489/// \returns A suitable function type, if there are no
1490/// errors. Otherwise, returns a NULL type.
1491QualType Sema::BuildFunctionType(QualType T,
1492                                 QualType *ParamTypes,
1493                                 unsigned NumParamTypes,
1494                                 bool Variadic, bool HasTrailingReturn,
1495                                 unsigned Quals,
1496                                 RefQualifierKind RefQualifier,
1497                                 SourceLocation Loc, DeclarationName Entity,
1498                                 FunctionType::ExtInfo Info) {
1499  if (T->isArrayType() || T->isFunctionType()) {
1500    Diag(Loc, diag::err_func_returning_array_function)
1501      << T->isFunctionType() << T;
1502    return QualType();
1503  }
1504
1505  // Functions cannot return half FP.
1506  if (T->isHalfType()) {
1507    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1508      FixItHint::CreateInsertion(Loc, "*");
1509    return QualType();
1510  }
1511
1512  bool Invalid = false;
1513  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1514    // FIXME: Loc is too inprecise here, should use proper locations for args.
1515    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1516    if (ParamType->isVoidType()) {
1517      Diag(Loc, diag::err_param_with_void_type);
1518      Invalid = true;
1519    } else if (ParamType->isHalfType()) {
1520      // Disallow half FP arguments.
1521      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1522        FixItHint::CreateInsertion(Loc, "*");
1523      Invalid = true;
1524    }
1525
1526    ParamTypes[Idx] = ParamType;
1527  }
1528
1529  if (Invalid)
1530    return QualType();
1531
1532  FunctionProtoType::ExtProtoInfo EPI;
1533  EPI.Variadic = Variadic;
1534  EPI.HasTrailingReturn = HasTrailingReturn;
1535  EPI.TypeQuals = Quals;
1536  EPI.RefQualifier = RefQualifier;
1537  EPI.ExtInfo = Info;
1538
1539  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1540}
1541
1542/// \brief Build a member pointer type \c T Class::*.
1543///
1544/// \param T the type to which the member pointer refers.
1545/// \param Class the class type into which the member pointer points.
1546/// \param Loc the location where this type begins
1547/// \param Entity the name of the entity that will have this member pointer type
1548///
1549/// \returns a member pointer type, if successful, or a NULL type if there was
1550/// an error.
1551QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1552                                      SourceLocation Loc,
1553                                      DeclarationName Entity) {
1554  // Verify that we're not building a pointer to pointer to function with
1555  // exception specification.
1556  if (CheckDistantExceptionSpec(T)) {
1557    Diag(Loc, diag::err_distant_exception_spec);
1558
1559    // FIXME: If we're doing this as part of template instantiation,
1560    // we should return immediately.
1561
1562    // Build the type anyway, but use the canonical type so that the
1563    // exception specifiers are stripped off.
1564    T = Context.getCanonicalType(T);
1565  }
1566
1567  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1568  //   with reference type, or "cv void."
1569  if (T->isReferenceType()) {
1570    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1571      << (Entity? Entity.getAsString() : "type name") << T;
1572    return QualType();
1573  }
1574
1575  if (T->isVoidType()) {
1576    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1577      << (Entity? Entity.getAsString() : "type name");
1578    return QualType();
1579  }
1580
1581  if (!Class->isDependentType() && !Class->isRecordType()) {
1582    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1583    return QualType();
1584  }
1585
1586  return Context.getMemberPointerType(T, Class.getTypePtr());
1587}
1588
1589/// \brief Build a block pointer type.
1590///
1591/// \param T The type to which we'll be building a block pointer.
1592///
1593/// \param Loc The source location, used for diagnostics.
1594///
1595/// \param Entity The name of the entity that involves the block pointer
1596/// type, if known.
1597///
1598/// \returns A suitable block pointer type, if there are no
1599/// errors. Otherwise, returns a NULL type.
1600QualType Sema::BuildBlockPointerType(QualType T,
1601                                     SourceLocation Loc,
1602                                     DeclarationName Entity) {
1603  if (!T->isFunctionType()) {
1604    Diag(Loc, diag::err_nonfunction_block_type);
1605    return QualType();
1606  }
1607
1608  return Context.getBlockPointerType(T);
1609}
1610
1611QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1612  QualType QT = Ty.get();
1613  if (QT.isNull()) {
1614    if (TInfo) *TInfo = 0;
1615    return QualType();
1616  }
1617
1618  TypeSourceInfo *DI = 0;
1619  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1620    QT = LIT->getType();
1621    DI = LIT->getTypeSourceInfo();
1622  }
1623
1624  if (TInfo) *TInfo = DI;
1625  return QT;
1626}
1627
1628static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1629                                            Qualifiers::ObjCLifetime ownership,
1630                                            unsigned chunkIndex);
1631
1632/// Given that this is the declaration of a parameter under ARC,
1633/// attempt to infer attributes and such for pointer-to-whatever
1634/// types.
1635static void inferARCWriteback(TypeProcessingState &state,
1636                              QualType &declSpecType) {
1637  Sema &S = state.getSema();
1638  Declarator &declarator = state.getDeclarator();
1639
1640  // TODO: should we care about decl qualifiers?
1641
1642  // Check whether the declarator has the expected form.  We walk
1643  // from the inside out in order to make the block logic work.
1644  unsigned outermostPointerIndex = 0;
1645  bool isBlockPointer = false;
1646  unsigned numPointers = 0;
1647  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1648    unsigned chunkIndex = i;
1649    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1650    switch (chunk.Kind) {
1651    case DeclaratorChunk::Paren:
1652      // Ignore parens.
1653      break;
1654
1655    case DeclaratorChunk::Reference:
1656    case DeclaratorChunk::Pointer:
1657      // Count the number of pointers.  Treat references
1658      // interchangeably as pointers; if they're mis-ordered, normal
1659      // type building will discover that.
1660      outermostPointerIndex = chunkIndex;
1661      numPointers++;
1662      break;
1663
1664    case DeclaratorChunk::BlockPointer:
1665      // If we have a pointer to block pointer, that's an acceptable
1666      // indirect reference; anything else is not an application of
1667      // the rules.
1668      if (numPointers != 1) return;
1669      numPointers++;
1670      outermostPointerIndex = chunkIndex;
1671      isBlockPointer = true;
1672
1673      // We don't care about pointer structure in return values here.
1674      goto done;
1675
1676    case DeclaratorChunk::Array: // suppress if written (id[])?
1677    case DeclaratorChunk::Function:
1678    case DeclaratorChunk::MemberPointer:
1679      return;
1680    }
1681  }
1682 done:
1683
1684  // If we have *one* pointer, then we want to throw the qualifier on
1685  // the declaration-specifiers, which means that it needs to be a
1686  // retainable object type.
1687  if (numPointers == 1) {
1688    // If it's not a retainable object type, the rule doesn't apply.
1689    if (!declSpecType->isObjCRetainableType()) return;
1690
1691    // If it already has lifetime, don't do anything.
1692    if (declSpecType.getObjCLifetime()) return;
1693
1694    // Otherwise, modify the type in-place.
1695    Qualifiers qs;
1696
1697    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1698      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1699    else
1700      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1701    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1702
1703  // If we have *two* pointers, then we want to throw the qualifier on
1704  // the outermost pointer.
1705  } else if (numPointers == 2) {
1706    // If we don't have a block pointer, we need to check whether the
1707    // declaration-specifiers gave us something that will turn into a
1708    // retainable object pointer after we slap the first pointer on it.
1709    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1710      return;
1711
1712    // Look for an explicit lifetime attribute there.
1713    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1714    if (chunk.Kind != DeclaratorChunk::Pointer &&
1715        chunk.Kind != DeclaratorChunk::BlockPointer)
1716      return;
1717    for (const AttributeList *attr = chunk.getAttrs(); attr;
1718           attr = attr->getNext())
1719      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1720        return;
1721
1722    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1723                                          outermostPointerIndex);
1724
1725  // Any other number of pointers/references does not trigger the rule.
1726  } else return;
1727
1728  // TODO: mark whether we did this inference?
1729}
1730
1731static void DiagnoseIgnoredQualifiers(unsigned Quals,
1732                                      SourceLocation ConstQualLoc,
1733                                      SourceLocation VolatileQualLoc,
1734                                      SourceLocation RestrictQualLoc,
1735                                      Sema& S) {
1736  std::string QualStr;
1737  unsigned NumQuals = 0;
1738  SourceLocation Loc;
1739
1740  FixItHint ConstFixIt;
1741  FixItHint VolatileFixIt;
1742  FixItHint RestrictFixIt;
1743
1744  const SourceManager &SM = S.getSourceManager();
1745
1746  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1747  // find a range and grow it to encompass all the qualifiers, regardless of
1748  // the order in which they textually appear.
1749  if (Quals & Qualifiers::Const) {
1750    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1751    QualStr = "const";
1752    ++NumQuals;
1753    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1754      Loc = ConstQualLoc;
1755  }
1756  if (Quals & Qualifiers::Volatile) {
1757    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1758    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1759    ++NumQuals;
1760    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1761      Loc = VolatileQualLoc;
1762  }
1763  if (Quals & Qualifiers::Restrict) {
1764    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1765    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1766    ++NumQuals;
1767    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1768      Loc = RestrictQualLoc;
1769  }
1770
1771  assert(NumQuals > 0 && "No known qualifiers?");
1772
1773  S.Diag(Loc, diag::warn_qual_return_type)
1774    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1775}
1776
1777static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1778                                             TypeSourceInfo *&ReturnTypeInfo) {
1779  Sema &SemaRef = state.getSema();
1780  Declarator &D = state.getDeclarator();
1781  QualType T;
1782  ReturnTypeInfo = 0;
1783
1784  // The TagDecl owned by the DeclSpec.
1785  TagDecl *OwnedTagDecl = 0;
1786
1787  switch (D.getName().getKind()) {
1788  case UnqualifiedId::IK_ImplicitSelfParam:
1789  case UnqualifiedId::IK_OperatorFunctionId:
1790  case UnqualifiedId::IK_Identifier:
1791  case UnqualifiedId::IK_LiteralOperatorId:
1792  case UnqualifiedId::IK_TemplateId:
1793    T = ConvertDeclSpecToType(state);
1794
1795    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1796      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1797      // Owned declaration is embedded in declarator.
1798      OwnedTagDecl->setEmbeddedInDeclarator(true);
1799    }
1800    break;
1801
1802  case UnqualifiedId::IK_ConstructorName:
1803  case UnqualifiedId::IK_ConstructorTemplateId:
1804  case UnqualifiedId::IK_DestructorName:
1805    // Constructors and destructors don't have return types. Use
1806    // "void" instead.
1807    T = SemaRef.Context.VoidTy;
1808    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1809      processTypeAttrs(state, T, true, attrs);
1810    break;
1811
1812  case UnqualifiedId::IK_ConversionFunctionId:
1813    // The result type of a conversion function is the type that it
1814    // converts to.
1815    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1816                                  &ReturnTypeInfo);
1817    break;
1818  }
1819
1820  if (D.getAttributes())
1821    distributeTypeAttrsFromDeclarator(state, T);
1822
1823  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1824  // In C++11, a function declarator using 'auto' must have a trailing return
1825  // type (this is checked later) and we can skip this. In other languages
1826  // using auto, we need to check regardless.
1827  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1828      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1829    int Error = -1;
1830
1831    switch (D.getContext()) {
1832    case Declarator::KNRTypeListContext:
1833      llvm_unreachable("K&R type lists aren't allowed in C++");
1834    case Declarator::LambdaExprContext:
1835      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1836    case Declarator::ObjCParameterContext:
1837    case Declarator::ObjCResultContext:
1838    case Declarator::PrototypeContext:
1839      Error = 0; // Function prototype
1840      break;
1841    case Declarator::MemberContext:
1842      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1843        break;
1844      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1845      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1846      case TTK_Struct: Error = 1; /* Struct member */ break;
1847      case TTK_Union:  Error = 2; /* Union member */ break;
1848      case TTK_Class:  Error = 3; /* Class member */ break;
1849      case TTK_Interface: Error = 4; /* Interface member */ break;
1850      }
1851      break;
1852    case Declarator::CXXCatchContext:
1853    case Declarator::ObjCCatchContext:
1854      Error = 5; // Exception declaration
1855      break;
1856    case Declarator::TemplateParamContext:
1857      Error = 6; // Template parameter
1858      break;
1859    case Declarator::BlockLiteralContext:
1860      Error = 7; // Block literal
1861      break;
1862    case Declarator::TemplateTypeArgContext:
1863      Error = 8; // Template type argument
1864      break;
1865    case Declarator::AliasDeclContext:
1866    case Declarator::AliasTemplateContext:
1867      Error = 10; // Type alias
1868      break;
1869    case Declarator::TrailingReturnContext:
1870      Error = 11; // Function return type
1871      break;
1872    case Declarator::TypeNameContext:
1873      Error = 12; // Generic
1874      break;
1875    case Declarator::FileContext:
1876    case Declarator::BlockContext:
1877    case Declarator::ForContext:
1878    case Declarator::ConditionContext:
1879    case Declarator::CXXNewContext:
1880      break;
1881    }
1882
1883    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1884      Error = 9;
1885
1886    // In Objective-C it is an error to use 'auto' on a function declarator.
1887    if (D.isFunctionDeclarator())
1888      Error = 11;
1889
1890    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1891    // contains a trailing return type. That is only legal at the outermost
1892    // level. Check all declarator chunks (outermost first) anyway, to give
1893    // better diagnostics.
1894    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1895      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1896        unsigned chunkIndex = e - i - 1;
1897        state.setCurrentChunkIndex(chunkIndex);
1898        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1899        if (DeclType.Kind == DeclaratorChunk::Function) {
1900          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1901          if (FTI.hasTrailingReturnType()) {
1902            Error = -1;
1903            break;
1904          }
1905        }
1906      }
1907    }
1908
1909    if (Error != -1) {
1910      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1911                   diag::err_auto_not_allowed)
1912        << Error;
1913      T = SemaRef.Context.IntTy;
1914      D.setInvalidType(true);
1915    } else
1916      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1917                   diag::warn_cxx98_compat_auto_type_specifier);
1918  }
1919
1920  if (SemaRef.getLangOpts().CPlusPlus &&
1921      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1922    // Check the contexts where C++ forbids the declaration of a new class
1923    // or enumeration in a type-specifier-seq.
1924    switch (D.getContext()) {
1925    case Declarator::TrailingReturnContext:
1926      // Class and enumeration definitions are syntactically not allowed in
1927      // trailing return types.
1928      llvm_unreachable("parser should not have allowed this");
1929      break;
1930    case Declarator::FileContext:
1931    case Declarator::MemberContext:
1932    case Declarator::BlockContext:
1933    case Declarator::ForContext:
1934    case Declarator::BlockLiteralContext:
1935    case Declarator::LambdaExprContext:
1936      // C++11 [dcl.type]p3:
1937      //   A type-specifier-seq shall not define a class or enumeration unless
1938      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1939      //   the declaration of a template-declaration.
1940    case Declarator::AliasDeclContext:
1941      break;
1942    case Declarator::AliasTemplateContext:
1943      SemaRef.Diag(OwnedTagDecl->getLocation(),
1944             diag::err_type_defined_in_alias_template)
1945        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1946      break;
1947    case Declarator::TypeNameContext:
1948    case Declarator::TemplateParamContext:
1949    case Declarator::CXXNewContext:
1950    case Declarator::CXXCatchContext:
1951    case Declarator::ObjCCatchContext:
1952    case Declarator::TemplateTypeArgContext:
1953      SemaRef.Diag(OwnedTagDecl->getLocation(),
1954             diag::err_type_defined_in_type_specifier)
1955        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1956      break;
1957    case Declarator::PrototypeContext:
1958    case Declarator::ObjCParameterContext:
1959    case Declarator::ObjCResultContext:
1960    case Declarator::KNRTypeListContext:
1961      // C++ [dcl.fct]p6:
1962      //   Types shall not be defined in return or parameter types.
1963      SemaRef.Diag(OwnedTagDecl->getLocation(),
1964                   diag::err_type_defined_in_param_type)
1965        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1966      break;
1967    case Declarator::ConditionContext:
1968      // C++ 6.4p2:
1969      // The type-specifier-seq shall not contain typedef and shall not declare
1970      // a new class or enumeration.
1971      SemaRef.Diag(OwnedTagDecl->getLocation(),
1972                   diag::err_type_defined_in_condition);
1973      break;
1974    }
1975  }
1976
1977  return T;
1978}
1979
1980static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1981  std::string Quals =
1982    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1983
1984  switch (FnTy->getRefQualifier()) {
1985  case RQ_None:
1986    break;
1987
1988  case RQ_LValue:
1989    if (!Quals.empty())
1990      Quals += ' ';
1991    Quals += '&';
1992    break;
1993
1994  case RQ_RValue:
1995    if (!Quals.empty())
1996      Quals += ' ';
1997    Quals += "&&";
1998    break;
1999  }
2000
2001  return Quals;
2002}
2003
2004/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2005/// can be contained within the declarator chunk DeclType, and produce an
2006/// appropriate diagnostic if not.
2007static void checkQualifiedFunction(Sema &S, QualType T,
2008                                   DeclaratorChunk &DeclType) {
2009  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2010  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2011  // of a type.
2012  int DiagKind = -1;
2013  switch (DeclType.Kind) {
2014  case DeclaratorChunk::Paren:
2015  case DeclaratorChunk::MemberPointer:
2016    // These cases are permitted.
2017    return;
2018  case DeclaratorChunk::Array:
2019  case DeclaratorChunk::Function:
2020    // These cases don't allow function types at all; no need to diagnose the
2021    // qualifiers separately.
2022    return;
2023  case DeclaratorChunk::BlockPointer:
2024    DiagKind = 0;
2025    break;
2026  case DeclaratorChunk::Pointer:
2027    DiagKind = 1;
2028    break;
2029  case DeclaratorChunk::Reference:
2030    DiagKind = 2;
2031    break;
2032  }
2033
2034  assert(DiagKind != -1);
2035  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2036    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2037    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2038}
2039
2040/// Produce an approprioate diagnostic for an ambiguity between a function
2041/// declarator and a C++ direct-initializer.
2042static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2043                                       DeclaratorChunk &DeclType, QualType RT) {
2044  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2045  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2046
2047  // If the return type is void there is no ambiguity.
2048  if (RT->isVoidType())
2049    return;
2050
2051  // An initializer for a non-class type can have at most one argument.
2052  if (!RT->isRecordType() && FTI.NumArgs > 1)
2053    return;
2054
2055  // An initializer for a reference must have exactly one argument.
2056  if (RT->isReferenceType() && FTI.NumArgs != 1)
2057    return;
2058
2059  // Only warn if this declarator is declaring a function at block scope, and
2060  // doesn't have a storage class (such as 'extern') specified.
2061  if (!D.isFunctionDeclarator() ||
2062      D.getFunctionDefinitionKind() != FDK_Declaration ||
2063      !S.CurContext->isFunctionOrMethod() ||
2064      D.getDeclSpec().getStorageClassSpecAsWritten()
2065        != DeclSpec::SCS_unspecified)
2066    return;
2067
2068  // Inside a condition, a direct initializer is not permitted. We allow one to
2069  // be parsed in order to give better diagnostics in condition parsing.
2070  if (D.getContext() == Declarator::ConditionContext)
2071    return;
2072
2073  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2074
2075  S.Diag(DeclType.Loc,
2076         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2077                     : diag::warn_empty_parens_are_function_decl)
2078    << ParenRange;
2079
2080  // If the declaration looks like:
2081  //   T var1,
2082  //   f();
2083  // and name lookup finds a function named 'f', then the ',' was
2084  // probably intended to be a ';'.
2085  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2086    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2087    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2088    if (Comma.getFileID() != Name.getFileID() ||
2089        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2090      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2091                          Sema::LookupOrdinaryName);
2092      if (S.LookupName(Result, S.getCurScope()))
2093        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2094          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2095          << D.getIdentifier();
2096    }
2097  }
2098
2099  if (FTI.NumArgs > 0) {
2100    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2101    // around the first parameter to turn the declaration into a variable
2102    // declaration.
2103    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2104    SourceLocation B = Range.getBegin();
2105    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2106    // FIXME: Maybe we should suggest adding braces instead of parens
2107    // in C++11 for classes that don't have an initializer_list constructor.
2108    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2109      << FixItHint::CreateInsertion(B, "(")
2110      << FixItHint::CreateInsertion(E, ")");
2111  } else {
2112    // For a declaration without parameters, eg. "T var();", suggest replacing the
2113    // parens with an initializer to turn the declaration into a variable
2114    // declaration.
2115    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2116
2117    // Empty parens mean value-initialization, and no parens mean
2118    // default initialization. These are equivalent if the default
2119    // constructor is user-provided or if zero-initialization is a
2120    // no-op.
2121    if (RD && RD->hasDefinition() &&
2122        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2123      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2124        << FixItHint::CreateRemoval(ParenRange);
2125    else {
2126      std::string Init = S.getFixItZeroInitializerForType(RT);
2127      if (Init.empty() && S.LangOpts.CPlusPlus0x)
2128        Init = "{}";
2129      if (!Init.empty())
2130        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2131          << FixItHint::CreateReplacement(ParenRange, Init);
2132    }
2133  }
2134}
2135
2136static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2137                                                QualType declSpecType,
2138                                                TypeSourceInfo *TInfo) {
2139
2140  QualType T = declSpecType;
2141  Declarator &D = state.getDeclarator();
2142  Sema &S = state.getSema();
2143  ASTContext &Context = S.Context;
2144  const LangOptions &LangOpts = S.getLangOpts();
2145
2146  bool ImplicitlyNoexcept = false;
2147  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2148      LangOpts.CPlusPlus0x) {
2149    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2150    /// In C++0x, deallocation functions (normal and array operator delete)
2151    /// are implicitly noexcept.
2152    if (OO == OO_Delete || OO == OO_Array_Delete)
2153      ImplicitlyNoexcept = true;
2154  }
2155
2156  // The name we're declaring, if any.
2157  DeclarationName Name;
2158  if (D.getIdentifier())
2159    Name = D.getIdentifier();
2160
2161  // Does this declaration declare a typedef-name?
2162  bool IsTypedefName =
2163    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2164    D.getContext() == Declarator::AliasDeclContext ||
2165    D.getContext() == Declarator::AliasTemplateContext;
2166
2167  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2168  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2169      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2170       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2171
2172  // Walk the DeclTypeInfo, building the recursive type as we go.
2173  // DeclTypeInfos are ordered from the identifier out, which is
2174  // opposite of what we want :).
2175  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2176    unsigned chunkIndex = e - i - 1;
2177    state.setCurrentChunkIndex(chunkIndex);
2178    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2179    if (IsQualifiedFunction) {
2180      checkQualifiedFunction(S, T, DeclType);
2181      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2182    }
2183    switch (DeclType.Kind) {
2184    case DeclaratorChunk::Paren:
2185      T = S.BuildParenType(T);
2186      break;
2187    case DeclaratorChunk::BlockPointer:
2188      // If blocks are disabled, emit an error.
2189      if (!LangOpts.Blocks)
2190        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2191
2192      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2193      if (DeclType.Cls.TypeQuals)
2194        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2195      break;
2196    case DeclaratorChunk::Pointer:
2197      // Verify that we're not building a pointer to pointer to function with
2198      // exception specification.
2199      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2200        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2201        D.setInvalidType(true);
2202        // Build the type anyway.
2203      }
2204      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2205        T = Context.getObjCObjectPointerType(T);
2206        if (DeclType.Ptr.TypeQuals)
2207          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2208        break;
2209      }
2210      T = S.BuildPointerType(T, DeclType.Loc, Name);
2211      if (DeclType.Ptr.TypeQuals)
2212        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2213
2214      break;
2215    case DeclaratorChunk::Reference: {
2216      // Verify that we're not building a reference to pointer to function with
2217      // exception specification.
2218      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2219        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2220        D.setInvalidType(true);
2221        // Build the type anyway.
2222      }
2223      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2224
2225      Qualifiers Quals;
2226      if (DeclType.Ref.HasRestrict)
2227        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2228      break;
2229    }
2230    case DeclaratorChunk::Array: {
2231      // Verify that we're not building an array of pointers to function with
2232      // exception specification.
2233      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2234        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2235        D.setInvalidType(true);
2236        // Build the type anyway.
2237      }
2238      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2239      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2240      ArrayType::ArraySizeModifier ASM;
2241      if (ATI.isStar)
2242        ASM = ArrayType::Star;
2243      else if (ATI.hasStatic)
2244        ASM = ArrayType::Static;
2245      else
2246        ASM = ArrayType::Normal;
2247      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2248        // FIXME: This check isn't quite right: it allows star in prototypes
2249        // for function definitions, and disallows some edge cases detailed
2250        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2251        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2252        ASM = ArrayType::Normal;
2253        D.setInvalidType(true);
2254      }
2255
2256      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2257      // shall appear only in a declaration of a function parameter with an
2258      // array type, ...
2259      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2260        if (!(D.isPrototypeContext() ||
2261              D.getContext() == Declarator::KNRTypeListContext)) {
2262          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2263              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2264          // Remove the 'static' and the type qualifiers.
2265          if (ASM == ArrayType::Static)
2266            ASM = ArrayType::Normal;
2267          ATI.TypeQuals = 0;
2268          D.setInvalidType(true);
2269        }
2270
2271        // C99 6.7.5.2p1: ... and then only in the outermost array type
2272        // derivation.
2273        unsigned x = chunkIndex;
2274        while (x != 0) {
2275          // Walk outwards along the declarator chunks.
2276          x--;
2277          const DeclaratorChunk &DC = D.getTypeObject(x);
2278          switch (DC.Kind) {
2279          case DeclaratorChunk::Paren:
2280            continue;
2281          case DeclaratorChunk::Array:
2282          case DeclaratorChunk::Pointer:
2283          case DeclaratorChunk::Reference:
2284          case DeclaratorChunk::MemberPointer:
2285            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2286              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2287            if (ASM == ArrayType::Static)
2288              ASM = ArrayType::Normal;
2289            ATI.TypeQuals = 0;
2290            D.setInvalidType(true);
2291            break;
2292          case DeclaratorChunk::Function:
2293          case DeclaratorChunk::BlockPointer:
2294            // These are invalid anyway, so just ignore.
2295            break;
2296          }
2297        }
2298      }
2299
2300      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2301                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2302      break;
2303    }
2304    case DeclaratorChunk::Function: {
2305      // If the function declarator has a prototype (i.e. it is not () and
2306      // does not have a K&R-style identifier list), then the arguments are part
2307      // of the type, otherwise the argument list is ().
2308      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2309      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2310
2311      // Check for auto functions and trailing return type and adjust the
2312      // return type accordingly.
2313      if (!D.isInvalidType()) {
2314        // trailing-return-type is only required if we're declaring a function,
2315        // and not, for instance, a pointer to a function.
2316        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2317            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2318          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2319               diag::err_auto_missing_trailing_return);
2320          T = Context.IntTy;
2321          D.setInvalidType(true);
2322        } else if (FTI.hasTrailingReturnType()) {
2323          // T must be exactly 'auto' at this point. See CWG issue 681.
2324          if (isa<ParenType>(T)) {
2325            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2326                 diag::err_trailing_return_in_parens)
2327              << T << D.getDeclSpec().getSourceRange();
2328            D.setInvalidType(true);
2329          } else if (D.getContext() != Declarator::LambdaExprContext &&
2330                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2331            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2332                 diag::err_trailing_return_without_auto)
2333              << T << D.getDeclSpec().getSourceRange();
2334            D.setInvalidType(true);
2335          }
2336          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2337          if (T.isNull()) {
2338            // An error occurred parsing the trailing return type.
2339            T = Context.IntTy;
2340            D.setInvalidType(true);
2341          }
2342        }
2343      }
2344
2345      // C99 6.7.5.3p1: The return type may not be a function or array type.
2346      // For conversion functions, we'll diagnose this particular error later.
2347      if ((T->isArrayType() || T->isFunctionType()) &&
2348          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2349        unsigned diagID = diag::err_func_returning_array_function;
2350        // Last processing chunk in block context means this function chunk
2351        // represents the block.
2352        if (chunkIndex == 0 &&
2353            D.getContext() == Declarator::BlockLiteralContext)
2354          diagID = diag::err_block_returning_array_function;
2355        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2356        T = Context.IntTy;
2357        D.setInvalidType(true);
2358      }
2359
2360      // Do not allow returning half FP value.
2361      // FIXME: This really should be in BuildFunctionType.
2362      if (T->isHalfType()) {
2363        S.Diag(D.getIdentifierLoc(),
2364             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2365          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2366        D.setInvalidType(true);
2367      }
2368
2369      // cv-qualifiers on return types are pointless except when the type is a
2370      // class type in C++.
2371      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2372          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2373          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2374        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2375        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2376        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2377
2378        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2379
2380        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2381            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2382            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2383            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2384            S);
2385
2386      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2387          (!LangOpts.CPlusPlus ||
2388           (!T->isDependentType() && !T->isRecordType()))) {
2389
2390        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2391                                  D.getDeclSpec().getConstSpecLoc(),
2392                                  D.getDeclSpec().getVolatileSpecLoc(),
2393                                  D.getDeclSpec().getRestrictSpecLoc(),
2394                                  S);
2395      }
2396
2397      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2398        // C++ [dcl.fct]p6:
2399        //   Types shall not be defined in return or parameter types.
2400        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2401        if (Tag->isCompleteDefinition())
2402          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2403            << Context.getTypeDeclType(Tag);
2404      }
2405
2406      // Exception specs are not allowed in typedefs. Complain, but add it
2407      // anyway.
2408      if (IsTypedefName && FTI.getExceptionSpecType())
2409        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2410          << (D.getContext() == Declarator::AliasDeclContext ||
2411              D.getContext() == Declarator::AliasTemplateContext);
2412
2413      // If we see "T var();" or "T var(T());" at block scope, it is probably
2414      // an attempt to initialize a variable, not a function declaration.
2415      if (FTI.isAmbiguous)
2416        warnAboutAmbiguousFunction(S, D, DeclType, T);
2417
2418      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2419        // Simple void foo(), where the incoming T is the result type.
2420        T = Context.getFunctionNoProtoType(T);
2421      } else {
2422        // We allow a zero-parameter variadic function in C if the
2423        // function is marked with the "overloadable" attribute. Scan
2424        // for this attribute now.
2425        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2426          bool Overloadable = false;
2427          for (const AttributeList *Attrs = D.getAttributes();
2428               Attrs; Attrs = Attrs->getNext()) {
2429            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2430              Overloadable = true;
2431              break;
2432            }
2433          }
2434
2435          if (!Overloadable)
2436            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2437        }
2438
2439        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2440          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2441          // definition.
2442          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2443          D.setInvalidType(true);
2444          break;
2445        }
2446
2447        FunctionProtoType::ExtProtoInfo EPI;
2448        EPI.Variadic = FTI.isVariadic;
2449        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2450        EPI.TypeQuals = FTI.TypeQuals;
2451        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2452                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2453                    : RQ_RValue;
2454
2455        // Otherwise, we have a function with an argument list that is
2456        // potentially variadic.
2457        SmallVector<QualType, 16> ArgTys;
2458        ArgTys.reserve(FTI.NumArgs);
2459
2460        SmallVector<bool, 16> ConsumedArguments;
2461        ConsumedArguments.reserve(FTI.NumArgs);
2462        bool HasAnyConsumedArguments = false;
2463
2464        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2465          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2466          QualType ArgTy = Param->getType();
2467          assert(!ArgTy.isNull() && "Couldn't parse type?");
2468
2469          // Adjust the parameter type.
2470          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2471                 "Unadjusted type?");
2472
2473          // Look for 'void'.  void is allowed only as a single argument to a
2474          // function with no other parameters (C99 6.7.5.3p10).  We record
2475          // int(void) as a FunctionProtoType with an empty argument list.
2476          if (ArgTy->isVoidType()) {
2477            // If this is something like 'float(int, void)', reject it.  'void'
2478            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2479            // have arguments of incomplete type.
2480            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2481              S.Diag(DeclType.Loc, diag::err_void_only_param);
2482              ArgTy = Context.IntTy;
2483              Param->setType(ArgTy);
2484            } else if (FTI.ArgInfo[i].Ident) {
2485              // Reject, but continue to parse 'int(void abc)'.
2486              S.Diag(FTI.ArgInfo[i].IdentLoc,
2487                   diag::err_param_with_void_type);
2488              ArgTy = Context.IntTy;
2489              Param->setType(ArgTy);
2490            } else {
2491              // Reject, but continue to parse 'float(const void)'.
2492              if (ArgTy.hasQualifiers())
2493                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2494
2495              // Do not add 'void' to the ArgTys list.
2496              break;
2497            }
2498          } else if (ArgTy->isHalfType()) {
2499            // Disallow half FP arguments.
2500            // FIXME: This really should be in BuildFunctionType.
2501            S.Diag(Param->getLocation(),
2502               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2503            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2504            D.setInvalidType();
2505          } else if (!FTI.hasPrototype) {
2506            if (ArgTy->isPromotableIntegerType()) {
2507              ArgTy = Context.getPromotedIntegerType(ArgTy);
2508              Param->setKNRPromoted(true);
2509            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2510              if (BTy->getKind() == BuiltinType::Float) {
2511                ArgTy = Context.DoubleTy;
2512                Param->setKNRPromoted(true);
2513              }
2514            }
2515          }
2516
2517          if (LangOpts.ObjCAutoRefCount) {
2518            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2519            ConsumedArguments.push_back(Consumed);
2520            HasAnyConsumedArguments |= Consumed;
2521          }
2522
2523          ArgTys.push_back(ArgTy);
2524        }
2525
2526        if (HasAnyConsumedArguments)
2527          EPI.ConsumedArguments = ConsumedArguments.data();
2528
2529        SmallVector<QualType, 4> Exceptions;
2530        SmallVector<ParsedType, 2> DynamicExceptions;
2531        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2532        Expr *NoexceptExpr = 0;
2533
2534        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2535          // FIXME: It's rather inefficient to have to split into two vectors
2536          // here.
2537          unsigned N = FTI.NumExceptions;
2538          DynamicExceptions.reserve(N);
2539          DynamicExceptionRanges.reserve(N);
2540          for (unsigned I = 0; I != N; ++I) {
2541            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2542            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2543          }
2544        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2545          NoexceptExpr = FTI.NoexceptExpr;
2546        }
2547
2548        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2549                                      DynamicExceptions,
2550                                      DynamicExceptionRanges,
2551                                      NoexceptExpr,
2552                                      Exceptions,
2553                                      EPI);
2554
2555        if (FTI.getExceptionSpecType() == EST_None &&
2556            ImplicitlyNoexcept && chunkIndex == 0) {
2557          // Only the outermost chunk is marked noexcept, of course.
2558          EPI.ExceptionSpecType = EST_BasicNoexcept;
2559        }
2560
2561        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2562      }
2563
2564      break;
2565    }
2566    case DeclaratorChunk::MemberPointer:
2567      // The scope spec must refer to a class, or be dependent.
2568      CXXScopeSpec &SS = DeclType.Mem.Scope();
2569      QualType ClsType;
2570      if (SS.isInvalid()) {
2571        // Avoid emitting extra errors if we already errored on the scope.
2572        D.setInvalidType(true);
2573      } else if (S.isDependentScopeSpecifier(SS) ||
2574                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2575        NestedNameSpecifier *NNS
2576          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2577        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2578        switch (NNS->getKind()) {
2579        case NestedNameSpecifier::Identifier:
2580          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2581                                                 NNS->getAsIdentifier());
2582          break;
2583
2584        case NestedNameSpecifier::Namespace:
2585        case NestedNameSpecifier::NamespaceAlias:
2586        case NestedNameSpecifier::Global:
2587          llvm_unreachable("Nested-name-specifier must name a type");
2588
2589        case NestedNameSpecifier::TypeSpec:
2590        case NestedNameSpecifier::TypeSpecWithTemplate:
2591          ClsType = QualType(NNS->getAsType(), 0);
2592          // Note: if the NNS has a prefix and ClsType is a nondependent
2593          // TemplateSpecializationType, then the NNS prefix is NOT included
2594          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2595          // NOTE: in particular, no wrap occurs if ClsType already is an
2596          // Elaborated, DependentName, or DependentTemplateSpecialization.
2597          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2598            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2599          break;
2600        }
2601      } else {
2602        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2603             diag::err_illegal_decl_mempointer_in_nonclass)
2604          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2605          << DeclType.Mem.Scope().getRange();
2606        D.setInvalidType(true);
2607      }
2608
2609      if (!ClsType.isNull())
2610        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2611      if (T.isNull()) {
2612        T = Context.IntTy;
2613        D.setInvalidType(true);
2614      } else if (DeclType.Mem.TypeQuals) {
2615        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2616      }
2617      break;
2618    }
2619
2620    if (T.isNull()) {
2621      D.setInvalidType(true);
2622      T = Context.IntTy;
2623    }
2624
2625    // See if there are any attributes on this declarator chunk.
2626    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2627      processTypeAttrs(state, T, false, attrs);
2628  }
2629
2630  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2631    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2632    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2633
2634    // C++ 8.3.5p4:
2635    //   A cv-qualifier-seq shall only be part of the function type
2636    //   for a nonstatic member function, the function type to which a pointer
2637    //   to member refers, or the top-level function type of a function typedef
2638    //   declaration.
2639    //
2640    // Core issue 547 also allows cv-qualifiers on function types that are
2641    // top-level template type arguments.
2642    bool FreeFunction;
2643    if (!D.getCXXScopeSpec().isSet()) {
2644      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2645                       D.getContext() != Declarator::LambdaExprContext) ||
2646                      D.getDeclSpec().isFriendSpecified());
2647    } else {
2648      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2649      FreeFunction = (DC && !DC->isRecord());
2650    }
2651
2652    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2653    // function that is not a constructor declares that function to be const.
2654    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2655        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2656        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2657        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2658        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2659      // Rebuild function type adding a 'const' qualifier.
2660      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2661      EPI.TypeQuals |= DeclSpec::TQ_const;
2662      T = Context.getFunctionType(FnTy->getResultType(),
2663                                  FnTy->arg_type_begin(),
2664                                  FnTy->getNumArgs(), EPI);
2665    }
2666
2667    // C++11 [dcl.fct]p6 (w/DR1417):
2668    // An attempt to specify a function type with a cv-qualifier-seq or a
2669    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2670    //  - the function type for a non-static member function,
2671    //  - the function type to which a pointer to member refers,
2672    //  - the top-level function type of a function typedef declaration or
2673    //    alias-declaration,
2674    //  - the type-id in the default argument of a type-parameter, or
2675    //  - the type-id of a template-argument for a type-parameter
2676    if (IsQualifiedFunction &&
2677        !(!FreeFunction &&
2678          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2679        !IsTypedefName &&
2680        D.getContext() != Declarator::TemplateTypeArgContext) {
2681      SourceLocation Loc = D.getLocStart();
2682      SourceRange RemovalRange;
2683      unsigned I;
2684      if (D.isFunctionDeclarator(I)) {
2685        SmallVector<SourceLocation, 4> RemovalLocs;
2686        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2687        assert(Chunk.Kind == DeclaratorChunk::Function);
2688        if (Chunk.Fun.hasRefQualifier())
2689          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2690        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2691          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2692        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2693          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2694        // FIXME: We do not track the location of the __restrict qualifier.
2695        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2696        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2697        if (!RemovalLocs.empty()) {
2698          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2699                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2700          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2701          Loc = RemovalLocs.front();
2702        }
2703      }
2704
2705      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2706        << FreeFunction << D.isFunctionDeclarator() << T
2707        << getFunctionQualifiersAsString(FnTy)
2708        << FixItHint::CreateRemoval(RemovalRange);
2709
2710      // Strip the cv-qualifiers and ref-qualifiers from the type.
2711      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2712      EPI.TypeQuals = 0;
2713      EPI.RefQualifier = RQ_None;
2714
2715      T = Context.getFunctionType(FnTy->getResultType(),
2716                                  FnTy->arg_type_begin(),
2717                                  FnTy->getNumArgs(), EPI);
2718    }
2719  }
2720
2721  // Apply any undistributed attributes from the declarator.
2722  if (!T.isNull())
2723    if (AttributeList *attrs = D.getAttributes())
2724      processTypeAttrs(state, T, false, attrs);
2725
2726  // Diagnose any ignored type attributes.
2727  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2728
2729  // C++0x [dcl.constexpr]p9:
2730  //  A constexpr specifier used in an object declaration declares the object
2731  //  as const.
2732  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2733    T.addConst();
2734  }
2735
2736  // If there was an ellipsis in the declarator, the declaration declares a
2737  // parameter pack whose type may be a pack expansion type.
2738  if (D.hasEllipsis() && !T.isNull()) {
2739    // C++0x [dcl.fct]p13:
2740    //   A declarator-id or abstract-declarator containing an ellipsis shall
2741    //   only be used in a parameter-declaration. Such a parameter-declaration
2742    //   is a parameter pack (14.5.3). [...]
2743    switch (D.getContext()) {
2744    case Declarator::PrototypeContext:
2745      // C++0x [dcl.fct]p13:
2746      //   [...] When it is part of a parameter-declaration-clause, the
2747      //   parameter pack is a function parameter pack (14.5.3). The type T
2748      //   of the declarator-id of the function parameter pack shall contain
2749      //   a template parameter pack; each template parameter pack in T is
2750      //   expanded by the function parameter pack.
2751      //
2752      // We represent function parameter packs as function parameters whose
2753      // type is a pack expansion.
2754      if (!T->containsUnexpandedParameterPack()) {
2755        S.Diag(D.getEllipsisLoc(),
2756             diag::err_function_parameter_pack_without_parameter_packs)
2757          << T <<  D.getSourceRange();
2758        D.setEllipsisLoc(SourceLocation());
2759      } else {
2760        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2761      }
2762      break;
2763
2764    case Declarator::TemplateParamContext:
2765      // C++0x [temp.param]p15:
2766      //   If a template-parameter is a [...] is a parameter-declaration that
2767      //   declares a parameter pack (8.3.5), then the template-parameter is a
2768      //   template parameter pack (14.5.3).
2769      //
2770      // Note: core issue 778 clarifies that, if there are any unexpanded
2771      // parameter packs in the type of the non-type template parameter, then
2772      // it expands those parameter packs.
2773      if (T->containsUnexpandedParameterPack())
2774        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2775      else
2776        S.Diag(D.getEllipsisLoc(),
2777               LangOpts.CPlusPlus0x
2778                 ? diag::warn_cxx98_compat_variadic_templates
2779                 : diag::ext_variadic_templates);
2780      break;
2781
2782    case Declarator::FileContext:
2783    case Declarator::KNRTypeListContext:
2784    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2785    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2786    case Declarator::TypeNameContext:
2787    case Declarator::CXXNewContext:
2788    case Declarator::AliasDeclContext:
2789    case Declarator::AliasTemplateContext:
2790    case Declarator::MemberContext:
2791    case Declarator::BlockContext:
2792    case Declarator::ForContext:
2793    case Declarator::ConditionContext:
2794    case Declarator::CXXCatchContext:
2795    case Declarator::ObjCCatchContext:
2796    case Declarator::BlockLiteralContext:
2797    case Declarator::LambdaExprContext:
2798    case Declarator::TrailingReturnContext:
2799    case Declarator::TemplateTypeArgContext:
2800      // FIXME: We may want to allow parameter packs in block-literal contexts
2801      // in the future.
2802      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2803      D.setEllipsisLoc(SourceLocation());
2804      break;
2805    }
2806  }
2807
2808  if (T.isNull())
2809    return Context.getNullTypeSourceInfo();
2810  else if (D.isInvalidType())
2811    return Context.getTrivialTypeSourceInfo(T);
2812
2813  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2814}
2815
2816/// GetTypeForDeclarator - Convert the type for the specified
2817/// declarator to Type instances.
2818///
2819/// The result of this call will never be null, but the associated
2820/// type may be a null type if there's an unrecoverable error.
2821TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2822  // Determine the type of the declarator. Not all forms of declarator
2823  // have a type.
2824
2825  TypeProcessingState state(*this, D);
2826
2827  TypeSourceInfo *ReturnTypeInfo = 0;
2828  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2829  if (T.isNull())
2830    return Context.getNullTypeSourceInfo();
2831
2832  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2833    inferARCWriteback(state, T);
2834
2835  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2836}
2837
2838static void transferARCOwnershipToDeclSpec(Sema &S,
2839                                           QualType &declSpecTy,
2840                                           Qualifiers::ObjCLifetime ownership) {
2841  if (declSpecTy->isObjCRetainableType() &&
2842      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2843    Qualifiers qs;
2844    qs.addObjCLifetime(ownership);
2845    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2846  }
2847}
2848
2849static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2850                                            Qualifiers::ObjCLifetime ownership,
2851                                            unsigned chunkIndex) {
2852  Sema &S = state.getSema();
2853  Declarator &D = state.getDeclarator();
2854
2855  // Look for an explicit lifetime attribute.
2856  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2857  for (const AttributeList *attr = chunk.getAttrs(); attr;
2858         attr = attr->getNext())
2859    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2860      return;
2861
2862  const char *attrStr = 0;
2863  switch (ownership) {
2864  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2865  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2866  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2867  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2868  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2869  }
2870
2871  // If there wasn't one, add one (with an invalid source location
2872  // so that we don't make an AttributedType for it).
2873  AttributeList *attr = D.getAttributePool()
2874    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2875            /*scope*/ 0, SourceLocation(),
2876            &S.Context.Idents.get(attrStr), SourceLocation(),
2877            /*args*/ 0, 0, AttributeList::AS_GNU);
2878  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2879
2880  // TODO: mark whether we did this inference?
2881}
2882
2883/// \brief Used for transferring ownership in casts resulting in l-values.
2884static void transferARCOwnership(TypeProcessingState &state,
2885                                 QualType &declSpecTy,
2886                                 Qualifiers::ObjCLifetime ownership) {
2887  Sema &S = state.getSema();
2888  Declarator &D = state.getDeclarator();
2889
2890  int inner = -1;
2891  bool hasIndirection = false;
2892  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2893    DeclaratorChunk &chunk = D.getTypeObject(i);
2894    switch (chunk.Kind) {
2895    case DeclaratorChunk::Paren:
2896      // Ignore parens.
2897      break;
2898
2899    case DeclaratorChunk::Array:
2900    case DeclaratorChunk::Reference:
2901    case DeclaratorChunk::Pointer:
2902      if (inner != -1)
2903        hasIndirection = true;
2904      inner = i;
2905      break;
2906
2907    case DeclaratorChunk::BlockPointer:
2908      if (inner != -1)
2909        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2910      return;
2911
2912    case DeclaratorChunk::Function:
2913    case DeclaratorChunk::MemberPointer:
2914      return;
2915    }
2916  }
2917
2918  if (inner == -1)
2919    return;
2920
2921  DeclaratorChunk &chunk = D.getTypeObject(inner);
2922  if (chunk.Kind == DeclaratorChunk::Pointer) {
2923    if (declSpecTy->isObjCRetainableType())
2924      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2925    if (declSpecTy->isObjCObjectType() && hasIndirection)
2926      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2927  } else {
2928    assert(chunk.Kind == DeclaratorChunk::Array ||
2929           chunk.Kind == DeclaratorChunk::Reference);
2930    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2931  }
2932}
2933
2934TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2935  TypeProcessingState state(*this, D);
2936
2937  TypeSourceInfo *ReturnTypeInfo = 0;
2938  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2939  if (declSpecTy.isNull())
2940    return Context.getNullTypeSourceInfo();
2941
2942  if (getLangOpts().ObjCAutoRefCount) {
2943    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2944    if (ownership != Qualifiers::OCL_None)
2945      transferARCOwnership(state, declSpecTy, ownership);
2946  }
2947
2948  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2949}
2950
2951/// Map an AttributedType::Kind to an AttributeList::Kind.
2952static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2953  switch (kind) {
2954  case AttributedType::attr_address_space:
2955    return AttributeList::AT_AddressSpace;
2956  case AttributedType::attr_regparm:
2957    return AttributeList::AT_Regparm;
2958  case AttributedType::attr_vector_size:
2959    return AttributeList::AT_VectorSize;
2960  case AttributedType::attr_neon_vector_type:
2961    return AttributeList::AT_NeonVectorType;
2962  case AttributedType::attr_neon_polyvector_type:
2963    return AttributeList::AT_NeonPolyVectorType;
2964  case AttributedType::attr_objc_gc:
2965    return AttributeList::AT_ObjCGC;
2966  case AttributedType::attr_objc_ownership:
2967    return AttributeList::AT_ObjCOwnership;
2968  case AttributedType::attr_noreturn:
2969    return AttributeList::AT_NoReturn;
2970  case AttributedType::attr_cdecl:
2971    return AttributeList::AT_CDecl;
2972  case AttributedType::attr_fastcall:
2973    return AttributeList::AT_FastCall;
2974  case AttributedType::attr_stdcall:
2975    return AttributeList::AT_StdCall;
2976  case AttributedType::attr_thiscall:
2977    return AttributeList::AT_ThisCall;
2978  case AttributedType::attr_pascal:
2979    return AttributeList::AT_Pascal;
2980  case AttributedType::attr_pcs:
2981    return AttributeList::AT_Pcs;
2982  }
2983  llvm_unreachable("unexpected attribute kind!");
2984}
2985
2986static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2987                                  const AttributeList *attrs) {
2988  AttributedType::Kind kind = TL.getAttrKind();
2989
2990  assert(attrs && "no type attributes in the expected location!");
2991  AttributeList::Kind parsedKind = getAttrListKind(kind);
2992  while (attrs->getKind() != parsedKind) {
2993    attrs = attrs->getNext();
2994    assert(attrs && "no matching attribute in expected location!");
2995  }
2996
2997  TL.setAttrNameLoc(attrs->getLoc());
2998  if (TL.hasAttrExprOperand())
2999    TL.setAttrExprOperand(attrs->getArg(0));
3000  else if (TL.hasAttrEnumOperand())
3001    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3002
3003  // FIXME: preserve this information to here.
3004  if (TL.hasAttrOperand())
3005    TL.setAttrOperandParensRange(SourceRange());
3006}
3007
3008namespace {
3009  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3010    ASTContext &Context;
3011    const DeclSpec &DS;
3012
3013  public:
3014    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3015      : Context(Context), DS(DS) {}
3016
3017    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3018      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3019      Visit(TL.getModifiedLoc());
3020    }
3021    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3022      Visit(TL.getUnqualifiedLoc());
3023    }
3024    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3025      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3026    }
3027    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3028      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3029      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3030      // addition field. What we have is good enough for dispay of location
3031      // of 'fixit' on interface name.
3032      TL.setNameEndLoc(DS.getLocEnd());
3033    }
3034    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3035      // Handle the base type, which might not have been written explicitly.
3036      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3037        TL.setHasBaseTypeAsWritten(false);
3038        TL.getBaseLoc().initialize(Context, SourceLocation());
3039      } else {
3040        TL.setHasBaseTypeAsWritten(true);
3041        Visit(TL.getBaseLoc());
3042      }
3043
3044      // Protocol qualifiers.
3045      if (DS.getProtocolQualifiers()) {
3046        assert(TL.getNumProtocols() > 0);
3047        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3048        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3049        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3050        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3051          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3052      } else {
3053        assert(TL.getNumProtocols() == 0);
3054        TL.setLAngleLoc(SourceLocation());
3055        TL.setRAngleLoc(SourceLocation());
3056      }
3057    }
3058    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3059      TL.setStarLoc(SourceLocation());
3060      Visit(TL.getPointeeLoc());
3061    }
3062    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3063      TypeSourceInfo *TInfo = 0;
3064      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3065
3066      // If we got no declarator info from previous Sema routines,
3067      // just fill with the typespec loc.
3068      if (!TInfo) {
3069        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3070        return;
3071      }
3072
3073      TypeLoc OldTL = TInfo->getTypeLoc();
3074      if (TInfo->getType()->getAs<ElaboratedType>()) {
3075        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
3076        TemplateSpecializationTypeLoc NamedTL =
3077          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
3078        TL.copy(NamedTL);
3079      }
3080      else
3081        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
3082    }
3083    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3084      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3085      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3086      TL.setParensRange(DS.getTypeofParensRange());
3087    }
3088    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3089      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3090      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3091      TL.setParensRange(DS.getTypeofParensRange());
3092      assert(DS.getRepAsType());
3093      TypeSourceInfo *TInfo = 0;
3094      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3095      TL.setUnderlyingTInfo(TInfo);
3096    }
3097    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3098      // FIXME: This holds only because we only have one unary transform.
3099      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3100      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3101      TL.setParensRange(DS.getTypeofParensRange());
3102      assert(DS.getRepAsType());
3103      TypeSourceInfo *TInfo = 0;
3104      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3105      TL.setUnderlyingTInfo(TInfo);
3106    }
3107    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3108      // By default, use the source location of the type specifier.
3109      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3110      if (TL.needsExtraLocalData()) {
3111        // Set info for the written builtin specifiers.
3112        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3113        // Try to have a meaningful source location.
3114        if (TL.getWrittenSignSpec() != TSS_unspecified)
3115          // Sign spec loc overrides the others (e.g., 'unsigned long').
3116          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3117        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3118          // Width spec loc overrides type spec loc (e.g., 'short int').
3119          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3120      }
3121    }
3122    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3123      ElaboratedTypeKeyword Keyword
3124        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3125      if (DS.getTypeSpecType() == TST_typename) {
3126        TypeSourceInfo *TInfo = 0;
3127        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3128        if (TInfo) {
3129          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
3130          return;
3131        }
3132      }
3133      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3134                                 ? DS.getTypeSpecTypeLoc()
3135                                 : SourceLocation());
3136      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3137      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3138      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3139    }
3140    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3141      assert(DS.getTypeSpecType() == TST_typename);
3142      TypeSourceInfo *TInfo = 0;
3143      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3144      assert(TInfo);
3145      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3146    }
3147    void VisitDependentTemplateSpecializationTypeLoc(
3148                                 DependentTemplateSpecializationTypeLoc TL) {
3149      assert(DS.getTypeSpecType() == TST_typename);
3150      TypeSourceInfo *TInfo = 0;
3151      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3152      assert(TInfo);
3153      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3154                TInfo->getTypeLoc()));
3155    }
3156    void VisitTagTypeLoc(TagTypeLoc TL) {
3157      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3158    }
3159    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3160      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3161      TL.setParensRange(DS.getTypeofParensRange());
3162
3163      TypeSourceInfo *TInfo = 0;
3164      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3165      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3166    }
3167
3168    void VisitTypeLoc(TypeLoc TL) {
3169      // FIXME: add other typespec types and change this to an assert.
3170      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3171    }
3172  };
3173
3174  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3175    ASTContext &Context;
3176    const DeclaratorChunk &Chunk;
3177
3178  public:
3179    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3180      : Context(Context), Chunk(Chunk) {}
3181
3182    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3183      llvm_unreachable("qualified type locs not expected here!");
3184    }
3185
3186    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3187      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3188    }
3189    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3190      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3191      TL.setCaretLoc(Chunk.Loc);
3192    }
3193    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3194      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3195      TL.setStarLoc(Chunk.Loc);
3196    }
3197    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3198      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3199      TL.setStarLoc(Chunk.Loc);
3200    }
3201    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3202      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3203      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3204      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3205
3206      const Type* ClsTy = TL.getClass();
3207      QualType ClsQT = QualType(ClsTy, 0);
3208      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3209      // Now copy source location info into the type loc component.
3210      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3211      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3212      case NestedNameSpecifier::Identifier:
3213        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3214        {
3215          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3216          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3217          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3218          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3219        }
3220        break;
3221
3222      case NestedNameSpecifier::TypeSpec:
3223      case NestedNameSpecifier::TypeSpecWithTemplate:
3224        if (isa<ElaboratedType>(ClsTy)) {
3225          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3226          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3227          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3228          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3229          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3230        } else {
3231          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3232        }
3233        break;
3234
3235      case NestedNameSpecifier::Namespace:
3236      case NestedNameSpecifier::NamespaceAlias:
3237      case NestedNameSpecifier::Global:
3238        llvm_unreachable("Nested-name-specifier must name a type");
3239      }
3240
3241      // Finally fill in MemberPointerLocInfo fields.
3242      TL.setStarLoc(Chunk.Loc);
3243      TL.setClassTInfo(ClsTInfo);
3244    }
3245    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3246      assert(Chunk.Kind == DeclaratorChunk::Reference);
3247      // 'Amp' is misleading: this might have been originally
3248      /// spelled with AmpAmp.
3249      TL.setAmpLoc(Chunk.Loc);
3250    }
3251    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3252      assert(Chunk.Kind == DeclaratorChunk::Reference);
3253      assert(!Chunk.Ref.LValueRef);
3254      TL.setAmpAmpLoc(Chunk.Loc);
3255    }
3256    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3257      assert(Chunk.Kind == DeclaratorChunk::Array);
3258      TL.setLBracketLoc(Chunk.Loc);
3259      TL.setRBracketLoc(Chunk.EndLoc);
3260      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3261    }
3262    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3263      assert(Chunk.Kind == DeclaratorChunk::Function);
3264      TL.setLocalRangeBegin(Chunk.Loc);
3265      TL.setLocalRangeEnd(Chunk.EndLoc);
3266
3267      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3268      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3269        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3270        TL.setArg(tpi++, Param);
3271      }
3272      // FIXME: exception specs
3273    }
3274    void VisitParenTypeLoc(ParenTypeLoc TL) {
3275      assert(Chunk.Kind == DeclaratorChunk::Paren);
3276      TL.setLParenLoc(Chunk.Loc);
3277      TL.setRParenLoc(Chunk.EndLoc);
3278    }
3279
3280    void VisitTypeLoc(TypeLoc TL) {
3281      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3282    }
3283  };
3284}
3285
3286/// \brief Create and instantiate a TypeSourceInfo with type source information.
3287///
3288/// \param T QualType referring to the type as written in source code.
3289///
3290/// \param ReturnTypeInfo For declarators whose return type does not show
3291/// up in the normal place in the declaration specifiers (such as a C++
3292/// conversion function), this pointer will refer to a type source information
3293/// for that return type.
3294TypeSourceInfo *
3295Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3296                                     TypeSourceInfo *ReturnTypeInfo) {
3297  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3298  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3299
3300  // Handle parameter packs whose type is a pack expansion.
3301  if (isa<PackExpansionType>(T)) {
3302    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3303    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3304  }
3305
3306  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3307    while (isa<AttributedTypeLoc>(CurrTL)) {
3308      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3309      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3310      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3311    }
3312
3313    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3314    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3315  }
3316
3317  // If we have different source information for the return type, use
3318  // that.  This really only applies to C++ conversion functions.
3319  if (ReturnTypeInfo) {
3320    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3321    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3322    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3323  } else {
3324    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3325  }
3326
3327  return TInfo;
3328}
3329
3330/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3331ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3332  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3333  // and Sema during declaration parsing. Try deallocating/caching them when
3334  // it's appropriate, instead of allocating them and keeping them around.
3335  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3336                                                       TypeAlignment);
3337  new (LocT) LocInfoType(T, TInfo);
3338  assert(LocT->getTypeClass() != T->getTypeClass() &&
3339         "LocInfoType's TypeClass conflicts with an existing Type class");
3340  return ParsedType::make(QualType(LocT, 0));
3341}
3342
3343void LocInfoType::getAsStringInternal(std::string &Str,
3344                                      const PrintingPolicy &Policy) const {
3345  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3346         " was used directly instead of getting the QualType through"
3347         " GetTypeFromParser");
3348}
3349
3350TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3351  // C99 6.7.6: Type names have no identifier.  This is already validated by
3352  // the parser.
3353  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3354
3355  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3356  QualType T = TInfo->getType();
3357  if (D.isInvalidType())
3358    return true;
3359
3360  // Make sure there are no unused decl attributes on the declarator.
3361  // We don't want to do this for ObjC parameters because we're going
3362  // to apply them to the actual parameter declaration.
3363  if (D.getContext() != Declarator::ObjCParameterContext)
3364    checkUnusedDeclAttributes(D);
3365
3366  if (getLangOpts().CPlusPlus) {
3367    // Check that there are no default arguments (C++ only).
3368    CheckExtraCXXDefaultArguments(D);
3369  }
3370
3371  return CreateParsedType(T, TInfo);
3372}
3373
3374ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3375  QualType T = Context.getObjCInstanceType();
3376  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3377  return CreateParsedType(T, TInfo);
3378}
3379
3380
3381//===----------------------------------------------------------------------===//
3382// Type Attribute Processing
3383//===----------------------------------------------------------------------===//
3384
3385/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3386/// specified type.  The attribute contains 1 argument, the id of the address
3387/// space for the type.
3388static void HandleAddressSpaceTypeAttribute(QualType &Type,
3389                                            const AttributeList &Attr, Sema &S){
3390
3391  // If this type is already address space qualified, reject it.
3392  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3393  // qualifiers for two or more different address spaces."
3394  if (Type.getAddressSpace()) {
3395    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3396    Attr.setInvalid();
3397    return;
3398  }
3399
3400  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3401  // qualified by an address-space qualifier."
3402  if (Type->isFunctionType()) {
3403    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3404    Attr.setInvalid();
3405    return;
3406  }
3407
3408  // Check the attribute arguments.
3409  if (Attr.getNumArgs() != 1) {
3410    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3411    Attr.setInvalid();
3412    return;
3413  }
3414  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3415  llvm::APSInt addrSpace(32);
3416  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3417      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3418    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3419      << ASArgExpr->getSourceRange();
3420    Attr.setInvalid();
3421    return;
3422  }
3423
3424  // Bounds checking.
3425  if (addrSpace.isSigned()) {
3426    if (addrSpace.isNegative()) {
3427      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3428        << ASArgExpr->getSourceRange();
3429      Attr.setInvalid();
3430      return;
3431    }
3432    addrSpace.setIsSigned(false);
3433  }
3434  llvm::APSInt max(addrSpace.getBitWidth());
3435  max = Qualifiers::MaxAddressSpace;
3436  if (addrSpace > max) {
3437    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3438      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3439    Attr.setInvalid();
3440    return;
3441  }
3442
3443  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3444  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3445}
3446
3447/// Does this type have a "direct" ownership qualifier?  That is,
3448/// is it written like "__strong id", as opposed to something like
3449/// "typeof(foo)", where that happens to be strong?
3450static bool hasDirectOwnershipQualifier(QualType type) {
3451  // Fast path: no qualifier at all.
3452  assert(type.getQualifiers().hasObjCLifetime());
3453
3454  while (true) {
3455    // __strong id
3456    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3457      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3458        return true;
3459
3460      type = attr->getModifiedType();
3461
3462    // X *__strong (...)
3463    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3464      type = paren->getInnerType();
3465
3466    // That's it for things we want to complain about.  In particular,
3467    // we do not want to look through typedefs, typeof(expr),
3468    // typeof(type), or any other way that the type is somehow
3469    // abstracted.
3470    } else {
3471
3472      return false;
3473    }
3474  }
3475}
3476
3477/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3478/// attribute on the specified type.
3479///
3480/// Returns 'true' if the attribute was handled.
3481static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3482                                       AttributeList &attr,
3483                                       QualType &type) {
3484  bool NonObjCPointer = false;
3485
3486  if (!type->isDependentType()) {
3487    if (const PointerType *ptr = type->getAs<PointerType>()) {
3488      QualType pointee = ptr->getPointeeType();
3489      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3490        return false;
3491      // It is important not to lose the source info that there was an attribute
3492      // applied to non-objc pointer. We will create an attributed type but
3493      // its type will be the same as the original type.
3494      NonObjCPointer = true;
3495    } else if (!type->isObjCRetainableType()) {
3496      return false;
3497    }
3498  }
3499
3500  Sema &S = state.getSema();
3501  SourceLocation AttrLoc = attr.getLoc();
3502  if (AttrLoc.isMacroID())
3503    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3504
3505  if (!attr.getParameterName()) {
3506    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3507      << "objc_ownership" << 1;
3508    attr.setInvalid();
3509    return true;
3510  }
3511
3512  // Consume lifetime attributes without further comment outside of
3513  // ARC mode.
3514  if (!S.getLangOpts().ObjCAutoRefCount)
3515    return true;
3516
3517  Qualifiers::ObjCLifetime lifetime;
3518  if (attr.getParameterName()->isStr("none"))
3519    lifetime = Qualifiers::OCL_ExplicitNone;
3520  else if (attr.getParameterName()->isStr("strong"))
3521    lifetime = Qualifiers::OCL_Strong;
3522  else if (attr.getParameterName()->isStr("weak"))
3523    lifetime = Qualifiers::OCL_Weak;
3524  else if (attr.getParameterName()->isStr("autoreleasing"))
3525    lifetime = Qualifiers::OCL_Autoreleasing;
3526  else {
3527    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3528      << "objc_ownership" << attr.getParameterName();
3529    attr.setInvalid();
3530    return true;
3531  }
3532
3533  SplitQualType underlyingType = type.split();
3534
3535  // Check for redundant/conflicting ownership qualifiers.
3536  if (Qualifiers::ObjCLifetime previousLifetime
3537        = type.getQualifiers().getObjCLifetime()) {
3538    // If it's written directly, that's an error.
3539    if (hasDirectOwnershipQualifier(type)) {
3540      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3541        << type;
3542      return true;
3543    }
3544
3545    // Otherwise, if the qualifiers actually conflict, pull sugar off
3546    // until we reach a type that is directly qualified.
3547    if (previousLifetime != lifetime) {
3548      // This should always terminate: the canonical type is
3549      // qualified, so some bit of sugar must be hiding it.
3550      while (!underlyingType.Quals.hasObjCLifetime()) {
3551        underlyingType = underlyingType.getSingleStepDesugaredType();
3552      }
3553      underlyingType.Quals.removeObjCLifetime();
3554    }
3555  }
3556
3557  underlyingType.Quals.addObjCLifetime(lifetime);
3558
3559  if (NonObjCPointer) {
3560    StringRef name = attr.getName()->getName();
3561    switch (lifetime) {
3562    case Qualifiers::OCL_None:
3563    case Qualifiers::OCL_ExplicitNone:
3564      break;
3565    case Qualifiers::OCL_Strong: name = "__strong"; break;
3566    case Qualifiers::OCL_Weak: name = "__weak"; break;
3567    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3568    }
3569    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3570      << name << type;
3571  }
3572
3573  QualType origType = type;
3574  if (!NonObjCPointer)
3575    type = S.Context.getQualifiedType(underlyingType);
3576
3577  // If we have a valid source location for the attribute, use an
3578  // AttributedType instead.
3579  if (AttrLoc.isValid())
3580    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3581                                       origType, type);
3582
3583  // Forbid __weak if the runtime doesn't support it.
3584  if (lifetime == Qualifiers::OCL_Weak &&
3585      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3586
3587    // Actually, delay this until we know what we're parsing.
3588    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3589      S.DelayedDiagnostics.add(
3590          sema::DelayedDiagnostic::makeForbiddenType(
3591              S.getSourceManager().getExpansionLoc(AttrLoc),
3592              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3593    } else {
3594      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3595    }
3596
3597    attr.setInvalid();
3598    return true;
3599  }
3600
3601  // Forbid __weak for class objects marked as
3602  // objc_arc_weak_reference_unavailable
3603  if (lifetime == Qualifiers::OCL_Weak) {
3604    QualType T = type;
3605    while (const PointerType *ptr = T->getAs<PointerType>())
3606      T = ptr->getPointeeType();
3607    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3608      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3609        if (Class->isArcWeakrefUnavailable()) {
3610            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3611            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3612                   diag::note_class_declared);
3613        }
3614      }
3615    }
3616  }
3617
3618  return true;
3619}
3620
3621/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3622/// attribute on the specified type.  Returns true to indicate that
3623/// the attribute was handled, false to indicate that the type does
3624/// not permit the attribute.
3625static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3626                                 AttributeList &attr,
3627                                 QualType &type) {
3628  Sema &S = state.getSema();
3629
3630  // Delay if this isn't some kind of pointer.
3631  if (!type->isPointerType() &&
3632      !type->isObjCObjectPointerType() &&
3633      !type->isBlockPointerType())
3634    return false;
3635
3636  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3637    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3638    attr.setInvalid();
3639    return true;
3640  }
3641
3642  // Check the attribute arguments.
3643  if (!attr.getParameterName()) {
3644    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3645      << "objc_gc" << 1;
3646    attr.setInvalid();
3647    return true;
3648  }
3649  Qualifiers::GC GCAttr;
3650  if (attr.getNumArgs() != 0) {
3651    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3652    attr.setInvalid();
3653    return true;
3654  }
3655  if (attr.getParameterName()->isStr("weak"))
3656    GCAttr = Qualifiers::Weak;
3657  else if (attr.getParameterName()->isStr("strong"))
3658    GCAttr = Qualifiers::Strong;
3659  else {
3660    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3661      << "objc_gc" << attr.getParameterName();
3662    attr.setInvalid();
3663    return true;
3664  }
3665
3666  QualType origType = type;
3667  type = S.Context.getObjCGCQualType(origType, GCAttr);
3668
3669  // Make an attributed type to preserve the source information.
3670  if (attr.getLoc().isValid())
3671    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3672                                       origType, type);
3673
3674  return true;
3675}
3676
3677namespace {
3678  /// A helper class to unwrap a type down to a function for the
3679  /// purposes of applying attributes there.
3680  ///
3681  /// Use:
3682  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3683  ///   if (unwrapped.isFunctionType()) {
3684  ///     const FunctionType *fn = unwrapped.get();
3685  ///     // change fn somehow
3686  ///     T = unwrapped.wrap(fn);
3687  ///   }
3688  struct FunctionTypeUnwrapper {
3689    enum WrapKind {
3690      Desugar,
3691      Parens,
3692      Pointer,
3693      BlockPointer,
3694      Reference,
3695      MemberPointer
3696    };
3697
3698    QualType Original;
3699    const FunctionType *Fn;
3700    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3701
3702    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3703      while (true) {
3704        const Type *Ty = T.getTypePtr();
3705        if (isa<FunctionType>(Ty)) {
3706          Fn = cast<FunctionType>(Ty);
3707          return;
3708        } else if (isa<ParenType>(Ty)) {
3709          T = cast<ParenType>(Ty)->getInnerType();
3710          Stack.push_back(Parens);
3711        } else if (isa<PointerType>(Ty)) {
3712          T = cast<PointerType>(Ty)->getPointeeType();
3713          Stack.push_back(Pointer);
3714        } else if (isa<BlockPointerType>(Ty)) {
3715          T = cast<BlockPointerType>(Ty)->getPointeeType();
3716          Stack.push_back(BlockPointer);
3717        } else if (isa<MemberPointerType>(Ty)) {
3718          T = cast<MemberPointerType>(Ty)->getPointeeType();
3719          Stack.push_back(MemberPointer);
3720        } else if (isa<ReferenceType>(Ty)) {
3721          T = cast<ReferenceType>(Ty)->getPointeeType();
3722          Stack.push_back(Reference);
3723        } else {
3724          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3725          if (Ty == DTy) {
3726            Fn = 0;
3727            return;
3728          }
3729
3730          T = QualType(DTy, 0);
3731          Stack.push_back(Desugar);
3732        }
3733      }
3734    }
3735
3736    bool isFunctionType() const { return (Fn != 0); }
3737    const FunctionType *get() const { return Fn; }
3738
3739    QualType wrap(Sema &S, const FunctionType *New) {
3740      // If T wasn't modified from the unwrapped type, do nothing.
3741      if (New == get()) return Original;
3742
3743      Fn = New;
3744      return wrap(S.Context, Original, 0);
3745    }
3746
3747  private:
3748    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3749      if (I == Stack.size())
3750        return C.getQualifiedType(Fn, Old.getQualifiers());
3751
3752      // Build up the inner type, applying the qualifiers from the old
3753      // type to the new type.
3754      SplitQualType SplitOld = Old.split();
3755
3756      // As a special case, tail-recurse if there are no qualifiers.
3757      if (SplitOld.Quals.empty())
3758        return wrap(C, SplitOld.Ty, I);
3759      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3760    }
3761
3762    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3763      if (I == Stack.size()) return QualType(Fn, 0);
3764
3765      switch (static_cast<WrapKind>(Stack[I++])) {
3766      case Desugar:
3767        // This is the point at which we potentially lose source
3768        // information.
3769        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3770
3771      case Parens: {
3772        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3773        return C.getParenType(New);
3774      }
3775
3776      case Pointer: {
3777        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3778        return C.getPointerType(New);
3779      }
3780
3781      case BlockPointer: {
3782        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3783        return C.getBlockPointerType(New);
3784      }
3785
3786      case MemberPointer: {
3787        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3788        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3789        return C.getMemberPointerType(New, OldMPT->getClass());
3790      }
3791
3792      case Reference: {
3793        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3794        QualType New = wrap(C, OldRef->getPointeeType(), I);
3795        if (isa<LValueReferenceType>(OldRef))
3796          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3797        else
3798          return C.getRValueReferenceType(New);
3799      }
3800      }
3801
3802      llvm_unreachable("unknown wrapping kind");
3803    }
3804  };
3805}
3806
3807/// Process an individual function attribute.  Returns true to
3808/// indicate that the attribute was handled, false if it wasn't.
3809static bool handleFunctionTypeAttr(TypeProcessingState &state,
3810                                   AttributeList &attr,
3811                                   QualType &type) {
3812  Sema &S = state.getSema();
3813
3814  FunctionTypeUnwrapper unwrapped(S, type);
3815
3816  if (attr.getKind() == AttributeList::AT_NoReturn) {
3817    if (S.CheckNoReturnAttr(attr))
3818      return true;
3819
3820    // Delay if this is not a function type.
3821    if (!unwrapped.isFunctionType())
3822      return false;
3823
3824    // Otherwise we can process right away.
3825    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3826    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3827    return true;
3828  }
3829
3830  // ns_returns_retained is not always a type attribute, but if we got
3831  // here, we're treating it as one right now.
3832  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
3833    assert(S.getLangOpts().ObjCAutoRefCount &&
3834           "ns_returns_retained treated as type attribute in non-ARC");
3835    if (attr.getNumArgs()) return true;
3836
3837    // Delay if this is not a function type.
3838    if (!unwrapped.isFunctionType())
3839      return false;
3840
3841    FunctionType::ExtInfo EI
3842      = unwrapped.get()->getExtInfo().withProducesResult(true);
3843    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3844    return true;
3845  }
3846
3847  if (attr.getKind() == AttributeList::AT_Regparm) {
3848    unsigned value;
3849    if (S.CheckRegparmAttr(attr, value))
3850      return true;
3851
3852    // Delay if this is not a function type.
3853    if (!unwrapped.isFunctionType())
3854      return false;
3855
3856    // Diagnose regparm with fastcall.
3857    const FunctionType *fn = unwrapped.get();
3858    CallingConv CC = fn->getCallConv();
3859    if (CC == CC_X86FastCall) {
3860      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3861        << FunctionType::getNameForCallConv(CC)
3862        << "regparm";
3863      attr.setInvalid();
3864      return true;
3865    }
3866
3867    FunctionType::ExtInfo EI =
3868      unwrapped.get()->getExtInfo().withRegParm(value);
3869    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3870    return true;
3871  }
3872
3873  // Otherwise, a calling convention.
3874  CallingConv CC;
3875  if (S.CheckCallingConvAttr(attr, CC))
3876    return true;
3877
3878  // Delay if the type didn't work out to a function.
3879  if (!unwrapped.isFunctionType()) return false;
3880
3881  const FunctionType *fn = unwrapped.get();
3882  CallingConv CCOld = fn->getCallConv();
3883  if (S.Context.getCanonicalCallConv(CC) ==
3884      S.Context.getCanonicalCallConv(CCOld)) {
3885    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3886    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3887    return true;
3888  }
3889
3890  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3891    // Should we diagnose reapplications of the same convention?
3892    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3893      << FunctionType::getNameForCallConv(CC)
3894      << FunctionType::getNameForCallConv(CCOld);
3895    attr.setInvalid();
3896    return true;
3897  }
3898
3899  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3900  if (CC == CC_X86FastCall) {
3901    if (isa<FunctionNoProtoType>(fn)) {
3902      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3903        << FunctionType::getNameForCallConv(CC);
3904      attr.setInvalid();
3905      return true;
3906    }
3907
3908    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3909    if (FnP->isVariadic()) {
3910      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3911        << FunctionType::getNameForCallConv(CC);
3912      attr.setInvalid();
3913      return true;
3914    }
3915
3916    // Also diagnose fastcall with regparm.
3917    if (fn->getHasRegParm()) {
3918      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3919        << "regparm"
3920        << FunctionType::getNameForCallConv(CC);
3921      attr.setInvalid();
3922      return true;
3923    }
3924  }
3925
3926  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3927  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3928  return true;
3929}
3930
3931/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3932static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3933                                             const AttributeList &Attr,
3934                                             Sema &S) {
3935  // Check the attribute arguments.
3936  if (Attr.getNumArgs() != 1) {
3937    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3938    Attr.setInvalid();
3939    return;
3940  }
3941  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3942  llvm::APSInt arg(32);
3943  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3944      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3945    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3946      << "opencl_image_access" << sizeExpr->getSourceRange();
3947    Attr.setInvalid();
3948    return;
3949  }
3950  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3951  switch (iarg) {
3952  case CLIA_read_only:
3953  case CLIA_write_only:
3954  case CLIA_read_write:
3955    // Implemented in a separate patch
3956    break;
3957  default:
3958    // Implemented in a separate patch
3959    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3960      << sizeExpr->getSourceRange();
3961    Attr.setInvalid();
3962    break;
3963  }
3964}
3965
3966/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3967/// and float scalars, although arrays, pointers, and function return values are
3968/// allowed in conjunction with this construct. Aggregates with this attribute
3969/// are invalid, even if they are of the same size as a corresponding scalar.
3970/// The raw attribute should contain precisely 1 argument, the vector size for
3971/// the variable, measured in bytes. If curType and rawAttr are well formed,
3972/// this routine will return a new vector type.
3973static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3974                                 Sema &S) {
3975  // Check the attribute arguments.
3976  if (Attr.getNumArgs() != 1) {
3977    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3978    Attr.setInvalid();
3979    return;
3980  }
3981  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3982  llvm::APSInt vecSize(32);
3983  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3984      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3985    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3986      << "vector_size" << sizeExpr->getSourceRange();
3987    Attr.setInvalid();
3988    return;
3989  }
3990  // the base type must be integer or float, and can't already be a vector.
3991  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3992    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3993    Attr.setInvalid();
3994    return;
3995  }
3996  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3997  // vecSize is specified in bytes - convert to bits.
3998  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3999
4000  // the vector size needs to be an integral multiple of the type size.
4001  if (vectorSize % typeSize) {
4002    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4003      << sizeExpr->getSourceRange();
4004    Attr.setInvalid();
4005    return;
4006  }
4007  if (vectorSize == 0) {
4008    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4009      << sizeExpr->getSourceRange();
4010    Attr.setInvalid();
4011    return;
4012  }
4013
4014  // Success! Instantiate the vector type, the number of elements is > 0, and
4015  // not required to be a power of 2, unlike GCC.
4016  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4017                                    VectorType::GenericVector);
4018}
4019
4020/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4021/// a type.
4022static void HandleExtVectorTypeAttr(QualType &CurType,
4023                                    const AttributeList &Attr,
4024                                    Sema &S) {
4025  Expr *sizeExpr;
4026
4027  // Special case where the argument is a template id.
4028  if (Attr.getParameterName()) {
4029    CXXScopeSpec SS;
4030    SourceLocation TemplateKWLoc;
4031    UnqualifiedId id;
4032    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4033
4034    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4035                                          id, false, false);
4036    if (Size.isInvalid())
4037      return;
4038
4039    sizeExpr = Size.get();
4040  } else {
4041    // check the attribute arguments.
4042    if (Attr.getNumArgs() != 1) {
4043      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4044      return;
4045    }
4046    sizeExpr = Attr.getArg(0);
4047  }
4048
4049  // Create the vector type.
4050  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4051  if (!T.isNull())
4052    CurType = T;
4053}
4054
4055/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4056/// "neon_polyvector_type" attributes are used to create vector types that
4057/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4058/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4059/// the argument to these Neon attributes is the number of vector elements,
4060/// not the vector size in bytes.  The vector width and element type must
4061/// match one of the standard Neon vector types.
4062static void HandleNeonVectorTypeAttr(QualType& CurType,
4063                                     const AttributeList &Attr, Sema &S,
4064                                     VectorType::VectorKind VecKind,
4065                                     const char *AttrName) {
4066  // Check the attribute arguments.
4067  if (Attr.getNumArgs() != 1) {
4068    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4069    Attr.setInvalid();
4070    return;
4071  }
4072  // The number of elements must be an ICE.
4073  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4074  llvm::APSInt numEltsInt(32);
4075  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4076      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4077    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4078      << AttrName << numEltsExpr->getSourceRange();
4079    Attr.setInvalid();
4080    return;
4081  }
4082  // Only certain element types are supported for Neon vectors.
4083  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4084  if (!BTy ||
4085      (VecKind == VectorType::NeonPolyVector &&
4086       BTy->getKind() != BuiltinType::SChar &&
4087       BTy->getKind() != BuiltinType::Short) ||
4088      (BTy->getKind() != BuiltinType::SChar &&
4089       BTy->getKind() != BuiltinType::UChar &&
4090       BTy->getKind() != BuiltinType::Short &&
4091       BTy->getKind() != BuiltinType::UShort &&
4092       BTy->getKind() != BuiltinType::Int &&
4093       BTy->getKind() != BuiltinType::UInt &&
4094       BTy->getKind() != BuiltinType::LongLong &&
4095       BTy->getKind() != BuiltinType::ULongLong &&
4096       BTy->getKind() != BuiltinType::Float)) {
4097    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4098    Attr.setInvalid();
4099    return;
4100  }
4101  // The total size of the vector must be 64 or 128 bits.
4102  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4103  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4104  unsigned vecSize = typeSize * numElts;
4105  if (vecSize != 64 && vecSize != 128) {
4106    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4107    Attr.setInvalid();
4108    return;
4109  }
4110
4111  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4112}
4113
4114static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4115                             bool isDeclSpec, AttributeList *attrs) {
4116  // Scan through and apply attributes to this type where it makes sense.  Some
4117  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4118  // type, but others can be present in the type specifiers even though they
4119  // apply to the decl.  Here we apply type attributes and ignore the rest.
4120
4121  AttributeList *next;
4122  do {
4123    AttributeList &attr = *attrs;
4124    next = attr.getNext();
4125
4126    // Skip attributes that were marked to be invalid.
4127    if (attr.isInvalid())
4128      continue;
4129
4130    // If this is an attribute we can handle, do so now,
4131    // otherwise, add it to the FnAttrs list for rechaining.
4132    switch (attr.getKind()) {
4133    default: break;
4134
4135    case AttributeList::AT_MayAlias:
4136      // FIXME: This attribute needs to actually be handled, but if we ignore
4137      // it it breaks large amounts of Linux software.
4138      attr.setUsedAsTypeAttr();
4139      break;
4140    case AttributeList::AT_AddressSpace:
4141      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4142      attr.setUsedAsTypeAttr();
4143      break;
4144    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4145      if (!handleObjCPointerTypeAttr(state, attr, type))
4146        distributeObjCPointerTypeAttr(state, attr, type);
4147      attr.setUsedAsTypeAttr();
4148      break;
4149    case AttributeList::AT_VectorSize:
4150      HandleVectorSizeAttr(type, attr, state.getSema());
4151      attr.setUsedAsTypeAttr();
4152      break;
4153    case AttributeList::AT_ExtVectorType:
4154      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
4155            != DeclSpec::SCS_typedef)
4156        HandleExtVectorTypeAttr(type, attr, state.getSema());
4157      attr.setUsedAsTypeAttr();
4158      break;
4159    case AttributeList::AT_NeonVectorType:
4160      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4161                               VectorType::NeonVector, "neon_vector_type");
4162      attr.setUsedAsTypeAttr();
4163      break;
4164    case AttributeList::AT_NeonPolyVectorType:
4165      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4166                               VectorType::NeonPolyVector,
4167                               "neon_polyvector_type");
4168      attr.setUsedAsTypeAttr();
4169      break;
4170    case AttributeList::AT_OpenCLImageAccess:
4171      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4172      attr.setUsedAsTypeAttr();
4173      break;
4174
4175    case AttributeList::AT_Win64:
4176    case AttributeList::AT_Ptr32:
4177    case AttributeList::AT_Ptr64:
4178      // FIXME: don't ignore these
4179      attr.setUsedAsTypeAttr();
4180      break;
4181
4182    case AttributeList::AT_NSReturnsRetained:
4183      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4184    break;
4185      // fallthrough into the function attrs
4186
4187    FUNCTION_TYPE_ATTRS_CASELIST:
4188      attr.setUsedAsTypeAttr();
4189
4190      // Never process function type attributes as part of the
4191      // declaration-specifiers.
4192      if (isDeclSpec)
4193        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4194
4195      // Otherwise, handle the possible delays.
4196      else if (!handleFunctionTypeAttr(state, attr, type))
4197        distributeFunctionTypeAttr(state, attr, type);
4198      break;
4199    }
4200  } while ((attrs = next));
4201}
4202
4203/// \brief Ensure that the type of the given expression is complete.
4204///
4205/// This routine checks whether the expression \p E has a complete type. If the
4206/// expression refers to an instantiable construct, that instantiation is
4207/// performed as needed to complete its type. Furthermore
4208/// Sema::RequireCompleteType is called for the expression's type (or in the
4209/// case of a reference type, the referred-to type).
4210///
4211/// \param E The expression whose type is required to be complete.
4212/// \param Diagnoser The object that will emit a diagnostic if the type is
4213/// incomplete.
4214///
4215/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4216/// otherwise.
4217bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4218  QualType T = E->getType();
4219
4220  // Fast path the case where the type is already complete.
4221  if (!T->isIncompleteType())
4222    return false;
4223
4224  // Incomplete array types may be completed by the initializer attached to
4225  // their definitions. For static data members of class templates we need to
4226  // instantiate the definition to get this initializer and complete the type.
4227  if (T->isIncompleteArrayType()) {
4228    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4229      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4230        if (Var->isStaticDataMember() &&
4231            Var->getInstantiatedFromStaticDataMember()) {
4232
4233          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4234          assert(MSInfo && "Missing member specialization information?");
4235          if (MSInfo->getTemplateSpecializationKind()
4236                != TSK_ExplicitSpecialization) {
4237            // If we don't already have a point of instantiation, this is it.
4238            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4239              MSInfo->setPointOfInstantiation(E->getLocStart());
4240
4241              // This is a modification of an existing AST node. Notify
4242              // listeners.
4243              if (ASTMutationListener *L = getASTMutationListener())
4244                L->StaticDataMemberInstantiated(Var);
4245            }
4246
4247            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4248
4249            // Update the type to the newly instantiated definition's type both
4250            // here and within the expression.
4251            if (VarDecl *Def = Var->getDefinition()) {
4252              DRE->setDecl(Def);
4253              T = Def->getType();
4254              DRE->setType(T);
4255              E->setType(T);
4256            }
4257          }
4258
4259          // We still go on to try to complete the type independently, as it
4260          // may also require instantiations or diagnostics if it remains
4261          // incomplete.
4262        }
4263      }
4264    }
4265  }
4266
4267  // FIXME: Are there other cases which require instantiating something other
4268  // than the type to complete the type of an expression?
4269
4270  // Look through reference types and complete the referred type.
4271  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4272    T = Ref->getPointeeType();
4273
4274  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4275}
4276
4277namespace {
4278  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4279    unsigned DiagID;
4280
4281    TypeDiagnoserDiag(unsigned DiagID)
4282      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4283
4284    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4285      if (Suppressed) return;
4286      S.Diag(Loc, DiagID) << T;
4287    }
4288  };
4289}
4290
4291bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4292  TypeDiagnoserDiag Diagnoser(DiagID);
4293  return RequireCompleteExprType(E, Diagnoser);
4294}
4295
4296/// @brief Ensure that the type T is a complete type.
4297///
4298/// This routine checks whether the type @p T is complete in any
4299/// context where a complete type is required. If @p T is a complete
4300/// type, returns false. If @p T is a class template specialization,
4301/// this routine then attempts to perform class template
4302/// instantiation. If instantiation fails, or if @p T is incomplete
4303/// and cannot be completed, issues the diagnostic @p diag (giving it
4304/// the type @p T) and returns true.
4305///
4306/// @param Loc  The location in the source that the incomplete type
4307/// diagnostic should refer to.
4308///
4309/// @param T  The type that this routine is examining for completeness.
4310///
4311/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4312/// @c false otherwise.
4313bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4314                               TypeDiagnoser &Diagnoser) {
4315  // FIXME: Add this assertion to make sure we always get instantiation points.
4316  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4317  // FIXME: Add this assertion to help us flush out problems with
4318  // checking for dependent types and type-dependent expressions.
4319  //
4320  //  assert(!T->isDependentType() &&
4321  //         "Can't ask whether a dependent type is complete");
4322
4323  // If we have a complete type, we're done.
4324  NamedDecl *Def = 0;
4325  if (!T->isIncompleteType(&Def)) {
4326    // If we know about the definition but it is not visible, complain.
4327    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4328      // Suppress this error outside of a SFINAE context if we've already
4329      // emitted the error once for this type. There's no usefulness in
4330      // repeating the diagnostic.
4331      // FIXME: Add a Fix-It that imports the corresponding module or includes
4332      // the header.
4333      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4334        Diag(Loc, diag::err_module_private_definition) << T;
4335        Diag(Def->getLocation(), diag::note_previous_definition);
4336      }
4337    }
4338
4339    return false;
4340  }
4341
4342  const TagType *Tag = T->getAs<TagType>();
4343  const ObjCInterfaceType *IFace = 0;
4344
4345  if (Tag) {
4346    // Avoid diagnosing invalid decls as incomplete.
4347    if (Tag->getDecl()->isInvalidDecl())
4348      return true;
4349
4350    // Give the external AST source a chance to complete the type.
4351    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4352      Context.getExternalSource()->CompleteType(Tag->getDecl());
4353      if (!Tag->isIncompleteType())
4354        return false;
4355    }
4356  }
4357  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4358    // Avoid diagnosing invalid decls as incomplete.
4359    if (IFace->getDecl()->isInvalidDecl())
4360      return true;
4361
4362    // Give the external AST source a chance to complete the type.
4363    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4364      Context.getExternalSource()->CompleteType(IFace->getDecl());
4365      if (!IFace->isIncompleteType())
4366        return false;
4367    }
4368  }
4369
4370  // If we have a class template specialization or a class member of a
4371  // class template specialization, or an array with known size of such,
4372  // try to instantiate it.
4373  QualType MaybeTemplate = T;
4374  while (const ConstantArrayType *Array
4375           = Context.getAsConstantArrayType(MaybeTemplate))
4376    MaybeTemplate = Array->getElementType();
4377  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4378    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4379          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4380      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4381        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4382                                                      TSK_ImplicitInstantiation,
4383                                            /*Complain=*/!Diagnoser.Suppressed);
4384    } else if (CXXRecordDecl *Rec
4385                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4386      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4387      if (!Rec->isBeingDefined() && Pattern) {
4388        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4389        assert(MSI && "Missing member specialization information?");
4390        // This record was instantiated from a class within a template.
4391        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4392          return InstantiateClass(Loc, Rec, Pattern,
4393                                  getTemplateInstantiationArgs(Rec),
4394                                  TSK_ImplicitInstantiation,
4395                                  /*Complain=*/!Diagnoser.Suppressed);
4396      }
4397    }
4398  }
4399
4400  if (Diagnoser.Suppressed)
4401    return true;
4402
4403  // We have an incomplete type. Produce a diagnostic.
4404  Diagnoser.diagnose(*this, Loc, T);
4405
4406  // If the type was a forward declaration of a class/struct/union
4407  // type, produce a note.
4408  if (Tag && !Tag->getDecl()->isInvalidDecl())
4409    Diag(Tag->getDecl()->getLocation(),
4410         Tag->isBeingDefined() ? diag::note_type_being_defined
4411                               : diag::note_forward_declaration)
4412      << QualType(Tag, 0);
4413
4414  // If the Objective-C class was a forward declaration, produce a note.
4415  if (IFace && !IFace->getDecl()->isInvalidDecl())
4416    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4417
4418  return true;
4419}
4420
4421bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4422                               unsigned DiagID) {
4423  TypeDiagnoserDiag Diagnoser(DiagID);
4424  return RequireCompleteType(Loc, T, Diagnoser);
4425}
4426
4427/// \brief Get diagnostic %select index for tag kind for
4428/// literal type diagnostic message.
4429/// WARNING: Indexes apply to particular diagnostics only!
4430///
4431/// \returns diagnostic %select index.
4432static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4433  switch (Tag) {
4434  case TTK_Struct: return 0;
4435  case TTK_Interface: return 1;
4436  case TTK_Class:  return 2;
4437  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4438  }
4439}
4440
4441/// @brief Ensure that the type T is a literal type.
4442///
4443/// This routine checks whether the type @p T is a literal type. If @p T is an
4444/// incomplete type, an attempt is made to complete it. If @p T is a literal
4445/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4446/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4447/// it the type @p T), along with notes explaining why the type is not a
4448/// literal type, and returns true.
4449///
4450/// @param Loc  The location in the source that the non-literal type
4451/// diagnostic should refer to.
4452///
4453/// @param T  The type that this routine is examining for literalness.
4454///
4455/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4456///
4457/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4458/// @c false otherwise.
4459bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4460                              TypeDiagnoser &Diagnoser) {
4461  assert(!T->isDependentType() && "type should not be dependent");
4462
4463  QualType ElemType = Context.getBaseElementType(T);
4464  RequireCompleteType(Loc, ElemType, 0);
4465
4466  if (T->isLiteralType())
4467    return false;
4468
4469  if (Diagnoser.Suppressed)
4470    return true;
4471
4472  Diagnoser.diagnose(*this, Loc, T);
4473
4474  if (T->isVariableArrayType())
4475    return true;
4476
4477  const RecordType *RT = ElemType->getAs<RecordType>();
4478  if (!RT)
4479    return true;
4480
4481  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4482
4483  // A partially-defined class type can't be a literal type, because a literal
4484  // class type must have a trivial destructor (which can't be checked until
4485  // the class definition is complete).
4486  if (!RD->isCompleteDefinition()) {
4487    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4488    return true;
4489  }
4490
4491  // If the class has virtual base classes, then it's not an aggregate, and
4492  // cannot have any constexpr constructors or a trivial default constructor,
4493  // so is non-literal. This is better to diagnose than the resulting absence
4494  // of constexpr constructors.
4495  if (RD->getNumVBases()) {
4496    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4497      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4498    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4499           E = RD->vbases_end(); I != E; ++I)
4500      Diag(I->getLocStart(),
4501           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4502  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4503             !RD->hasTrivialDefaultConstructor()) {
4504    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4505  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4506    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4507         E = RD->bases_end(); I != E; ++I) {
4508      if (!I->getType()->isLiteralType()) {
4509        Diag(I->getLocStart(),
4510             diag::note_non_literal_base_class)
4511          << RD << I->getType() << I->getSourceRange();
4512        return true;
4513      }
4514    }
4515    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4516         E = RD->field_end(); I != E; ++I) {
4517      if (!I->getType()->isLiteralType() ||
4518          I->getType().isVolatileQualified()) {
4519        Diag(I->getLocation(), diag::note_non_literal_field)
4520          << RD << *I << I->getType()
4521          << I->getType().isVolatileQualified();
4522        return true;
4523      }
4524    }
4525  } else if (!RD->hasTrivialDestructor()) {
4526    // All fields and bases are of literal types, so have trivial destructors.
4527    // If this class's destructor is non-trivial it must be user-declared.
4528    CXXDestructorDecl *Dtor = RD->getDestructor();
4529    assert(Dtor && "class has literal fields and bases but no dtor?");
4530    if (!Dtor)
4531      return true;
4532
4533    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4534         diag::note_non_literal_user_provided_dtor :
4535         diag::note_non_literal_nontrivial_dtor) << RD;
4536  }
4537
4538  return true;
4539}
4540
4541bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4542  TypeDiagnoserDiag Diagnoser(DiagID);
4543  return RequireLiteralType(Loc, T, Diagnoser);
4544}
4545
4546/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4547/// and qualified by the nested-name-specifier contained in SS.
4548QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4549                                 const CXXScopeSpec &SS, QualType T) {
4550  if (T.isNull())
4551    return T;
4552  NestedNameSpecifier *NNS;
4553  if (SS.isValid())
4554    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4555  else {
4556    if (Keyword == ETK_None)
4557      return T;
4558    NNS = 0;
4559  }
4560  return Context.getElaboratedType(Keyword, NNS, T);
4561}
4562
4563QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4564  ExprResult ER = CheckPlaceholderExpr(E);
4565  if (ER.isInvalid()) return QualType();
4566  E = ER.take();
4567
4568  if (!E->isTypeDependent()) {
4569    QualType T = E->getType();
4570    if (const TagType *TT = T->getAs<TagType>())
4571      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4572  }
4573  return Context.getTypeOfExprType(E);
4574}
4575
4576/// getDecltypeForExpr - Given an expr, will return the decltype for
4577/// that expression, according to the rules in C++11
4578/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4579static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4580  if (E->isTypeDependent())
4581    return S.Context.DependentTy;
4582
4583  // C++11 [dcl.type.simple]p4:
4584  //   The type denoted by decltype(e) is defined as follows:
4585  //
4586  //     - if e is an unparenthesized id-expression or an unparenthesized class
4587  //       member access (5.2.5), decltype(e) is the type of the entity named
4588  //       by e. If there is no such entity, or if e names a set of overloaded
4589  //       functions, the program is ill-formed;
4590  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4591    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4592      return VD->getType();
4593  }
4594  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4595    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4596      return FD->getType();
4597  }
4598
4599  // C++11 [expr.lambda.prim]p18:
4600  //   Every occurrence of decltype((x)) where x is a possibly
4601  //   parenthesized id-expression that names an entity of automatic
4602  //   storage duration is treated as if x were transformed into an
4603  //   access to a corresponding data member of the closure type that
4604  //   would have been declared if x were an odr-use of the denoted
4605  //   entity.
4606  using namespace sema;
4607  if (S.getCurLambda()) {
4608    if (isa<ParenExpr>(E)) {
4609      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4610        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4611          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4612          if (!T.isNull())
4613            return S.Context.getLValueReferenceType(T);
4614        }
4615      }
4616    }
4617  }
4618
4619
4620  // C++11 [dcl.type.simple]p4:
4621  //   [...]
4622  QualType T = E->getType();
4623  switch (E->getValueKind()) {
4624  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4625  //       type of e;
4626  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4627  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4628  //       type of e;
4629  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4630  //  - otherwise, decltype(e) is the type of e.
4631  case VK_RValue: break;
4632  }
4633
4634  return T;
4635}
4636
4637QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4638  ExprResult ER = CheckPlaceholderExpr(E);
4639  if (ER.isInvalid()) return QualType();
4640  E = ER.take();
4641
4642  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4643}
4644
4645QualType Sema::BuildUnaryTransformType(QualType BaseType,
4646                                       UnaryTransformType::UTTKind UKind,
4647                                       SourceLocation Loc) {
4648  switch (UKind) {
4649  case UnaryTransformType::EnumUnderlyingType:
4650    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4651      Diag(Loc, diag::err_only_enums_have_underlying_types);
4652      return QualType();
4653    } else {
4654      QualType Underlying = BaseType;
4655      if (!BaseType->isDependentType()) {
4656        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4657        assert(ED && "EnumType has no EnumDecl");
4658        DiagnoseUseOfDecl(ED, Loc);
4659        Underlying = ED->getIntegerType();
4660      }
4661      assert(!Underlying.isNull());
4662      return Context.getUnaryTransformType(BaseType, Underlying,
4663                                        UnaryTransformType::EnumUnderlyingType);
4664    }
4665  }
4666  llvm_unreachable("unknown unary transform type");
4667}
4668
4669QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4670  if (!T->isDependentType()) {
4671    // FIXME: It isn't entirely clear whether incomplete atomic types
4672    // are allowed or not; for simplicity, ban them for the moment.
4673    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4674      return QualType();
4675
4676    int DisallowedKind = -1;
4677    if (T->isArrayType())
4678      DisallowedKind = 1;
4679    else if (T->isFunctionType())
4680      DisallowedKind = 2;
4681    else if (T->isReferenceType())
4682      DisallowedKind = 3;
4683    else if (T->isAtomicType())
4684      DisallowedKind = 4;
4685    else if (T.hasQualifiers())
4686      DisallowedKind = 5;
4687    else if (!T.isTriviallyCopyableType(Context))
4688      // Some other non-trivially-copyable type (probably a C++ class)
4689      DisallowedKind = 6;
4690
4691    if (DisallowedKind != -1) {
4692      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4693      return QualType();
4694    }
4695
4696    // FIXME: Do we need any handling for ARC here?
4697  }
4698
4699  // Build the pointer type.
4700  return Context.getAtomicType(T);
4701}
4702