CStringChecker.cpp revision 4587cace907ed9a68256bdae506fbb8d93ac232c
1//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This defines CStringChecker, which is an assortment of checks on calls
11// to functions in <string.h>.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ClangSACheckers.h"
16#include "InterCheckerAPI.h"
17#include "clang/Basic/CharInfo.h"
18#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19#include "clang/StaticAnalyzer/Core/Checker.h"
20#include "clang/StaticAnalyzer/Core/CheckerManager.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/StringSwitch.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace clang;
29using namespace ento;
30
31namespace {
32class CStringChecker : public Checker< eval::Call,
33                                         check::PreStmt<DeclStmt>,
34                                         check::LiveSymbols,
35                                         check::DeadSymbols,
36                                         check::RegionChanges
37                                         > {
38  mutable OwningPtr<BugType> BT_Null,
39                             BT_Bounds,
40                             BT_Overlap,
41                             BT_NotCString,
42                             BT_AdditionOverflow;
43
44  mutable const char *CurrentFunctionDescription;
45
46public:
47  /// The filter is used to filter out the diagnostics which are not enabled by
48  /// the user.
49  struct CStringChecksFilter {
50    DefaultBool CheckCStringNullArg;
51    DefaultBool CheckCStringOutOfBounds;
52    DefaultBool CheckCStringBufferOverlap;
53    DefaultBool CheckCStringNotNullTerm;
54  };
55
56  CStringChecksFilter Filter;
57
58  static void *getTag() { static int tag; return &tag; }
59
60  bool evalCall(const CallExpr *CE, CheckerContext &C) const;
61  void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
62  void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
63  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
64  bool wantsRegionChangeUpdate(ProgramStateRef state) const;
65
66  ProgramStateRef
67    checkRegionChanges(ProgramStateRef state,
68                       const InvalidatedSymbols *,
69                       ArrayRef<const MemRegion *> ExplicitRegions,
70                       ArrayRef<const MemRegion *> Regions,
71                       const CallEvent *Call) const;
72
73  typedef void (CStringChecker::*FnCheck)(CheckerContext &,
74                                          const CallExpr *) const;
75
76  void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
77  void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
78  void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
79  void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
80  void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
81                      ProgramStateRef state,
82                      const Expr *Size,
83                      const Expr *Source,
84                      const Expr *Dest,
85                      bool Restricted = false,
86                      bool IsMempcpy = false) const;
87
88  void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
89
90  void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
91  void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
92  void evalstrLengthCommon(CheckerContext &C,
93                           const CallExpr *CE,
94                           bool IsStrnlen = false) const;
95
96  void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
97  void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
98  void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
99  void evalStrcpyCommon(CheckerContext &C,
100                        const CallExpr *CE,
101                        bool returnEnd,
102                        bool isBounded,
103                        bool isAppending) const;
104
105  void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
106  void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
107
108  void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
109  void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
110  void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
111  void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
112  void evalStrcmpCommon(CheckerContext &C,
113                        const CallExpr *CE,
114                        bool isBounded = false,
115                        bool ignoreCase = false) const;
116
117  void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
118
119  // Utility methods
120  std::pair<ProgramStateRef , ProgramStateRef >
121  static assumeZero(CheckerContext &C,
122                    ProgramStateRef state, SVal V, QualType Ty);
123
124  static ProgramStateRef setCStringLength(ProgramStateRef state,
125                                              const MemRegion *MR,
126                                              SVal strLength);
127  static SVal getCStringLengthForRegion(CheckerContext &C,
128                                        ProgramStateRef &state,
129                                        const Expr *Ex,
130                                        const MemRegion *MR,
131                                        bool hypothetical);
132  SVal getCStringLength(CheckerContext &C,
133                        ProgramStateRef &state,
134                        const Expr *Ex,
135                        SVal Buf,
136                        bool hypothetical = false) const;
137
138  const StringLiteral *getCStringLiteral(CheckerContext &C,
139                                         ProgramStateRef &state,
140                                         const Expr *expr,
141                                         SVal val) const;
142
143  static ProgramStateRef InvalidateBuffer(CheckerContext &C,
144                                              ProgramStateRef state,
145                                              const Expr *Ex, SVal V);
146
147  static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
148                              const MemRegion *MR);
149
150  // Re-usable checks
151  ProgramStateRef checkNonNull(CheckerContext &C,
152                                   ProgramStateRef state,
153                                   const Expr *S,
154                                   SVal l) const;
155  ProgramStateRef CheckLocation(CheckerContext &C,
156                                    ProgramStateRef state,
157                                    const Expr *S,
158                                    SVal l,
159                                    const char *message = NULL) const;
160  ProgramStateRef CheckBufferAccess(CheckerContext &C,
161                                        ProgramStateRef state,
162                                        const Expr *Size,
163                                        const Expr *FirstBuf,
164                                        const Expr *SecondBuf,
165                                        const char *firstMessage = NULL,
166                                        const char *secondMessage = NULL,
167                                        bool WarnAboutSize = false) const;
168
169  ProgramStateRef CheckBufferAccess(CheckerContext &C,
170                                        ProgramStateRef state,
171                                        const Expr *Size,
172                                        const Expr *Buf,
173                                        const char *message = NULL,
174                                        bool WarnAboutSize = false) const {
175    // This is a convenience override.
176    return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
177                             WarnAboutSize);
178  }
179  ProgramStateRef CheckOverlap(CheckerContext &C,
180                                   ProgramStateRef state,
181                                   const Expr *Size,
182                                   const Expr *First,
183                                   const Expr *Second) const;
184  void emitOverlapBug(CheckerContext &C,
185                      ProgramStateRef state,
186                      const Stmt *First,
187                      const Stmt *Second) const;
188
189  ProgramStateRef checkAdditionOverflow(CheckerContext &C,
190                                            ProgramStateRef state,
191                                            NonLoc left,
192                                            NonLoc right) const;
193};
194
195} //end anonymous namespace
196
197REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
198
199//===----------------------------------------------------------------------===//
200// Individual checks and utility methods.
201//===----------------------------------------------------------------------===//
202
203std::pair<ProgramStateRef , ProgramStateRef >
204CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
205                           QualType Ty) {
206  Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
207  if (!val)
208    return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
209
210  SValBuilder &svalBuilder = C.getSValBuilder();
211  DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
212  return state->assume(svalBuilder.evalEQ(state, *val, zero));
213}
214
215ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
216                                            ProgramStateRef state,
217                                            const Expr *S, SVal l) const {
218  // If a previous check has failed, propagate the failure.
219  if (!state)
220    return NULL;
221
222  ProgramStateRef stateNull, stateNonNull;
223  llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
224
225  if (stateNull && !stateNonNull) {
226    if (!Filter.CheckCStringNullArg)
227      return NULL;
228
229    ExplodedNode *N = C.generateSink(stateNull);
230    if (!N)
231      return NULL;
232
233    if (!BT_Null)
234      BT_Null.reset(new BuiltinBug(categories::UnixAPI,
235        "Null pointer argument in call to byte string function"));
236
237    SmallString<80> buf;
238    llvm::raw_svector_ostream os(buf);
239    assert(CurrentFunctionDescription);
240    os << "Null pointer argument in call to " << CurrentFunctionDescription;
241
242    // Generate a report for this bug.
243    BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
244    BugReport *report = new BugReport(*BT, os.str(), N);
245
246    report->addRange(S->getSourceRange());
247    bugreporter::trackNullOrUndefValue(N, S, *report);
248    C.emitReport(report);
249    return NULL;
250  }
251
252  // From here on, assume that the value is non-null.
253  assert(stateNonNull);
254  return stateNonNull;
255}
256
257// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
258ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
259                                             ProgramStateRef state,
260                                             const Expr *S, SVal l,
261                                             const char *warningMsg) const {
262  // If a previous check has failed, propagate the failure.
263  if (!state)
264    return NULL;
265
266  // Check for out of bound array element access.
267  const MemRegion *R = l.getAsRegion();
268  if (!R)
269    return state;
270
271  const ElementRegion *ER = dyn_cast<ElementRegion>(R);
272  if (!ER)
273    return state;
274
275  assert(ER->getValueType() == C.getASTContext().CharTy &&
276    "CheckLocation should only be called with char* ElementRegions");
277
278  // Get the size of the array.
279  const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
280  SValBuilder &svalBuilder = C.getSValBuilder();
281  SVal Extent =
282    svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
283  DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
284
285  // Get the index of the accessed element.
286  DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
287
288  ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
289  ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
290  if (StOutBound && !StInBound) {
291    ExplodedNode *N = C.generateSink(StOutBound);
292    if (!N)
293      return NULL;
294
295    if (!BT_Bounds) {
296      BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
297        "Byte string function accesses out-of-bound array element"));
298    }
299    BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
300
301    // Generate a report for this bug.
302    BugReport *report;
303    if (warningMsg) {
304      report = new BugReport(*BT, warningMsg, N);
305    } else {
306      assert(CurrentFunctionDescription);
307      assert(CurrentFunctionDescription[0] != '\0');
308
309      SmallString<80> buf;
310      llvm::raw_svector_ostream os(buf);
311      os << toUppercase(CurrentFunctionDescription[0])
312         << &CurrentFunctionDescription[1]
313         << " accesses out-of-bound array element";
314      report = new BugReport(*BT, os.str(), N);
315    }
316
317    // FIXME: It would be nice to eventually make this diagnostic more clear,
318    // e.g., by referencing the original declaration or by saying *why* this
319    // reference is outside the range.
320
321    report->addRange(S->getSourceRange());
322    C.emitReport(report);
323    return NULL;
324  }
325
326  // Array bound check succeeded.  From this point forward the array bound
327  // should always succeed.
328  return StInBound;
329}
330
331ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
332                                                 ProgramStateRef state,
333                                                 const Expr *Size,
334                                                 const Expr *FirstBuf,
335                                                 const Expr *SecondBuf,
336                                                 const char *firstMessage,
337                                                 const char *secondMessage,
338                                                 bool WarnAboutSize) const {
339  // If a previous check has failed, propagate the failure.
340  if (!state)
341    return NULL;
342
343  SValBuilder &svalBuilder = C.getSValBuilder();
344  ASTContext &Ctx = svalBuilder.getContext();
345  const LocationContext *LCtx = C.getLocationContext();
346
347  QualType sizeTy = Size->getType();
348  QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
349
350  // Check that the first buffer is non-null.
351  SVal BufVal = state->getSVal(FirstBuf, LCtx);
352  state = checkNonNull(C, state, FirstBuf, BufVal);
353  if (!state)
354    return NULL;
355
356  // If out-of-bounds checking is turned off, skip the rest.
357  if (!Filter.CheckCStringOutOfBounds)
358    return state;
359
360  // Get the access length and make sure it is known.
361  // FIXME: This assumes the caller has already checked that the access length
362  // is positive. And that it's unsigned.
363  SVal LengthVal = state->getSVal(Size, LCtx);
364  Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
365  if (!Length)
366    return state;
367
368  // Compute the offset of the last element to be accessed: size-1.
369  NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
370  NonLoc LastOffset = svalBuilder
371      .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
372
373  // Check that the first buffer is sufficiently long.
374  SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
375  if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
376    const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
377
378    SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
379                                          LastOffset, PtrTy);
380    state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
381
382    // If the buffer isn't large enough, abort.
383    if (!state)
384      return NULL;
385  }
386
387  // If there's a second buffer, check it as well.
388  if (SecondBuf) {
389    BufVal = state->getSVal(SecondBuf, LCtx);
390    state = checkNonNull(C, state, SecondBuf, BufVal);
391    if (!state)
392      return NULL;
393
394    BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
395    if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
396      const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
397
398      SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
399                                            LastOffset, PtrTy);
400      state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
401    }
402  }
403
404  // Large enough or not, return this state!
405  return state;
406}
407
408ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
409                                            ProgramStateRef state,
410                                            const Expr *Size,
411                                            const Expr *First,
412                                            const Expr *Second) const {
413  if (!Filter.CheckCStringBufferOverlap)
414    return state;
415
416  // Do a simple check for overlap: if the two arguments are from the same
417  // buffer, see if the end of the first is greater than the start of the second
418  // or vice versa.
419
420  // If a previous check has failed, propagate the failure.
421  if (!state)
422    return NULL;
423
424  ProgramStateRef stateTrue, stateFalse;
425
426  // Get the buffer values and make sure they're known locations.
427  const LocationContext *LCtx = C.getLocationContext();
428  SVal firstVal = state->getSVal(First, LCtx);
429  SVal secondVal = state->getSVal(Second, LCtx);
430
431  Optional<Loc> firstLoc = firstVal.getAs<Loc>();
432  if (!firstLoc)
433    return state;
434
435  Optional<Loc> secondLoc = secondVal.getAs<Loc>();
436  if (!secondLoc)
437    return state;
438
439  // Are the two values the same?
440  SValBuilder &svalBuilder = C.getSValBuilder();
441  llvm::tie(stateTrue, stateFalse) =
442    state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
443
444  if (stateTrue && !stateFalse) {
445    // If the values are known to be equal, that's automatically an overlap.
446    emitOverlapBug(C, stateTrue, First, Second);
447    return NULL;
448  }
449
450  // assume the two expressions are not equal.
451  assert(stateFalse);
452  state = stateFalse;
453
454  // Which value comes first?
455  QualType cmpTy = svalBuilder.getConditionType();
456  SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
457                                         *firstLoc, *secondLoc, cmpTy);
458  Optional<DefinedOrUnknownSVal> reverseTest =
459      reverse.getAs<DefinedOrUnknownSVal>();
460  if (!reverseTest)
461    return state;
462
463  llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
464  if (stateTrue) {
465    if (stateFalse) {
466      // If we don't know which one comes first, we can't perform this test.
467      return state;
468    } else {
469      // Switch the values so that firstVal is before secondVal.
470      std::swap(firstLoc, secondLoc);
471
472      // Switch the Exprs as well, so that they still correspond.
473      std::swap(First, Second);
474    }
475  }
476
477  // Get the length, and make sure it too is known.
478  SVal LengthVal = state->getSVal(Size, LCtx);
479  Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
480  if (!Length)
481    return state;
482
483  // Convert the first buffer's start address to char*.
484  // Bail out if the cast fails.
485  ASTContext &Ctx = svalBuilder.getContext();
486  QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
487  SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
488                                         First->getType());
489  Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
490  if (!FirstStartLoc)
491    return state;
492
493  // Compute the end of the first buffer. Bail out if THAT fails.
494  SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
495                                 *FirstStartLoc, *Length, CharPtrTy);
496  Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
497  if (!FirstEndLoc)
498    return state;
499
500  // Is the end of the first buffer past the start of the second buffer?
501  SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
502                                *FirstEndLoc, *secondLoc, cmpTy);
503  Optional<DefinedOrUnknownSVal> OverlapTest =
504      Overlap.getAs<DefinedOrUnknownSVal>();
505  if (!OverlapTest)
506    return state;
507
508  llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
509
510  if (stateTrue && !stateFalse) {
511    // Overlap!
512    emitOverlapBug(C, stateTrue, First, Second);
513    return NULL;
514  }
515
516  // assume the two expressions don't overlap.
517  assert(stateFalse);
518  return stateFalse;
519}
520
521void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
522                                  const Stmt *First, const Stmt *Second) const {
523  ExplodedNode *N = C.generateSink(state);
524  if (!N)
525    return;
526
527  if (!BT_Overlap)
528    BT_Overlap.reset(new BugType(categories::UnixAPI, "Improper arguments"));
529
530  // Generate a report for this bug.
531  BugReport *report =
532    new BugReport(*BT_Overlap,
533      "Arguments must not be overlapping buffers", N);
534  report->addRange(First->getSourceRange());
535  report->addRange(Second->getSourceRange());
536
537  C.emitReport(report);
538}
539
540ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
541                                                     ProgramStateRef state,
542                                                     NonLoc left,
543                                                     NonLoc right) const {
544  // If out-of-bounds checking is turned off, skip the rest.
545  if (!Filter.CheckCStringOutOfBounds)
546    return state;
547
548  // If a previous check has failed, propagate the failure.
549  if (!state)
550    return NULL;
551
552  SValBuilder &svalBuilder = C.getSValBuilder();
553  BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
554
555  QualType sizeTy = svalBuilder.getContext().getSizeType();
556  const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
557  NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
558
559  SVal maxMinusRight;
560  if (right.getAs<nonloc::ConcreteInt>()) {
561    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
562                                                 sizeTy);
563  } else {
564    // Try switching the operands. (The order of these two assignments is
565    // important!)
566    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
567                                            sizeTy);
568    left = right;
569  }
570
571  if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
572    QualType cmpTy = svalBuilder.getConditionType();
573    // If left > max - right, we have an overflow.
574    SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
575                                                *maxMinusRightNL, cmpTy);
576
577    ProgramStateRef stateOverflow, stateOkay;
578    llvm::tie(stateOverflow, stateOkay) =
579      state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
580
581    if (stateOverflow && !stateOkay) {
582      // We have an overflow. Emit a bug report.
583      ExplodedNode *N = C.generateSink(stateOverflow);
584      if (!N)
585        return NULL;
586
587      if (!BT_AdditionOverflow)
588        BT_AdditionOverflow.reset(new BuiltinBug("API",
589          "Sum of expressions causes overflow"));
590
591      // This isn't a great error message, but this should never occur in real
592      // code anyway -- you'd have to create a buffer longer than a size_t can
593      // represent, which is sort of a contradiction.
594      const char *warning =
595        "This expression will create a string whose length is too big to "
596        "be represented as a size_t";
597
598      // Generate a report for this bug.
599      BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
600      C.emitReport(report);
601
602      return NULL;
603    }
604
605    // From now on, assume an overflow didn't occur.
606    assert(stateOkay);
607    state = stateOkay;
608  }
609
610  return state;
611}
612
613ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
614                                                const MemRegion *MR,
615                                                SVal strLength) {
616  assert(!strLength.isUndef() && "Attempt to set an undefined string length");
617
618  MR = MR->StripCasts();
619
620  switch (MR->getKind()) {
621  case MemRegion::StringRegionKind:
622    // FIXME: This can happen if we strcpy() into a string region. This is
623    // undefined [C99 6.4.5p6], but we should still warn about it.
624    return state;
625
626  case MemRegion::SymbolicRegionKind:
627  case MemRegion::AllocaRegionKind:
628  case MemRegion::VarRegionKind:
629  case MemRegion::FieldRegionKind:
630  case MemRegion::ObjCIvarRegionKind:
631    // These are the types we can currently track string lengths for.
632    break;
633
634  case MemRegion::ElementRegionKind:
635    // FIXME: Handle element regions by upper-bounding the parent region's
636    // string length.
637    return state;
638
639  default:
640    // Other regions (mostly non-data) can't have a reliable C string length.
641    // For now, just ignore the change.
642    // FIXME: These are rare but not impossible. We should output some kind of
643    // warning for things like strcpy((char[]){'a', 0}, "b");
644    return state;
645  }
646
647  if (strLength.isUnknown())
648    return state->remove<CStringLength>(MR);
649
650  return state->set<CStringLength>(MR, strLength);
651}
652
653SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
654                                               ProgramStateRef &state,
655                                               const Expr *Ex,
656                                               const MemRegion *MR,
657                                               bool hypothetical) {
658  if (!hypothetical) {
659    // If there's a recorded length, go ahead and return it.
660    const SVal *Recorded = state->get<CStringLength>(MR);
661    if (Recorded)
662      return *Recorded;
663  }
664
665  // Otherwise, get a new symbol and update the state.
666  SValBuilder &svalBuilder = C.getSValBuilder();
667  QualType sizeTy = svalBuilder.getContext().getSizeType();
668  SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
669                                                    MR, Ex, sizeTy,
670                                                    C.blockCount());
671
672  if (!hypothetical) {
673    if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
674      // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
675      BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
676      const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
677      llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
678      const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
679                                                        fourInt);
680      NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
681      SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
682                                                maxLength, sizeTy);
683      state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
684    }
685    state = state->set<CStringLength>(MR, strLength);
686  }
687
688  return strLength;
689}
690
691SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
692                                      const Expr *Ex, SVal Buf,
693                                      bool hypothetical) const {
694  const MemRegion *MR = Buf.getAsRegion();
695  if (!MR) {
696    // If we can't get a region, see if it's something we /know/ isn't a
697    // C string. In the context of locations, the only time we can issue such
698    // a warning is for labels.
699    if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
700      if (!Filter.CheckCStringNotNullTerm)
701        return UndefinedVal();
702
703      if (ExplodedNode *N = C.addTransition(state)) {
704        if (!BT_NotCString)
705          BT_NotCString.reset(new BuiltinBug(categories::UnixAPI,
706            "Argument is not a null-terminated string."));
707
708        SmallString<120> buf;
709        llvm::raw_svector_ostream os(buf);
710        assert(CurrentFunctionDescription);
711        os << "Argument to " << CurrentFunctionDescription
712           << " is the address of the label '" << Label->getLabel()->getName()
713           << "', which is not a null-terminated string";
714
715        // Generate a report for this bug.
716        BugReport *report = new BugReport(*BT_NotCString,
717                                                          os.str(), N);
718
719        report->addRange(Ex->getSourceRange());
720        C.emitReport(report);
721      }
722      return UndefinedVal();
723
724    }
725
726    // If it's not a region and not a label, give up.
727    return UnknownVal();
728  }
729
730  // If we have a region, strip casts from it and see if we can figure out
731  // its length. For anything we can't figure out, just return UnknownVal.
732  MR = MR->StripCasts();
733
734  switch (MR->getKind()) {
735  case MemRegion::StringRegionKind: {
736    // Modifying the contents of string regions is undefined [C99 6.4.5p6],
737    // so we can assume that the byte length is the correct C string length.
738    SValBuilder &svalBuilder = C.getSValBuilder();
739    QualType sizeTy = svalBuilder.getContext().getSizeType();
740    const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
741    return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
742  }
743  case MemRegion::SymbolicRegionKind:
744  case MemRegion::AllocaRegionKind:
745  case MemRegion::VarRegionKind:
746  case MemRegion::FieldRegionKind:
747  case MemRegion::ObjCIvarRegionKind:
748    return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
749  case MemRegion::CompoundLiteralRegionKind:
750    // FIXME: Can we track this? Is it necessary?
751    return UnknownVal();
752  case MemRegion::ElementRegionKind:
753    // FIXME: How can we handle this? It's not good enough to subtract the
754    // offset from the base string length; consider "123\x00567" and &a[5].
755    return UnknownVal();
756  default:
757    // Other regions (mostly non-data) can't have a reliable C string length.
758    // In this case, an error is emitted and UndefinedVal is returned.
759    // The caller should always be prepared to handle this case.
760    if (!Filter.CheckCStringNotNullTerm)
761      return UndefinedVal();
762
763    if (ExplodedNode *N = C.addTransition(state)) {
764      if (!BT_NotCString)
765        BT_NotCString.reset(new BuiltinBug(categories::UnixAPI,
766          "Argument is not a null-terminated string."));
767
768      SmallString<120> buf;
769      llvm::raw_svector_ostream os(buf);
770
771      assert(CurrentFunctionDescription);
772      os << "Argument to " << CurrentFunctionDescription << " is ";
773
774      if (SummarizeRegion(os, C.getASTContext(), MR))
775        os << ", which is not a null-terminated string";
776      else
777        os << "not a null-terminated string";
778
779      // Generate a report for this bug.
780      BugReport *report = new BugReport(*BT_NotCString,
781                                                        os.str(), N);
782
783      report->addRange(Ex->getSourceRange());
784      C.emitReport(report);
785    }
786
787    return UndefinedVal();
788  }
789}
790
791const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
792  ProgramStateRef &state, const Expr *expr, SVal val) const {
793
794  // Get the memory region pointed to by the val.
795  const MemRegion *bufRegion = val.getAsRegion();
796  if (!bufRegion)
797    return NULL;
798
799  // Strip casts off the memory region.
800  bufRegion = bufRegion->StripCasts();
801
802  // Cast the memory region to a string region.
803  const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
804  if (!strRegion)
805    return NULL;
806
807  // Return the actual string in the string region.
808  return strRegion->getStringLiteral();
809}
810
811ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
812                                                ProgramStateRef state,
813                                                const Expr *E, SVal V) {
814  Optional<Loc> L = V.getAs<Loc>();
815  if (!L)
816    return state;
817
818  // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
819  // some assumptions about the value that CFRefCount can't. Even so, it should
820  // probably be refactored.
821  if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
822    const MemRegion *R = MR->getRegion()->StripCasts();
823
824    // Are we dealing with an ElementRegion?  If so, we should be invalidating
825    // the super-region.
826    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
827      R = ER->getSuperRegion();
828      // FIXME: What about layers of ElementRegions?
829    }
830
831    // Invalidate this region.
832    const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
833    return state->invalidateRegions(R, E, C.blockCount(), LCtx,
834                                    /*CausesPointerEscape*/ false);
835  }
836
837  // If we have a non-region value by chance, just remove the binding.
838  // FIXME: is this necessary or correct? This handles the non-Region
839  //  cases.  Is it ever valid to store to these?
840  return state->killBinding(*L);
841}
842
843bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
844                                     const MemRegion *MR) {
845  const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
846
847  switch (MR->getKind()) {
848  case MemRegion::FunctionTextRegionKind: {
849    const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
850    if (FD)
851      os << "the address of the function '" << *FD << '\'';
852    else
853      os << "the address of a function";
854    return true;
855  }
856  case MemRegion::BlockTextRegionKind:
857    os << "block text";
858    return true;
859  case MemRegion::BlockDataRegionKind:
860    os << "a block";
861    return true;
862  case MemRegion::CXXThisRegionKind:
863  case MemRegion::CXXTempObjectRegionKind:
864    os << "a C++ temp object of type " << TVR->getValueType().getAsString();
865    return true;
866  case MemRegion::VarRegionKind:
867    os << "a variable of type" << TVR->getValueType().getAsString();
868    return true;
869  case MemRegion::FieldRegionKind:
870    os << "a field of type " << TVR->getValueType().getAsString();
871    return true;
872  case MemRegion::ObjCIvarRegionKind:
873    os << "an instance variable of type " << TVR->getValueType().getAsString();
874    return true;
875  default:
876    return false;
877  }
878}
879
880//===----------------------------------------------------------------------===//
881// evaluation of individual function calls.
882//===----------------------------------------------------------------------===//
883
884void CStringChecker::evalCopyCommon(CheckerContext &C,
885                                    const CallExpr *CE,
886                                    ProgramStateRef state,
887                                    const Expr *Size, const Expr *Dest,
888                                    const Expr *Source, bool Restricted,
889                                    bool IsMempcpy) const {
890  CurrentFunctionDescription = "memory copy function";
891
892  // See if the size argument is zero.
893  const LocationContext *LCtx = C.getLocationContext();
894  SVal sizeVal = state->getSVal(Size, LCtx);
895  QualType sizeTy = Size->getType();
896
897  ProgramStateRef stateZeroSize, stateNonZeroSize;
898  llvm::tie(stateZeroSize, stateNonZeroSize) =
899    assumeZero(C, state, sizeVal, sizeTy);
900
901  // Get the value of the Dest.
902  SVal destVal = state->getSVal(Dest, LCtx);
903
904  // If the size is zero, there won't be any actual memory access, so
905  // just bind the return value to the destination buffer and return.
906  if (stateZeroSize && !stateNonZeroSize) {
907    stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
908    C.addTransition(stateZeroSize);
909    return;
910  }
911
912  // If the size can be nonzero, we have to check the other arguments.
913  if (stateNonZeroSize) {
914    state = stateNonZeroSize;
915
916    // Ensure the destination is not null. If it is NULL there will be a
917    // NULL pointer dereference.
918    state = checkNonNull(C, state, Dest, destVal);
919    if (!state)
920      return;
921
922    // Get the value of the Src.
923    SVal srcVal = state->getSVal(Source, LCtx);
924
925    // Ensure the source is not null. If it is NULL there will be a
926    // NULL pointer dereference.
927    state = checkNonNull(C, state, Source, srcVal);
928    if (!state)
929      return;
930
931    // Ensure the accesses are valid and that the buffers do not overlap.
932    const char * const writeWarning =
933      "Memory copy function overflows destination buffer";
934    state = CheckBufferAccess(C, state, Size, Dest, Source,
935                              writeWarning, /* sourceWarning = */ NULL);
936    if (Restricted)
937      state = CheckOverlap(C, state, Size, Dest, Source);
938
939    if (!state)
940      return;
941
942    // If this is mempcpy, get the byte after the last byte copied and
943    // bind the expr.
944    if (IsMempcpy) {
945      loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
946
947      // Get the length to copy.
948      if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
949        // Get the byte after the last byte copied.
950        SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
951                                                          destRegVal,
952                                                          *lenValNonLoc,
953                                                          Dest->getType());
954
955        // The byte after the last byte copied is the return value.
956        state = state->BindExpr(CE, LCtx, lastElement);
957      } else {
958        // If we don't know how much we copied, we can at least
959        // conjure a return value for later.
960        SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx,
961                                                          C.blockCount());
962        state = state->BindExpr(CE, LCtx, result);
963      }
964
965    } else {
966      // All other copies return the destination buffer.
967      // (Well, bcopy() has a void return type, but this won't hurt.)
968      state = state->BindExpr(CE, LCtx, destVal);
969    }
970
971    // Invalidate the destination.
972    // FIXME: Even if we can't perfectly model the copy, we should see if we
973    // can use LazyCompoundVals to copy the source values into the destination.
974    // This would probably remove any existing bindings past the end of the
975    // copied region, but that's still an improvement over blank invalidation.
976    state = InvalidateBuffer(C, state, Dest,
977                             state->getSVal(Dest, C.getLocationContext()));
978    C.addTransition(state);
979  }
980}
981
982
983void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
984  if (CE->getNumArgs() < 3)
985    return;
986
987  // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
988  // The return value is the address of the destination buffer.
989  const Expr *Dest = CE->getArg(0);
990  ProgramStateRef state = C.getState();
991
992  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
993}
994
995void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
996  if (CE->getNumArgs() < 3)
997    return;
998
999  // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1000  // The return value is a pointer to the byte following the last written byte.
1001  const Expr *Dest = CE->getArg(0);
1002  ProgramStateRef state = C.getState();
1003
1004  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1005}
1006
1007void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1008  if (CE->getNumArgs() < 3)
1009    return;
1010
1011  // void *memmove(void *dst, const void *src, size_t n);
1012  // The return value is the address of the destination buffer.
1013  const Expr *Dest = CE->getArg(0);
1014  ProgramStateRef state = C.getState();
1015
1016  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1017}
1018
1019void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1020  if (CE->getNumArgs() < 3)
1021    return;
1022
1023  // void bcopy(const void *src, void *dst, size_t n);
1024  evalCopyCommon(C, CE, C.getState(),
1025                 CE->getArg(2), CE->getArg(1), CE->getArg(0));
1026}
1027
1028void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1029  if (CE->getNumArgs() < 3)
1030    return;
1031
1032  // int memcmp(const void *s1, const void *s2, size_t n);
1033  CurrentFunctionDescription = "memory comparison function";
1034
1035  const Expr *Left = CE->getArg(0);
1036  const Expr *Right = CE->getArg(1);
1037  const Expr *Size = CE->getArg(2);
1038
1039  ProgramStateRef state = C.getState();
1040  SValBuilder &svalBuilder = C.getSValBuilder();
1041
1042  // See if the size argument is zero.
1043  const LocationContext *LCtx = C.getLocationContext();
1044  SVal sizeVal = state->getSVal(Size, LCtx);
1045  QualType sizeTy = Size->getType();
1046
1047  ProgramStateRef stateZeroSize, stateNonZeroSize;
1048  llvm::tie(stateZeroSize, stateNonZeroSize) =
1049    assumeZero(C, state, sizeVal, sizeTy);
1050
1051  // If the size can be zero, the result will be 0 in that case, and we don't
1052  // have to check either of the buffers.
1053  if (stateZeroSize) {
1054    state = stateZeroSize;
1055    state = state->BindExpr(CE, LCtx,
1056                            svalBuilder.makeZeroVal(CE->getType()));
1057    C.addTransition(state);
1058  }
1059
1060  // If the size can be nonzero, we have to check the other arguments.
1061  if (stateNonZeroSize) {
1062    state = stateNonZeroSize;
1063    // If we know the two buffers are the same, we know the result is 0.
1064    // First, get the two buffers' addresses. Another checker will have already
1065    // made sure they're not undefined.
1066    DefinedOrUnknownSVal LV =
1067        state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1068    DefinedOrUnknownSVal RV =
1069        state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1070
1071    // See if they are the same.
1072    DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1073    ProgramStateRef StSameBuf, StNotSameBuf;
1074    llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1075
1076    // If the two arguments might be the same buffer, we know the result is 0,
1077    // and we only need to check one size.
1078    if (StSameBuf) {
1079      state = StSameBuf;
1080      state = CheckBufferAccess(C, state, Size, Left);
1081      if (state) {
1082        state = StSameBuf->BindExpr(CE, LCtx,
1083                                    svalBuilder.makeZeroVal(CE->getType()));
1084        C.addTransition(state);
1085      }
1086    }
1087
1088    // If the two arguments might be different buffers, we have to check the
1089    // size of both of them.
1090    if (StNotSameBuf) {
1091      state = StNotSameBuf;
1092      state = CheckBufferAccess(C, state, Size, Left, Right);
1093      if (state) {
1094        // The return value is the comparison result, which we don't know.
1095        SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1096        state = state->BindExpr(CE, LCtx, CmpV);
1097        C.addTransition(state);
1098      }
1099    }
1100  }
1101}
1102
1103void CStringChecker::evalstrLength(CheckerContext &C,
1104                                   const CallExpr *CE) const {
1105  if (CE->getNumArgs() < 1)
1106    return;
1107
1108  // size_t strlen(const char *s);
1109  evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1110}
1111
1112void CStringChecker::evalstrnLength(CheckerContext &C,
1113                                    const CallExpr *CE) const {
1114  if (CE->getNumArgs() < 2)
1115    return;
1116
1117  // size_t strnlen(const char *s, size_t maxlen);
1118  evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1119}
1120
1121void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1122                                         bool IsStrnlen) const {
1123  CurrentFunctionDescription = "string length function";
1124  ProgramStateRef state = C.getState();
1125  const LocationContext *LCtx = C.getLocationContext();
1126
1127  if (IsStrnlen) {
1128    const Expr *maxlenExpr = CE->getArg(1);
1129    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1130
1131    ProgramStateRef stateZeroSize, stateNonZeroSize;
1132    llvm::tie(stateZeroSize, stateNonZeroSize) =
1133      assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1134
1135    // If the size can be zero, the result will be 0 in that case, and we don't
1136    // have to check the string itself.
1137    if (stateZeroSize) {
1138      SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1139      stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1140      C.addTransition(stateZeroSize);
1141    }
1142
1143    // If the size is GUARANTEED to be zero, we're done!
1144    if (!stateNonZeroSize)
1145      return;
1146
1147    // Otherwise, record the assumption that the size is nonzero.
1148    state = stateNonZeroSize;
1149  }
1150
1151  // Check that the string argument is non-null.
1152  const Expr *Arg = CE->getArg(0);
1153  SVal ArgVal = state->getSVal(Arg, LCtx);
1154
1155  state = checkNonNull(C, state, Arg, ArgVal);
1156
1157  if (!state)
1158    return;
1159
1160  SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1161
1162  // If the argument isn't a valid C string, there's no valid state to
1163  // transition to.
1164  if (strLength.isUndef())
1165    return;
1166
1167  DefinedOrUnknownSVal result = UnknownVal();
1168
1169  // If the check is for strnlen() then bind the return value to no more than
1170  // the maxlen value.
1171  if (IsStrnlen) {
1172    QualType cmpTy = C.getSValBuilder().getConditionType();
1173
1174    // It's a little unfortunate to be getting this again,
1175    // but it's not that expensive...
1176    const Expr *maxlenExpr = CE->getArg(1);
1177    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1178
1179    Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1180    Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1181
1182    if (strLengthNL && maxlenValNL) {
1183      ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1184
1185      // Check if the strLength is greater than the maxlen.
1186      llvm::tie(stateStringTooLong, stateStringNotTooLong) =
1187          state->assume(C.getSValBuilder().evalBinOpNN(
1188              state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1189                            .castAs<DefinedOrUnknownSVal>());
1190
1191      if (stateStringTooLong && !stateStringNotTooLong) {
1192        // If the string is longer than maxlen, return maxlen.
1193        result = *maxlenValNL;
1194      } else if (stateStringNotTooLong && !stateStringTooLong) {
1195        // If the string is shorter than maxlen, return its length.
1196        result = *strLengthNL;
1197      }
1198    }
1199
1200    if (result.isUnknown()) {
1201      // If we don't have enough information for a comparison, there's
1202      // no guarantee the full string length will actually be returned.
1203      // All we know is the return value is the min of the string length
1204      // and the limit. This is better than nothing.
1205      result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1206      NonLoc resultNL = result.castAs<NonLoc>();
1207
1208      if (strLengthNL) {
1209        state = state->assume(C.getSValBuilder().evalBinOpNN(
1210                                  state, BO_LE, resultNL, *strLengthNL, cmpTy)
1211                                  .castAs<DefinedOrUnknownSVal>(), true);
1212      }
1213
1214      if (maxlenValNL) {
1215        state = state->assume(C.getSValBuilder().evalBinOpNN(
1216                                  state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1217                                  .castAs<DefinedOrUnknownSVal>(), true);
1218      }
1219    }
1220
1221  } else {
1222    // This is a plain strlen(), not strnlen().
1223    result = strLength.castAs<DefinedOrUnknownSVal>();
1224
1225    // If we don't know the length of the string, conjure a return
1226    // value, so it can be used in constraints, at least.
1227    if (result.isUnknown()) {
1228      result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1229    }
1230  }
1231
1232  // Bind the return value.
1233  assert(!result.isUnknown() && "Should have conjured a value by now");
1234  state = state->BindExpr(CE, LCtx, result);
1235  C.addTransition(state);
1236}
1237
1238void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1239  if (CE->getNumArgs() < 2)
1240    return;
1241
1242  // char *strcpy(char *restrict dst, const char *restrict src);
1243  evalStrcpyCommon(C, CE,
1244                   /* returnEnd = */ false,
1245                   /* isBounded = */ false,
1246                   /* isAppending = */ false);
1247}
1248
1249void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1250  if (CE->getNumArgs() < 3)
1251    return;
1252
1253  // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1254  evalStrcpyCommon(C, CE,
1255                   /* returnEnd = */ false,
1256                   /* isBounded = */ true,
1257                   /* isAppending = */ false);
1258}
1259
1260void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1261  if (CE->getNumArgs() < 2)
1262    return;
1263
1264  // char *stpcpy(char *restrict dst, const char *restrict src);
1265  evalStrcpyCommon(C, CE,
1266                   /* returnEnd = */ true,
1267                   /* isBounded = */ false,
1268                   /* isAppending = */ false);
1269}
1270
1271void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1272  if (CE->getNumArgs() < 2)
1273    return;
1274
1275  //char *strcat(char *restrict s1, const char *restrict s2);
1276  evalStrcpyCommon(C, CE,
1277                   /* returnEnd = */ false,
1278                   /* isBounded = */ false,
1279                   /* isAppending = */ true);
1280}
1281
1282void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1283  if (CE->getNumArgs() < 3)
1284    return;
1285
1286  //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1287  evalStrcpyCommon(C, CE,
1288                   /* returnEnd = */ false,
1289                   /* isBounded = */ true,
1290                   /* isAppending = */ true);
1291}
1292
1293void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1294                                      bool returnEnd, bool isBounded,
1295                                      bool isAppending) const {
1296  CurrentFunctionDescription = "string copy function";
1297  ProgramStateRef state = C.getState();
1298  const LocationContext *LCtx = C.getLocationContext();
1299
1300  // Check that the destination is non-null.
1301  const Expr *Dst = CE->getArg(0);
1302  SVal DstVal = state->getSVal(Dst, LCtx);
1303
1304  state = checkNonNull(C, state, Dst, DstVal);
1305  if (!state)
1306    return;
1307
1308  // Check that the source is non-null.
1309  const Expr *srcExpr = CE->getArg(1);
1310  SVal srcVal = state->getSVal(srcExpr, LCtx);
1311  state = checkNonNull(C, state, srcExpr, srcVal);
1312  if (!state)
1313    return;
1314
1315  // Get the string length of the source.
1316  SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1317
1318  // If the source isn't a valid C string, give up.
1319  if (strLength.isUndef())
1320    return;
1321
1322  SValBuilder &svalBuilder = C.getSValBuilder();
1323  QualType cmpTy = svalBuilder.getConditionType();
1324  QualType sizeTy = svalBuilder.getContext().getSizeType();
1325
1326  // These two values allow checking two kinds of errors:
1327  // - actual overflows caused by a source that doesn't fit in the destination
1328  // - potential overflows caused by a bound that could exceed the destination
1329  SVal amountCopied = UnknownVal();
1330  SVal maxLastElementIndex = UnknownVal();
1331  const char *boundWarning = NULL;
1332
1333  // If the function is strncpy, strncat, etc... it is bounded.
1334  if (isBounded) {
1335    // Get the max number of characters to copy.
1336    const Expr *lenExpr = CE->getArg(2);
1337    SVal lenVal = state->getSVal(lenExpr, LCtx);
1338
1339    // Protect against misdeclared strncpy().
1340    lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1341
1342    Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1343    Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1344
1345    // If we know both values, we might be able to figure out how much
1346    // we're copying.
1347    if (strLengthNL && lenValNL) {
1348      ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1349
1350      // Check if the max number to copy is less than the length of the src.
1351      // If the bound is equal to the source length, strncpy won't null-
1352      // terminate the result!
1353      llvm::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1354          svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1355              .castAs<DefinedOrUnknownSVal>());
1356
1357      if (stateSourceTooLong && !stateSourceNotTooLong) {
1358        // Max number to copy is less than the length of the src, so the actual
1359        // strLength copied is the max number arg.
1360        state = stateSourceTooLong;
1361        amountCopied = lenVal;
1362
1363      } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1364        // The source buffer entirely fits in the bound.
1365        state = stateSourceNotTooLong;
1366        amountCopied = strLength;
1367      }
1368    }
1369
1370    // We still want to know if the bound is known to be too large.
1371    if (lenValNL) {
1372      if (isAppending) {
1373        // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1374
1375        // Get the string length of the destination. If the destination is
1376        // memory that can't have a string length, we shouldn't be copying
1377        // into it anyway.
1378        SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1379        if (dstStrLength.isUndef())
1380          return;
1381
1382        if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
1383          maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1384                                                        *lenValNL,
1385                                                        *dstStrLengthNL,
1386                                                        sizeTy);
1387          boundWarning = "Size argument is greater than the free space in the "
1388                         "destination buffer";
1389        }
1390
1391      } else {
1392        // For strncpy, this is just checking that lenVal <= sizeof(dst)
1393        // (Yes, strncpy and strncat differ in how they treat termination.
1394        // strncat ALWAYS terminates, but strncpy doesn't.)
1395
1396        // We need a special case for when the copy size is zero, in which
1397        // case strncpy will do no work at all. Our bounds check uses n-1
1398        // as the last element accessed, so n == 0 is problematic.
1399        ProgramStateRef StateZeroSize, StateNonZeroSize;
1400        llvm::tie(StateZeroSize, StateNonZeroSize) =
1401          assumeZero(C, state, *lenValNL, sizeTy);
1402
1403        // If the size is known to be zero, we're done.
1404        if (StateZeroSize && !StateNonZeroSize) {
1405          StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1406          C.addTransition(StateZeroSize);
1407          return;
1408        }
1409
1410        // Otherwise, go ahead and figure out the last element we'll touch.
1411        // We don't record the non-zero assumption here because we can't
1412        // be sure. We won't warn on a possible zero.
1413        NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1414        maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1415                                                      one, sizeTy);
1416        boundWarning = "Size argument is greater than the length of the "
1417                       "destination buffer";
1418      }
1419    }
1420
1421    // If we couldn't pin down the copy length, at least bound it.
1422    // FIXME: We should actually run this code path for append as well, but
1423    // right now it creates problems with constraints (since we can end up
1424    // trying to pass constraints from symbol to symbol).
1425    if (amountCopied.isUnknown() && !isAppending) {
1426      // Try to get a "hypothetical" string length symbol, which we can later
1427      // set as a real value if that turns out to be the case.
1428      amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1429      assert(!amountCopied.isUndef());
1430
1431      if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
1432        if (lenValNL) {
1433          // amountCopied <= lenVal
1434          SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1435                                                             *amountCopiedNL,
1436                                                             *lenValNL,
1437                                                             cmpTy);
1438          state = state->assume(
1439              copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1440          if (!state)
1441            return;
1442        }
1443
1444        if (strLengthNL) {
1445          // amountCopied <= strlen(source)
1446          SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1447                                                           *amountCopiedNL,
1448                                                           *strLengthNL,
1449                                                           cmpTy);
1450          state = state->assume(
1451              copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1452          if (!state)
1453            return;
1454        }
1455      }
1456    }
1457
1458  } else {
1459    // The function isn't bounded. The amount copied should match the length
1460    // of the source buffer.
1461    amountCopied = strLength;
1462  }
1463
1464  assert(state);
1465
1466  // This represents the number of characters copied into the destination
1467  // buffer. (It may not actually be the strlen if the destination buffer
1468  // is not terminated.)
1469  SVal finalStrLength = UnknownVal();
1470
1471  // If this is an appending function (strcat, strncat...) then set the
1472  // string length to strlen(src) + strlen(dst) since the buffer will
1473  // ultimately contain both.
1474  if (isAppending) {
1475    // Get the string length of the destination. If the destination is memory
1476    // that can't have a string length, we shouldn't be copying into it anyway.
1477    SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1478    if (dstStrLength.isUndef())
1479      return;
1480
1481    Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1482    Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1483
1484    // If we know both string lengths, we might know the final string length.
1485    if (srcStrLengthNL && dstStrLengthNL) {
1486      // Make sure the two lengths together don't overflow a size_t.
1487      state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1488      if (!state)
1489        return;
1490
1491      finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1492                                               *dstStrLengthNL, sizeTy);
1493    }
1494
1495    // If we couldn't get a single value for the final string length,
1496    // we can at least bound it by the individual lengths.
1497    if (finalStrLength.isUnknown()) {
1498      // Try to get a "hypothetical" string length symbol, which we can later
1499      // set as a real value if that turns out to be the case.
1500      finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1501      assert(!finalStrLength.isUndef());
1502
1503      if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1504        if (srcStrLengthNL) {
1505          // finalStrLength >= srcStrLength
1506          SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1507                                                        *finalStrLengthNL,
1508                                                        *srcStrLengthNL,
1509                                                        cmpTy);
1510          state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1511                                true);
1512          if (!state)
1513            return;
1514        }
1515
1516        if (dstStrLengthNL) {
1517          // finalStrLength >= dstStrLength
1518          SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1519                                                      *finalStrLengthNL,
1520                                                      *dstStrLengthNL,
1521                                                      cmpTy);
1522          state =
1523              state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1524          if (!state)
1525            return;
1526        }
1527      }
1528    }
1529
1530  } else {
1531    // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1532    // the final string length will match the input string length.
1533    finalStrLength = amountCopied;
1534  }
1535
1536  // The final result of the function will either be a pointer past the last
1537  // copied element, or a pointer to the start of the destination buffer.
1538  SVal Result = (returnEnd ? UnknownVal() : DstVal);
1539
1540  assert(state);
1541
1542  // If the destination is a MemRegion, try to check for a buffer overflow and
1543  // record the new string length.
1544  if (Optional<loc::MemRegionVal> dstRegVal =
1545          DstVal.getAs<loc::MemRegionVal>()) {
1546    QualType ptrTy = Dst->getType();
1547
1548    // If we have an exact value on a bounded copy, use that to check for
1549    // overflows, rather than our estimate about how much is actually copied.
1550    if (boundWarning) {
1551      if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1552        SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1553                                                      *maxLastNL, ptrTy);
1554        state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1555                              boundWarning);
1556        if (!state)
1557          return;
1558      }
1559    }
1560
1561    // Then, if the final length is known...
1562    if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1563      SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1564                                                 *knownStrLength, ptrTy);
1565
1566      // ...and we haven't checked the bound, we'll check the actual copy.
1567      if (!boundWarning) {
1568        const char * const warningMsg =
1569          "String copy function overflows destination buffer";
1570        state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1571        if (!state)
1572          return;
1573      }
1574
1575      // If this is a stpcpy-style copy, the last element is the return value.
1576      if (returnEnd)
1577        Result = lastElement;
1578    }
1579
1580    // Invalidate the destination. This must happen before we set the C string
1581    // length because invalidation will clear the length.
1582    // FIXME: Even if we can't perfectly model the copy, we should see if we
1583    // can use LazyCompoundVals to copy the source values into the destination.
1584    // This would probably remove any existing bindings past the end of the
1585    // string, but that's still an improvement over blank invalidation.
1586    state = InvalidateBuffer(C, state, Dst, *dstRegVal);
1587
1588    // Set the C string length of the destination, if we know it.
1589    if (isBounded && !isAppending) {
1590      // strncpy is annoying in that it doesn't guarantee to null-terminate
1591      // the result string. If the original string didn't fit entirely inside
1592      // the bound (including the null-terminator), we don't know how long the
1593      // result is.
1594      if (amountCopied != strLength)
1595        finalStrLength = UnknownVal();
1596    }
1597    state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1598  }
1599
1600  assert(state);
1601
1602  // If this is a stpcpy-style copy, but we were unable to check for a buffer
1603  // overflow, we still need a result. Conjure a return value.
1604  if (returnEnd && Result.isUnknown()) {
1605    Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1606  }
1607
1608  // Set the return value.
1609  state = state->BindExpr(CE, LCtx, Result);
1610  C.addTransition(state);
1611}
1612
1613void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1614  if (CE->getNumArgs() < 2)
1615    return;
1616
1617  //int strcmp(const char *s1, const char *s2);
1618  evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1619}
1620
1621void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1622  if (CE->getNumArgs() < 3)
1623    return;
1624
1625  //int strncmp(const char *s1, const char *s2, size_t n);
1626  evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1627}
1628
1629void CStringChecker::evalStrcasecmp(CheckerContext &C,
1630                                    const CallExpr *CE) const {
1631  if (CE->getNumArgs() < 2)
1632    return;
1633
1634  //int strcasecmp(const char *s1, const char *s2);
1635  evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1636}
1637
1638void CStringChecker::evalStrncasecmp(CheckerContext &C,
1639                                     const CallExpr *CE) const {
1640  if (CE->getNumArgs() < 3)
1641    return;
1642
1643  //int strncasecmp(const char *s1, const char *s2, size_t n);
1644  evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1645}
1646
1647void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1648                                      bool isBounded, bool ignoreCase) const {
1649  CurrentFunctionDescription = "string comparison function";
1650  ProgramStateRef state = C.getState();
1651  const LocationContext *LCtx = C.getLocationContext();
1652
1653  // Check that the first string is non-null
1654  const Expr *s1 = CE->getArg(0);
1655  SVal s1Val = state->getSVal(s1, LCtx);
1656  state = checkNonNull(C, state, s1, s1Val);
1657  if (!state)
1658    return;
1659
1660  // Check that the second string is non-null.
1661  const Expr *s2 = CE->getArg(1);
1662  SVal s2Val = state->getSVal(s2, LCtx);
1663  state = checkNonNull(C, state, s2, s2Val);
1664  if (!state)
1665    return;
1666
1667  // Get the string length of the first string or give up.
1668  SVal s1Length = getCStringLength(C, state, s1, s1Val);
1669  if (s1Length.isUndef())
1670    return;
1671
1672  // Get the string length of the second string or give up.
1673  SVal s2Length = getCStringLength(C, state, s2, s2Val);
1674  if (s2Length.isUndef())
1675    return;
1676
1677  // If we know the two buffers are the same, we know the result is 0.
1678  // First, get the two buffers' addresses. Another checker will have already
1679  // made sure they're not undefined.
1680  DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1681  DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1682
1683  // See if they are the same.
1684  SValBuilder &svalBuilder = C.getSValBuilder();
1685  DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1686  ProgramStateRef StSameBuf, StNotSameBuf;
1687  llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1688
1689  // If the two arguments might be the same buffer, we know the result is 0,
1690  // and we only need to check one size.
1691  if (StSameBuf) {
1692    StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1693                                    svalBuilder.makeZeroVal(CE->getType()));
1694    C.addTransition(StSameBuf);
1695
1696    // If the two arguments are GUARANTEED to be the same, we're done!
1697    if (!StNotSameBuf)
1698      return;
1699  }
1700
1701  assert(StNotSameBuf);
1702  state = StNotSameBuf;
1703
1704  // At this point we can go about comparing the two buffers.
1705  // For now, we only do this if they're both known string literals.
1706
1707  // Attempt to extract string literals from both expressions.
1708  const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1709  const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1710  bool canComputeResult = false;
1711
1712  if (s1StrLiteral && s2StrLiteral) {
1713    StringRef s1StrRef = s1StrLiteral->getString();
1714    StringRef s2StrRef = s2StrLiteral->getString();
1715
1716    if (isBounded) {
1717      // Get the max number of characters to compare.
1718      const Expr *lenExpr = CE->getArg(2);
1719      SVal lenVal = state->getSVal(lenExpr, LCtx);
1720
1721      // If the length is known, we can get the right substrings.
1722      if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1723        // Create substrings of each to compare the prefix.
1724        s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1725        s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1726        canComputeResult = true;
1727      }
1728    } else {
1729      // This is a normal, unbounded strcmp.
1730      canComputeResult = true;
1731    }
1732
1733    if (canComputeResult) {
1734      // Real strcmp stops at null characters.
1735      size_t s1Term = s1StrRef.find('\0');
1736      if (s1Term != StringRef::npos)
1737        s1StrRef = s1StrRef.substr(0, s1Term);
1738
1739      size_t s2Term = s2StrRef.find('\0');
1740      if (s2Term != StringRef::npos)
1741        s2StrRef = s2StrRef.substr(0, s2Term);
1742
1743      // Use StringRef's comparison methods to compute the actual result.
1744      int result;
1745
1746      if (ignoreCase) {
1747        // Compare string 1 to string 2 the same way strcasecmp() does.
1748        result = s1StrRef.compare_lower(s2StrRef);
1749      } else {
1750        // Compare string 1 to string 2 the same way strcmp() does.
1751        result = s1StrRef.compare(s2StrRef);
1752      }
1753
1754      // Build the SVal of the comparison and bind the return value.
1755      SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1756      state = state->BindExpr(CE, LCtx, resultVal);
1757    }
1758  }
1759
1760  if (!canComputeResult) {
1761    // Conjure a symbolic value. It's the best we can do.
1762    SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1763    state = state->BindExpr(CE, LCtx, resultVal);
1764  }
1765
1766  // Record this as a possible path.
1767  C.addTransition(state);
1768}
1769
1770void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
1771  //char *strsep(char **stringp, const char *delim);
1772  if (CE->getNumArgs() < 2)
1773    return;
1774
1775  // Sanity: does the search string parameter match the return type?
1776  const Expr *SearchStrPtr = CE->getArg(0);
1777  QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
1778  if (CharPtrTy.isNull() ||
1779      CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
1780    return;
1781
1782  CurrentFunctionDescription = "strsep()";
1783  ProgramStateRef State = C.getState();
1784  const LocationContext *LCtx = C.getLocationContext();
1785
1786  // Check that the search string pointer is non-null (though it may point to
1787  // a null string).
1788  SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
1789  State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
1790  if (!State)
1791    return;
1792
1793  // Check that the delimiter string is non-null.
1794  const Expr *DelimStr = CE->getArg(1);
1795  SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
1796  State = checkNonNull(C, State, DelimStr, DelimStrVal);
1797  if (!State)
1798    return;
1799
1800  SValBuilder &SVB = C.getSValBuilder();
1801  SVal Result;
1802  if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
1803    // Get the current value of the search string pointer, as a char*.
1804    Result = State->getSVal(*SearchStrLoc, CharPtrTy);
1805
1806    // Invalidate the search string, representing the change of one delimiter
1807    // character to NUL.
1808    State = InvalidateBuffer(C, State, SearchStrPtr, Result);
1809
1810    // Overwrite the search string pointer. The new value is either an address
1811    // further along in the same string, or NULL if there are no more tokens.
1812    State = State->bindLoc(*SearchStrLoc,
1813                           SVB.conjureSymbolVal(getTag(), CE, LCtx, CharPtrTy,
1814                                                C.blockCount()));
1815  } else {
1816    assert(SearchStrVal.isUnknown());
1817    // Conjure a symbolic value. It's the best we can do.
1818    Result = SVB.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1819  }
1820
1821  // Set the return value, and finish.
1822  State = State->BindExpr(CE, LCtx, Result);
1823  C.addTransition(State);
1824}
1825
1826
1827//===----------------------------------------------------------------------===//
1828// The driver method, and other Checker callbacks.
1829//===----------------------------------------------------------------------===//
1830
1831bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1832  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1833
1834  if (!FDecl)
1835    return false;
1836
1837  // FIXME: Poorly-factored string switches are slow.
1838  FnCheck evalFunction = 0;
1839  if (C.isCLibraryFunction(FDecl, "memcpy"))
1840    evalFunction =  &CStringChecker::evalMemcpy;
1841  else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1842    evalFunction =  &CStringChecker::evalMempcpy;
1843  else if (C.isCLibraryFunction(FDecl, "memcmp"))
1844    evalFunction =  &CStringChecker::evalMemcmp;
1845  else if (C.isCLibraryFunction(FDecl, "memmove"))
1846    evalFunction =  &CStringChecker::evalMemmove;
1847  else if (C.isCLibraryFunction(FDecl, "strcpy"))
1848    evalFunction =  &CStringChecker::evalStrcpy;
1849  else if (C.isCLibraryFunction(FDecl, "strncpy"))
1850    evalFunction =  &CStringChecker::evalStrncpy;
1851  else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1852    evalFunction =  &CStringChecker::evalStpcpy;
1853  else if (C.isCLibraryFunction(FDecl, "strcat"))
1854    evalFunction =  &CStringChecker::evalStrcat;
1855  else if (C.isCLibraryFunction(FDecl, "strncat"))
1856    evalFunction =  &CStringChecker::evalStrncat;
1857  else if (C.isCLibraryFunction(FDecl, "strlen"))
1858    evalFunction =  &CStringChecker::evalstrLength;
1859  else if (C.isCLibraryFunction(FDecl, "strnlen"))
1860    evalFunction =  &CStringChecker::evalstrnLength;
1861  else if (C.isCLibraryFunction(FDecl, "strcmp"))
1862    evalFunction =  &CStringChecker::evalStrcmp;
1863  else if (C.isCLibraryFunction(FDecl, "strncmp"))
1864    evalFunction =  &CStringChecker::evalStrncmp;
1865  else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1866    evalFunction =  &CStringChecker::evalStrcasecmp;
1867  else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1868    evalFunction =  &CStringChecker::evalStrncasecmp;
1869  else if (C.isCLibraryFunction(FDecl, "strsep"))
1870    evalFunction =  &CStringChecker::evalStrsep;
1871  else if (C.isCLibraryFunction(FDecl, "bcopy"))
1872    evalFunction =  &CStringChecker::evalBcopy;
1873  else if (C.isCLibraryFunction(FDecl, "bcmp"))
1874    evalFunction =  &CStringChecker::evalMemcmp;
1875
1876  // If the callee isn't a string function, let another checker handle it.
1877  if (!evalFunction)
1878    return false;
1879
1880  // Make sure each function sets its own description.
1881  // (But don't bother in a release build.)
1882  assert(!(CurrentFunctionDescription = NULL));
1883
1884  // Check and evaluate the call.
1885  (this->*evalFunction)(C, CE);
1886
1887  // If the evaluate call resulted in no change, chain to the next eval call
1888  // handler.
1889  // Note, the custom CString evaluation calls assume that basic safety
1890  // properties are held. However, if the user chooses to turn off some of these
1891  // checks, we ignore the issues and leave the call evaluation to a generic
1892  // handler.
1893  if (!C.isDifferent())
1894    return false;
1895
1896  return true;
1897}
1898
1899void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1900  // Record string length for char a[] = "abc";
1901  ProgramStateRef state = C.getState();
1902
1903  for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1904       I != E; ++I) {
1905    const VarDecl *D = dyn_cast<VarDecl>(*I);
1906    if (!D)
1907      continue;
1908
1909    // FIXME: Handle array fields of structs.
1910    if (!D->getType()->isArrayType())
1911      continue;
1912
1913    const Expr *Init = D->getInit();
1914    if (!Init)
1915      continue;
1916    if (!isa<StringLiteral>(Init))
1917      continue;
1918
1919    Loc VarLoc = state->getLValue(D, C.getLocationContext());
1920    const MemRegion *MR = VarLoc.getAsRegion();
1921    if (!MR)
1922      continue;
1923
1924    SVal StrVal = state->getSVal(Init, C.getLocationContext());
1925    assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1926    DefinedOrUnknownSVal strLength =
1927        getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
1928
1929    state = state->set<CStringLength>(MR, strLength);
1930  }
1931
1932  C.addTransition(state);
1933}
1934
1935bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1936  CStringLengthTy Entries = state->get<CStringLength>();
1937  return !Entries.isEmpty();
1938}
1939
1940ProgramStateRef
1941CStringChecker::checkRegionChanges(ProgramStateRef state,
1942                                   const InvalidatedSymbols *,
1943                                   ArrayRef<const MemRegion *> ExplicitRegions,
1944                                   ArrayRef<const MemRegion *> Regions,
1945                                   const CallEvent *Call) const {
1946  CStringLengthTy Entries = state->get<CStringLength>();
1947  if (Entries.isEmpty())
1948    return state;
1949
1950  llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1951  llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1952
1953  // First build sets for the changed regions and their super-regions.
1954  for (ArrayRef<const MemRegion *>::iterator
1955       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
1956    const MemRegion *MR = *I;
1957    Invalidated.insert(MR);
1958
1959    SuperRegions.insert(MR);
1960    while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
1961      MR = SR->getSuperRegion();
1962      SuperRegions.insert(MR);
1963    }
1964  }
1965
1966  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
1967
1968  // Then loop over the entries in the current state.
1969  for (CStringLengthTy::iterator I = Entries.begin(),
1970       E = Entries.end(); I != E; ++I) {
1971    const MemRegion *MR = I.getKey();
1972
1973    // Is this entry for a super-region of a changed region?
1974    if (SuperRegions.count(MR)) {
1975      Entries = F.remove(Entries, MR);
1976      continue;
1977    }
1978
1979    // Is this entry for a sub-region of a changed region?
1980    const MemRegion *Super = MR;
1981    while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
1982      Super = SR->getSuperRegion();
1983      if (Invalidated.count(Super)) {
1984        Entries = F.remove(Entries, MR);
1985        break;
1986      }
1987    }
1988  }
1989
1990  return state->set<CStringLength>(Entries);
1991}
1992
1993void CStringChecker::checkLiveSymbols(ProgramStateRef state,
1994                                      SymbolReaper &SR) const {
1995  // Mark all symbols in our string length map as valid.
1996  CStringLengthTy Entries = state->get<CStringLength>();
1997
1998  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
1999       I != E; ++I) {
2000    SVal Len = I.getData();
2001
2002    for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2003                                  se = Len.symbol_end(); si != se; ++si)
2004      SR.markInUse(*si);
2005  }
2006}
2007
2008void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2009                                      CheckerContext &C) const {
2010  if (!SR.hasDeadSymbols())
2011    return;
2012
2013  ProgramStateRef state = C.getState();
2014  CStringLengthTy Entries = state->get<CStringLength>();
2015  if (Entries.isEmpty())
2016    return;
2017
2018  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2019  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2020       I != E; ++I) {
2021    SVal Len = I.getData();
2022    if (SymbolRef Sym = Len.getAsSymbol()) {
2023      if (SR.isDead(Sym))
2024        Entries = F.remove(Entries, I.getKey());
2025    }
2026  }
2027
2028  state = state->set<CStringLength>(Entries);
2029  C.addTransition(state);
2030}
2031
2032#define REGISTER_CHECKER(name) \
2033void ento::register##name(CheckerManager &mgr) {\
2034  mgr.registerChecker<CStringChecker>()->Filter.Check##name = true; \
2035}
2036
2037REGISTER_CHECKER(CStringNullArg)
2038REGISTER_CHECKER(CStringOutOfBounds)
2039REGISTER_CHECKER(CStringBufferOverlap)
2040REGISTER_CHECKER(CStringNotNullTerm)
2041
2042void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
2043  registerCStringNullArg(Mgr);
2044}
2045