CStringChecker.cpp revision 5251abea41b446c26e3239c8dd6c7edea6fc335d
1//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This defines CStringChecker, which is an assortment of checks on calls
11// to functions in <string.h>.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ClangSACheckers.h"
16#include "InterCheckerAPI.h"
17#include "clang/Basic/CharInfo.h"
18#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19#include "clang/StaticAnalyzer/Core/Checker.h"
20#include "clang/StaticAnalyzer/Core/CheckerManager.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/StringSwitch.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace clang;
29using namespace ento;
30
31namespace {
32class CStringChecker : public Checker< eval::Call,
33                                         check::PreStmt<DeclStmt>,
34                                         check::LiveSymbols,
35                                         check::DeadSymbols,
36                                         check::RegionChanges
37                                         > {
38  mutable OwningPtr<BugType> BT_Null,
39                             BT_Bounds,
40                             BT_Overlap,
41                             BT_NotCString,
42                             BT_AdditionOverflow;
43
44  mutable const char *CurrentFunctionDescription;
45
46public:
47  /// The filter is used to filter out the diagnostics which are not enabled by
48  /// the user.
49  struct CStringChecksFilter {
50    DefaultBool CheckCStringNullArg;
51    DefaultBool CheckCStringOutOfBounds;
52    DefaultBool CheckCStringBufferOverlap;
53    DefaultBool CheckCStringNotNullTerm;
54  };
55
56  CStringChecksFilter Filter;
57
58  static void *getTag() { static int tag; return &tag; }
59
60  bool evalCall(const CallExpr *CE, CheckerContext &C) const;
61  void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
62  void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
63  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
64  bool wantsRegionChangeUpdate(ProgramStateRef state) const;
65
66  ProgramStateRef
67    checkRegionChanges(ProgramStateRef state,
68                       const InvalidatedSymbols *,
69                       ArrayRef<const MemRegion *> ExplicitRegions,
70                       ArrayRef<const MemRegion *> Regions,
71                       const CallEvent *Call) const;
72
73  typedef void (CStringChecker::*FnCheck)(CheckerContext &,
74                                          const CallExpr *) const;
75
76  void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
77  void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
78  void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
79  void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
80  void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
81                      ProgramStateRef state,
82                      const Expr *Size,
83                      const Expr *Source,
84                      const Expr *Dest,
85                      bool Restricted = false,
86                      bool IsMempcpy = false) const;
87
88  void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
89
90  void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
91  void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
92  void evalstrLengthCommon(CheckerContext &C,
93                           const CallExpr *CE,
94                           bool IsStrnlen = false) const;
95
96  void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
97  void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
98  void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
99  void evalStrcpyCommon(CheckerContext &C,
100                        const CallExpr *CE,
101                        bool returnEnd,
102                        bool isBounded,
103                        bool isAppending) const;
104
105  void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
106  void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
107
108  void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
109  void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
110  void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
111  void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
112  void evalStrcmpCommon(CheckerContext &C,
113                        const CallExpr *CE,
114                        bool isBounded = false,
115                        bool ignoreCase = false) const;
116
117  // Utility methods
118  std::pair<ProgramStateRef , ProgramStateRef >
119  static assumeZero(CheckerContext &C,
120                    ProgramStateRef state, SVal V, QualType Ty);
121
122  static ProgramStateRef setCStringLength(ProgramStateRef state,
123                                              const MemRegion *MR,
124                                              SVal strLength);
125  static SVal getCStringLengthForRegion(CheckerContext &C,
126                                        ProgramStateRef &state,
127                                        const Expr *Ex,
128                                        const MemRegion *MR,
129                                        bool hypothetical);
130  SVal getCStringLength(CheckerContext &C,
131                        ProgramStateRef &state,
132                        const Expr *Ex,
133                        SVal Buf,
134                        bool hypothetical = false) const;
135
136  const StringLiteral *getCStringLiteral(CheckerContext &C,
137                                         ProgramStateRef &state,
138                                         const Expr *expr,
139                                         SVal val) const;
140
141  static ProgramStateRef InvalidateBuffer(CheckerContext &C,
142                                              ProgramStateRef state,
143                                              const Expr *Ex, SVal V);
144
145  static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
146                              const MemRegion *MR);
147
148  // Re-usable checks
149  ProgramStateRef checkNonNull(CheckerContext &C,
150                                   ProgramStateRef state,
151                                   const Expr *S,
152                                   SVal l) const;
153  ProgramStateRef CheckLocation(CheckerContext &C,
154                                    ProgramStateRef state,
155                                    const Expr *S,
156                                    SVal l,
157                                    const char *message = NULL) const;
158  ProgramStateRef CheckBufferAccess(CheckerContext &C,
159                                        ProgramStateRef state,
160                                        const Expr *Size,
161                                        const Expr *FirstBuf,
162                                        const Expr *SecondBuf,
163                                        const char *firstMessage = NULL,
164                                        const char *secondMessage = NULL,
165                                        bool WarnAboutSize = false) const;
166
167  ProgramStateRef CheckBufferAccess(CheckerContext &C,
168                                        ProgramStateRef state,
169                                        const Expr *Size,
170                                        const Expr *Buf,
171                                        const char *message = NULL,
172                                        bool WarnAboutSize = false) const {
173    // This is a convenience override.
174    return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
175                             WarnAboutSize);
176  }
177  ProgramStateRef CheckOverlap(CheckerContext &C,
178                                   ProgramStateRef state,
179                                   const Expr *Size,
180                                   const Expr *First,
181                                   const Expr *Second) const;
182  void emitOverlapBug(CheckerContext &C,
183                      ProgramStateRef state,
184                      const Stmt *First,
185                      const Stmt *Second) const;
186
187  ProgramStateRef checkAdditionOverflow(CheckerContext &C,
188                                            ProgramStateRef state,
189                                            NonLoc left,
190                                            NonLoc right) const;
191};
192
193} //end anonymous namespace
194
195REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
196
197//===----------------------------------------------------------------------===//
198// Individual checks and utility methods.
199//===----------------------------------------------------------------------===//
200
201std::pair<ProgramStateRef , ProgramStateRef >
202CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
203                           QualType Ty) {
204  llvm::Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
205  if (!val)
206    return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
207
208  SValBuilder &svalBuilder = C.getSValBuilder();
209  DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
210  return state->assume(svalBuilder.evalEQ(state, *val, zero));
211}
212
213ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
214                                            ProgramStateRef state,
215                                            const Expr *S, SVal l) const {
216  // If a previous check has failed, propagate the failure.
217  if (!state)
218    return NULL;
219
220  ProgramStateRef stateNull, stateNonNull;
221  llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
222
223  if (stateNull && !stateNonNull) {
224    if (!Filter.CheckCStringNullArg)
225      return NULL;
226
227    ExplodedNode *N = C.generateSink(stateNull);
228    if (!N)
229      return NULL;
230
231    if (!BT_Null)
232      BT_Null.reset(new BuiltinBug("Unix API",
233        "Null pointer argument in call to byte string function"));
234
235    SmallString<80> buf;
236    llvm::raw_svector_ostream os(buf);
237    assert(CurrentFunctionDescription);
238    os << "Null pointer argument in call to " << CurrentFunctionDescription;
239
240    // Generate a report for this bug.
241    BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
242    BugReport *report = new BugReport(*BT, os.str(), N);
243
244    report->addRange(S->getSourceRange());
245    bugreporter::trackNullOrUndefValue(N, S, *report);
246    C.emitReport(report);
247    return NULL;
248  }
249
250  // From here on, assume that the value is non-null.
251  assert(stateNonNull);
252  return stateNonNull;
253}
254
255// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
256ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
257                                             ProgramStateRef state,
258                                             const Expr *S, SVal l,
259                                             const char *warningMsg) const {
260  // If a previous check has failed, propagate the failure.
261  if (!state)
262    return NULL;
263
264  // Check for out of bound array element access.
265  const MemRegion *R = l.getAsRegion();
266  if (!R)
267    return state;
268
269  const ElementRegion *ER = dyn_cast<ElementRegion>(R);
270  if (!ER)
271    return state;
272
273  assert(ER->getValueType() == C.getASTContext().CharTy &&
274    "CheckLocation should only be called with char* ElementRegions");
275
276  // Get the size of the array.
277  const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
278  SValBuilder &svalBuilder = C.getSValBuilder();
279  SVal Extent =
280    svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
281  DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
282
283  // Get the index of the accessed element.
284  DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
285
286  ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
287  ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
288  if (StOutBound && !StInBound) {
289    ExplodedNode *N = C.generateSink(StOutBound);
290    if (!N)
291      return NULL;
292
293    if (!BT_Bounds) {
294      BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
295        "Byte string function accesses out-of-bound array element"));
296    }
297    BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
298
299    // Generate a report for this bug.
300    BugReport *report;
301    if (warningMsg) {
302      report = new BugReport(*BT, warningMsg, N);
303    } else {
304      assert(CurrentFunctionDescription);
305      assert(CurrentFunctionDescription[0] != '\0');
306
307      SmallString<80> buf;
308      llvm::raw_svector_ostream os(buf);
309      os << toUppercase(CurrentFunctionDescription[0])
310         << &CurrentFunctionDescription[1]
311         << " accesses out-of-bound array element";
312      report = new BugReport(*BT, os.str(), N);
313    }
314
315    // FIXME: It would be nice to eventually make this diagnostic more clear,
316    // e.g., by referencing the original declaration or by saying *why* this
317    // reference is outside the range.
318
319    report->addRange(S->getSourceRange());
320    C.emitReport(report);
321    return NULL;
322  }
323
324  // Array bound check succeeded.  From this point forward the array bound
325  // should always succeed.
326  return StInBound;
327}
328
329ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
330                                                 ProgramStateRef state,
331                                                 const Expr *Size,
332                                                 const Expr *FirstBuf,
333                                                 const Expr *SecondBuf,
334                                                 const char *firstMessage,
335                                                 const char *secondMessage,
336                                                 bool WarnAboutSize) const {
337  // If a previous check has failed, propagate the failure.
338  if (!state)
339    return NULL;
340
341  SValBuilder &svalBuilder = C.getSValBuilder();
342  ASTContext &Ctx = svalBuilder.getContext();
343  const LocationContext *LCtx = C.getLocationContext();
344
345  QualType sizeTy = Size->getType();
346  QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
347
348  // Check that the first buffer is non-null.
349  SVal BufVal = state->getSVal(FirstBuf, LCtx);
350  state = checkNonNull(C, state, FirstBuf, BufVal);
351  if (!state)
352    return NULL;
353
354  // If out-of-bounds checking is turned off, skip the rest.
355  if (!Filter.CheckCStringOutOfBounds)
356    return state;
357
358  // Get the access length and make sure it is known.
359  // FIXME: This assumes the caller has already checked that the access length
360  // is positive. And that it's unsigned.
361  SVal LengthVal = state->getSVal(Size, LCtx);
362  llvm::Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
363  if (!Length)
364    return state;
365
366  // Compute the offset of the last element to be accessed: size-1.
367  NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
368  NonLoc LastOffset = svalBuilder
369      .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
370
371  // Check that the first buffer is sufficiently long.
372  SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
373  if (llvm::Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
374    const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
375
376    SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
377                                          LastOffset, PtrTy);
378    state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
379
380    // If the buffer isn't large enough, abort.
381    if (!state)
382      return NULL;
383  }
384
385  // If there's a second buffer, check it as well.
386  if (SecondBuf) {
387    BufVal = state->getSVal(SecondBuf, LCtx);
388    state = checkNonNull(C, state, SecondBuf, BufVal);
389    if (!state)
390      return NULL;
391
392    BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
393    if (llvm::Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
394      const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
395
396      SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
397                                            LastOffset, PtrTy);
398      state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
399    }
400  }
401
402  // Large enough or not, return this state!
403  return state;
404}
405
406ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
407                                            ProgramStateRef state,
408                                            const Expr *Size,
409                                            const Expr *First,
410                                            const Expr *Second) const {
411  if (!Filter.CheckCStringBufferOverlap)
412    return state;
413
414  // Do a simple check for overlap: if the two arguments are from the same
415  // buffer, see if the end of the first is greater than the start of the second
416  // or vice versa.
417
418  // If a previous check has failed, propagate the failure.
419  if (!state)
420    return NULL;
421
422  ProgramStateRef stateTrue, stateFalse;
423
424  // Get the buffer values and make sure they're known locations.
425  const LocationContext *LCtx = C.getLocationContext();
426  SVal firstVal = state->getSVal(First, LCtx);
427  SVal secondVal = state->getSVal(Second, LCtx);
428
429  llvm::Optional<Loc> firstLoc = firstVal.getAs<Loc>();
430  if (!firstLoc)
431    return state;
432
433  llvm::Optional<Loc> secondLoc = secondVal.getAs<Loc>();
434  if (!secondLoc)
435    return state;
436
437  // Are the two values the same?
438  SValBuilder &svalBuilder = C.getSValBuilder();
439  llvm::tie(stateTrue, stateFalse) =
440    state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
441
442  if (stateTrue && !stateFalse) {
443    // If the values are known to be equal, that's automatically an overlap.
444    emitOverlapBug(C, stateTrue, First, Second);
445    return NULL;
446  }
447
448  // assume the two expressions are not equal.
449  assert(stateFalse);
450  state = stateFalse;
451
452  // Which value comes first?
453  QualType cmpTy = svalBuilder.getConditionType();
454  SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
455                                         *firstLoc, *secondLoc, cmpTy);
456  llvm::Optional<DefinedOrUnknownSVal> reverseTest =
457      reverse.getAs<DefinedOrUnknownSVal>();
458  if (!reverseTest)
459    return state;
460
461  llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
462  if (stateTrue) {
463    if (stateFalse) {
464      // If we don't know which one comes first, we can't perform this test.
465      return state;
466    } else {
467      // Switch the values so that firstVal is before secondVal.
468      std::swap(firstLoc, secondLoc);
469
470      // Switch the Exprs as well, so that they still correspond.
471      std::swap(First, Second);
472    }
473  }
474
475  // Get the length, and make sure it too is known.
476  SVal LengthVal = state->getSVal(Size, LCtx);
477  llvm::Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
478  if (!Length)
479    return state;
480
481  // Convert the first buffer's start address to char*.
482  // Bail out if the cast fails.
483  ASTContext &Ctx = svalBuilder.getContext();
484  QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
485  SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
486                                         First->getType());
487  llvm::Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
488  if (!FirstStartLoc)
489    return state;
490
491  // Compute the end of the first buffer. Bail out if THAT fails.
492  SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
493                                 *FirstStartLoc, *Length, CharPtrTy);
494  llvm::Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
495  if (!FirstEndLoc)
496    return state;
497
498  // Is the end of the first buffer past the start of the second buffer?
499  SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
500                                *FirstEndLoc, *secondLoc, cmpTy);
501  llvm::Optional<DefinedOrUnknownSVal> OverlapTest =
502      Overlap.getAs<DefinedOrUnknownSVal>();
503  if (!OverlapTest)
504    return state;
505
506  llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
507
508  if (stateTrue && !stateFalse) {
509    // Overlap!
510    emitOverlapBug(C, stateTrue, First, Second);
511    return NULL;
512  }
513
514  // assume the two expressions don't overlap.
515  assert(stateFalse);
516  return stateFalse;
517}
518
519void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
520                                  const Stmt *First, const Stmt *Second) const {
521  ExplodedNode *N = C.generateSink(state);
522  if (!N)
523    return;
524
525  if (!BT_Overlap)
526    BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
527
528  // Generate a report for this bug.
529  BugReport *report =
530    new BugReport(*BT_Overlap,
531      "Arguments must not be overlapping buffers", N);
532  report->addRange(First->getSourceRange());
533  report->addRange(Second->getSourceRange());
534
535  C.emitReport(report);
536}
537
538ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
539                                                     ProgramStateRef state,
540                                                     NonLoc left,
541                                                     NonLoc right) const {
542  // If out-of-bounds checking is turned off, skip the rest.
543  if (!Filter.CheckCStringOutOfBounds)
544    return state;
545
546  // If a previous check has failed, propagate the failure.
547  if (!state)
548    return NULL;
549
550  SValBuilder &svalBuilder = C.getSValBuilder();
551  BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
552
553  QualType sizeTy = svalBuilder.getContext().getSizeType();
554  const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
555  NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
556
557  SVal maxMinusRight;
558  if (right.getAs<nonloc::ConcreteInt>()) {
559    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
560                                                 sizeTy);
561  } else {
562    // Try switching the operands. (The order of these two assignments is
563    // important!)
564    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
565                                            sizeTy);
566    left = right;
567  }
568
569  if (llvm::Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
570    QualType cmpTy = svalBuilder.getConditionType();
571    // If left > max - right, we have an overflow.
572    SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
573                                                *maxMinusRightNL, cmpTy);
574
575    ProgramStateRef stateOverflow, stateOkay;
576    llvm::tie(stateOverflow, stateOkay) =
577      state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
578
579    if (stateOverflow && !stateOkay) {
580      // We have an overflow. Emit a bug report.
581      ExplodedNode *N = C.generateSink(stateOverflow);
582      if (!N)
583        return NULL;
584
585      if (!BT_AdditionOverflow)
586        BT_AdditionOverflow.reset(new BuiltinBug("API",
587          "Sum of expressions causes overflow"));
588
589      // This isn't a great error message, but this should never occur in real
590      // code anyway -- you'd have to create a buffer longer than a size_t can
591      // represent, which is sort of a contradiction.
592      const char *warning =
593        "This expression will create a string whose length is too big to "
594        "be represented as a size_t";
595
596      // Generate a report for this bug.
597      BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
598      C.emitReport(report);
599
600      return NULL;
601    }
602
603    // From now on, assume an overflow didn't occur.
604    assert(stateOkay);
605    state = stateOkay;
606  }
607
608  return state;
609}
610
611ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
612                                                const MemRegion *MR,
613                                                SVal strLength) {
614  assert(!strLength.isUndef() && "Attempt to set an undefined string length");
615
616  MR = MR->StripCasts();
617
618  switch (MR->getKind()) {
619  case MemRegion::StringRegionKind:
620    // FIXME: This can happen if we strcpy() into a string region. This is
621    // undefined [C99 6.4.5p6], but we should still warn about it.
622    return state;
623
624  case MemRegion::SymbolicRegionKind:
625  case MemRegion::AllocaRegionKind:
626  case MemRegion::VarRegionKind:
627  case MemRegion::FieldRegionKind:
628  case MemRegion::ObjCIvarRegionKind:
629    // These are the types we can currently track string lengths for.
630    break;
631
632  case MemRegion::ElementRegionKind:
633    // FIXME: Handle element regions by upper-bounding the parent region's
634    // string length.
635    return state;
636
637  default:
638    // Other regions (mostly non-data) can't have a reliable C string length.
639    // For now, just ignore the change.
640    // FIXME: These are rare but not impossible. We should output some kind of
641    // warning for things like strcpy((char[]){'a', 0}, "b");
642    return state;
643  }
644
645  if (strLength.isUnknown())
646    return state->remove<CStringLength>(MR);
647
648  return state->set<CStringLength>(MR, strLength);
649}
650
651SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
652                                               ProgramStateRef &state,
653                                               const Expr *Ex,
654                                               const MemRegion *MR,
655                                               bool hypothetical) {
656  if (!hypothetical) {
657    // If there's a recorded length, go ahead and return it.
658    const SVal *Recorded = state->get<CStringLength>(MR);
659    if (Recorded)
660      return *Recorded;
661  }
662
663  // Otherwise, get a new symbol and update the state.
664  SValBuilder &svalBuilder = C.getSValBuilder();
665  QualType sizeTy = svalBuilder.getContext().getSizeType();
666  SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
667                                                    MR, Ex, sizeTy,
668                                                    C.blockCount());
669
670  if (!hypothetical)
671    state = state->set<CStringLength>(MR, strLength);
672
673  return strLength;
674}
675
676SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
677                                      const Expr *Ex, SVal Buf,
678                                      bool hypothetical) const {
679  const MemRegion *MR = Buf.getAsRegion();
680  if (!MR) {
681    // If we can't get a region, see if it's something we /know/ isn't a
682    // C string. In the context of locations, the only time we can issue such
683    // a warning is for labels.
684    if (llvm::Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
685      if (!Filter.CheckCStringNotNullTerm)
686        return UndefinedVal();
687
688      if (ExplodedNode *N = C.addTransition(state)) {
689        if (!BT_NotCString)
690          BT_NotCString.reset(new BuiltinBug("Unix API",
691            "Argument is not a null-terminated string."));
692
693        SmallString<120> buf;
694        llvm::raw_svector_ostream os(buf);
695        assert(CurrentFunctionDescription);
696        os << "Argument to " << CurrentFunctionDescription
697           << " is the address of the label '" << Label->getLabel()->getName()
698           << "', which is not a null-terminated string";
699
700        // Generate a report for this bug.
701        BugReport *report = new BugReport(*BT_NotCString,
702                                                          os.str(), N);
703
704        report->addRange(Ex->getSourceRange());
705        C.emitReport(report);
706      }
707      return UndefinedVal();
708
709    }
710
711    // If it's not a region and not a label, give up.
712    return UnknownVal();
713  }
714
715  // If we have a region, strip casts from it and see if we can figure out
716  // its length. For anything we can't figure out, just return UnknownVal.
717  MR = MR->StripCasts();
718
719  switch (MR->getKind()) {
720  case MemRegion::StringRegionKind: {
721    // Modifying the contents of string regions is undefined [C99 6.4.5p6],
722    // so we can assume that the byte length is the correct C string length.
723    SValBuilder &svalBuilder = C.getSValBuilder();
724    QualType sizeTy = svalBuilder.getContext().getSizeType();
725    const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
726    return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
727  }
728  case MemRegion::SymbolicRegionKind:
729  case MemRegion::AllocaRegionKind:
730  case MemRegion::VarRegionKind:
731  case MemRegion::FieldRegionKind:
732  case MemRegion::ObjCIvarRegionKind:
733    return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
734  case MemRegion::CompoundLiteralRegionKind:
735    // FIXME: Can we track this? Is it necessary?
736    return UnknownVal();
737  case MemRegion::ElementRegionKind:
738    // FIXME: How can we handle this? It's not good enough to subtract the
739    // offset from the base string length; consider "123\x00567" and &a[5].
740    return UnknownVal();
741  default:
742    // Other regions (mostly non-data) can't have a reliable C string length.
743    // In this case, an error is emitted and UndefinedVal is returned.
744    // The caller should always be prepared to handle this case.
745    if (!Filter.CheckCStringNotNullTerm)
746      return UndefinedVal();
747
748    if (ExplodedNode *N = C.addTransition(state)) {
749      if (!BT_NotCString)
750        BT_NotCString.reset(new BuiltinBug("Unix API",
751          "Argument is not a null-terminated string."));
752
753      SmallString<120> buf;
754      llvm::raw_svector_ostream os(buf);
755
756      assert(CurrentFunctionDescription);
757      os << "Argument to " << CurrentFunctionDescription << " is ";
758
759      if (SummarizeRegion(os, C.getASTContext(), MR))
760        os << ", which is not a null-terminated string";
761      else
762        os << "not a null-terminated string";
763
764      // Generate a report for this bug.
765      BugReport *report = new BugReport(*BT_NotCString,
766                                                        os.str(), N);
767
768      report->addRange(Ex->getSourceRange());
769      C.emitReport(report);
770    }
771
772    return UndefinedVal();
773  }
774}
775
776const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
777  ProgramStateRef &state, const Expr *expr, SVal val) const {
778
779  // Get the memory region pointed to by the val.
780  const MemRegion *bufRegion = val.getAsRegion();
781  if (!bufRegion)
782    return NULL;
783
784  // Strip casts off the memory region.
785  bufRegion = bufRegion->StripCasts();
786
787  // Cast the memory region to a string region.
788  const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
789  if (!strRegion)
790    return NULL;
791
792  // Return the actual string in the string region.
793  return strRegion->getStringLiteral();
794}
795
796ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
797                                                ProgramStateRef state,
798                                                const Expr *E, SVal V) {
799  llvm::Optional<Loc> L = V.getAs<Loc>();
800  if (!L)
801    return state;
802
803  // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
804  // some assumptions about the value that CFRefCount can't. Even so, it should
805  // probably be refactored.
806  if (llvm::Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
807    const MemRegion *R = MR->getRegion()->StripCasts();
808
809    // Are we dealing with an ElementRegion?  If so, we should be invalidating
810    // the super-region.
811    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
812      R = ER->getSuperRegion();
813      // FIXME: What about layers of ElementRegions?
814    }
815
816    // Invalidate this region.
817    const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
818    return state->invalidateRegions(R, E, C.blockCount(), LCtx,
819                                    /*CausesPointerEscape*/ false);
820  }
821
822  // If we have a non-region value by chance, just remove the binding.
823  // FIXME: is this necessary or correct? This handles the non-Region
824  //  cases.  Is it ever valid to store to these?
825  return state->killBinding(*L);
826}
827
828bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
829                                     const MemRegion *MR) {
830  const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
831
832  switch (MR->getKind()) {
833  case MemRegion::FunctionTextRegionKind: {
834    const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
835    if (FD)
836      os << "the address of the function '" << *FD << '\'';
837    else
838      os << "the address of a function";
839    return true;
840  }
841  case MemRegion::BlockTextRegionKind:
842    os << "block text";
843    return true;
844  case MemRegion::BlockDataRegionKind:
845    os << "a block";
846    return true;
847  case MemRegion::CXXThisRegionKind:
848  case MemRegion::CXXTempObjectRegionKind:
849    os << "a C++ temp object of type " << TVR->getValueType().getAsString();
850    return true;
851  case MemRegion::VarRegionKind:
852    os << "a variable of type" << TVR->getValueType().getAsString();
853    return true;
854  case MemRegion::FieldRegionKind:
855    os << "a field of type " << TVR->getValueType().getAsString();
856    return true;
857  case MemRegion::ObjCIvarRegionKind:
858    os << "an instance variable of type " << TVR->getValueType().getAsString();
859    return true;
860  default:
861    return false;
862  }
863}
864
865//===----------------------------------------------------------------------===//
866// evaluation of individual function calls.
867//===----------------------------------------------------------------------===//
868
869void CStringChecker::evalCopyCommon(CheckerContext &C,
870                                    const CallExpr *CE,
871                                    ProgramStateRef state,
872                                    const Expr *Size, const Expr *Dest,
873                                    const Expr *Source, bool Restricted,
874                                    bool IsMempcpy) const {
875  CurrentFunctionDescription = "memory copy function";
876
877  // See if the size argument is zero.
878  const LocationContext *LCtx = C.getLocationContext();
879  SVal sizeVal = state->getSVal(Size, LCtx);
880  QualType sizeTy = Size->getType();
881
882  ProgramStateRef stateZeroSize, stateNonZeroSize;
883  llvm::tie(stateZeroSize, stateNonZeroSize) =
884    assumeZero(C, state, sizeVal, sizeTy);
885
886  // Get the value of the Dest.
887  SVal destVal = state->getSVal(Dest, LCtx);
888
889  // If the size is zero, there won't be any actual memory access, so
890  // just bind the return value to the destination buffer and return.
891  if (stateZeroSize && !stateNonZeroSize) {
892    stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
893    C.addTransition(stateZeroSize);
894    return;
895  }
896
897  // If the size can be nonzero, we have to check the other arguments.
898  if (stateNonZeroSize) {
899    state = stateNonZeroSize;
900
901    // Ensure the destination is not null. If it is NULL there will be a
902    // NULL pointer dereference.
903    state = checkNonNull(C, state, Dest, destVal);
904    if (!state)
905      return;
906
907    // Get the value of the Src.
908    SVal srcVal = state->getSVal(Source, LCtx);
909
910    // Ensure the source is not null. If it is NULL there will be a
911    // NULL pointer dereference.
912    state = checkNonNull(C, state, Source, srcVal);
913    if (!state)
914      return;
915
916    // Ensure the accesses are valid and that the buffers do not overlap.
917    const char * const writeWarning =
918      "Memory copy function overflows destination buffer";
919    state = CheckBufferAccess(C, state, Size, Dest, Source,
920                              writeWarning, /* sourceWarning = */ NULL);
921    if (Restricted)
922      state = CheckOverlap(C, state, Size, Dest, Source);
923
924    if (!state)
925      return;
926
927    // If this is mempcpy, get the byte after the last byte copied and
928    // bind the expr.
929    if (IsMempcpy) {
930      loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
931
932      // Get the length to copy.
933      if (llvm::Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
934        // Get the byte after the last byte copied.
935        SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
936                                                          destRegVal,
937                                                          *lenValNonLoc,
938                                                          Dest->getType());
939
940        // The byte after the last byte copied is the return value.
941        state = state->BindExpr(CE, LCtx, lastElement);
942      } else {
943        // If we don't know how much we copied, we can at least
944        // conjure a return value for later.
945        SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx,
946                                                          C.blockCount());
947        state = state->BindExpr(CE, LCtx, result);
948      }
949
950    } else {
951      // All other copies return the destination buffer.
952      // (Well, bcopy() has a void return type, but this won't hurt.)
953      state = state->BindExpr(CE, LCtx, destVal);
954    }
955
956    // Invalidate the destination.
957    // FIXME: Even if we can't perfectly model the copy, we should see if we
958    // can use LazyCompoundVals to copy the source values into the destination.
959    // This would probably remove any existing bindings past the end of the
960    // copied region, but that's still an improvement over blank invalidation.
961    state = InvalidateBuffer(C, state, Dest,
962                             state->getSVal(Dest, C.getLocationContext()));
963    C.addTransition(state);
964  }
965}
966
967
968void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
969  if (CE->getNumArgs() < 3)
970    return;
971
972  // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
973  // The return value is the address of the destination buffer.
974  const Expr *Dest = CE->getArg(0);
975  ProgramStateRef state = C.getState();
976
977  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
978}
979
980void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
981  if (CE->getNumArgs() < 3)
982    return;
983
984  // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
985  // The return value is a pointer to the byte following the last written byte.
986  const Expr *Dest = CE->getArg(0);
987  ProgramStateRef state = C.getState();
988
989  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
990}
991
992void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
993  if (CE->getNumArgs() < 3)
994    return;
995
996  // void *memmove(void *dst, const void *src, size_t n);
997  // The return value is the address of the destination buffer.
998  const Expr *Dest = CE->getArg(0);
999  ProgramStateRef state = C.getState();
1000
1001  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1002}
1003
1004void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1005  if (CE->getNumArgs() < 3)
1006    return;
1007
1008  // void bcopy(const void *src, void *dst, size_t n);
1009  evalCopyCommon(C, CE, C.getState(),
1010                 CE->getArg(2), CE->getArg(1), CE->getArg(0));
1011}
1012
1013void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1014  if (CE->getNumArgs() < 3)
1015    return;
1016
1017  // int memcmp(const void *s1, const void *s2, size_t n);
1018  CurrentFunctionDescription = "memory comparison function";
1019
1020  const Expr *Left = CE->getArg(0);
1021  const Expr *Right = CE->getArg(1);
1022  const Expr *Size = CE->getArg(2);
1023
1024  ProgramStateRef state = C.getState();
1025  SValBuilder &svalBuilder = C.getSValBuilder();
1026
1027  // See if the size argument is zero.
1028  const LocationContext *LCtx = C.getLocationContext();
1029  SVal sizeVal = state->getSVal(Size, LCtx);
1030  QualType sizeTy = Size->getType();
1031
1032  ProgramStateRef stateZeroSize, stateNonZeroSize;
1033  llvm::tie(stateZeroSize, stateNonZeroSize) =
1034    assumeZero(C, state, sizeVal, sizeTy);
1035
1036  // If the size can be zero, the result will be 0 in that case, and we don't
1037  // have to check either of the buffers.
1038  if (stateZeroSize) {
1039    state = stateZeroSize;
1040    state = state->BindExpr(CE, LCtx,
1041                            svalBuilder.makeZeroVal(CE->getType()));
1042    C.addTransition(state);
1043  }
1044
1045  // If the size can be nonzero, we have to check the other arguments.
1046  if (stateNonZeroSize) {
1047    state = stateNonZeroSize;
1048    // If we know the two buffers are the same, we know the result is 0.
1049    // First, get the two buffers' addresses. Another checker will have already
1050    // made sure they're not undefined.
1051    DefinedOrUnknownSVal LV =
1052        state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1053    DefinedOrUnknownSVal RV =
1054        state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1055
1056    // See if they are the same.
1057    DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1058    ProgramStateRef StSameBuf, StNotSameBuf;
1059    llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1060
1061    // If the two arguments might be the same buffer, we know the result is 0,
1062    // and we only need to check one size.
1063    if (StSameBuf) {
1064      state = StSameBuf;
1065      state = CheckBufferAccess(C, state, Size, Left);
1066      if (state) {
1067        state = StSameBuf->BindExpr(CE, LCtx,
1068                                    svalBuilder.makeZeroVal(CE->getType()));
1069        C.addTransition(state);
1070      }
1071    }
1072
1073    // If the two arguments might be different buffers, we have to check the
1074    // size of both of them.
1075    if (StNotSameBuf) {
1076      state = StNotSameBuf;
1077      state = CheckBufferAccess(C, state, Size, Left, Right);
1078      if (state) {
1079        // The return value is the comparison result, which we don't know.
1080        SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1081        state = state->BindExpr(CE, LCtx, CmpV);
1082        C.addTransition(state);
1083      }
1084    }
1085  }
1086}
1087
1088void CStringChecker::evalstrLength(CheckerContext &C,
1089                                   const CallExpr *CE) const {
1090  if (CE->getNumArgs() < 1)
1091    return;
1092
1093  // size_t strlen(const char *s);
1094  evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1095}
1096
1097void CStringChecker::evalstrnLength(CheckerContext &C,
1098                                    const CallExpr *CE) const {
1099  if (CE->getNumArgs() < 2)
1100    return;
1101
1102  // size_t strnlen(const char *s, size_t maxlen);
1103  evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1104}
1105
1106void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1107                                         bool IsStrnlen) const {
1108  CurrentFunctionDescription = "string length function";
1109  ProgramStateRef state = C.getState();
1110  const LocationContext *LCtx = C.getLocationContext();
1111
1112  if (IsStrnlen) {
1113    const Expr *maxlenExpr = CE->getArg(1);
1114    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1115
1116    ProgramStateRef stateZeroSize, stateNonZeroSize;
1117    llvm::tie(stateZeroSize, stateNonZeroSize) =
1118      assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1119
1120    // If the size can be zero, the result will be 0 in that case, and we don't
1121    // have to check the string itself.
1122    if (stateZeroSize) {
1123      SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1124      stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1125      C.addTransition(stateZeroSize);
1126    }
1127
1128    // If the size is GUARANTEED to be zero, we're done!
1129    if (!stateNonZeroSize)
1130      return;
1131
1132    // Otherwise, record the assumption that the size is nonzero.
1133    state = stateNonZeroSize;
1134  }
1135
1136  // Check that the string argument is non-null.
1137  const Expr *Arg = CE->getArg(0);
1138  SVal ArgVal = state->getSVal(Arg, LCtx);
1139
1140  state = checkNonNull(C, state, Arg, ArgVal);
1141
1142  if (!state)
1143    return;
1144
1145  SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1146
1147  // If the argument isn't a valid C string, there's no valid state to
1148  // transition to.
1149  if (strLength.isUndef())
1150    return;
1151
1152  DefinedOrUnknownSVal result = UnknownVal();
1153
1154  // If the check is for strnlen() then bind the return value to no more than
1155  // the maxlen value.
1156  if (IsStrnlen) {
1157    QualType cmpTy = C.getSValBuilder().getConditionType();
1158
1159    // It's a little unfortunate to be getting this again,
1160    // but it's not that expensive...
1161    const Expr *maxlenExpr = CE->getArg(1);
1162    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1163
1164    llvm::Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1165    llvm::Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1166
1167    if (strLengthNL && maxlenValNL) {
1168      ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1169
1170      // Check if the strLength is greater than the maxlen.
1171      llvm::tie(stateStringTooLong, stateStringNotTooLong) =
1172          state->assume(C.getSValBuilder().evalBinOpNN(
1173              state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1174                            .castAs<DefinedOrUnknownSVal>());
1175
1176      if (stateStringTooLong && !stateStringNotTooLong) {
1177        // If the string is longer than maxlen, return maxlen.
1178        result = *maxlenValNL;
1179      } else if (stateStringNotTooLong && !stateStringTooLong) {
1180        // If the string is shorter than maxlen, return its length.
1181        result = *strLengthNL;
1182      }
1183    }
1184
1185    if (result.isUnknown()) {
1186      // If we don't have enough information for a comparison, there's
1187      // no guarantee the full string length will actually be returned.
1188      // All we know is the return value is the min of the string length
1189      // and the limit. This is better than nothing.
1190      result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1191      NonLoc resultNL = result.castAs<NonLoc>();
1192
1193      if (strLengthNL) {
1194        state = state->assume(C.getSValBuilder().evalBinOpNN(
1195                                  state, BO_LE, resultNL, *strLengthNL, cmpTy)
1196                                  .castAs<DefinedOrUnknownSVal>(), true);
1197      }
1198
1199      if (maxlenValNL) {
1200        state = state->assume(C.getSValBuilder().evalBinOpNN(
1201                                  state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1202                                  .castAs<DefinedOrUnknownSVal>(), true);
1203      }
1204    }
1205
1206  } else {
1207    // This is a plain strlen(), not strnlen().
1208    result = strLength.castAs<DefinedOrUnknownSVal>();
1209
1210    // If we don't know the length of the string, conjure a return
1211    // value, so it can be used in constraints, at least.
1212    if (result.isUnknown()) {
1213      result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1214    }
1215  }
1216
1217  // Bind the return value.
1218  assert(!result.isUnknown() && "Should have conjured a value by now");
1219  state = state->BindExpr(CE, LCtx, result);
1220  C.addTransition(state);
1221}
1222
1223void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1224  if (CE->getNumArgs() < 2)
1225    return;
1226
1227  // char *strcpy(char *restrict dst, const char *restrict src);
1228  evalStrcpyCommon(C, CE,
1229                   /* returnEnd = */ false,
1230                   /* isBounded = */ false,
1231                   /* isAppending = */ false);
1232}
1233
1234void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1235  if (CE->getNumArgs() < 3)
1236    return;
1237
1238  // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1239  evalStrcpyCommon(C, CE,
1240                   /* returnEnd = */ false,
1241                   /* isBounded = */ true,
1242                   /* isAppending = */ false);
1243}
1244
1245void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1246  if (CE->getNumArgs() < 2)
1247    return;
1248
1249  // char *stpcpy(char *restrict dst, const char *restrict src);
1250  evalStrcpyCommon(C, CE,
1251                   /* returnEnd = */ true,
1252                   /* isBounded = */ false,
1253                   /* isAppending = */ false);
1254}
1255
1256void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1257  if (CE->getNumArgs() < 2)
1258    return;
1259
1260  //char *strcat(char *restrict s1, const char *restrict s2);
1261  evalStrcpyCommon(C, CE,
1262                   /* returnEnd = */ false,
1263                   /* isBounded = */ false,
1264                   /* isAppending = */ true);
1265}
1266
1267void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1268  if (CE->getNumArgs() < 3)
1269    return;
1270
1271  //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1272  evalStrcpyCommon(C, CE,
1273                   /* returnEnd = */ false,
1274                   /* isBounded = */ true,
1275                   /* isAppending = */ true);
1276}
1277
1278void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1279                                      bool returnEnd, bool isBounded,
1280                                      bool isAppending) const {
1281  CurrentFunctionDescription = "string copy function";
1282  ProgramStateRef state = C.getState();
1283  const LocationContext *LCtx = C.getLocationContext();
1284
1285  // Check that the destination is non-null.
1286  const Expr *Dst = CE->getArg(0);
1287  SVal DstVal = state->getSVal(Dst, LCtx);
1288
1289  state = checkNonNull(C, state, Dst, DstVal);
1290  if (!state)
1291    return;
1292
1293  // Check that the source is non-null.
1294  const Expr *srcExpr = CE->getArg(1);
1295  SVal srcVal = state->getSVal(srcExpr, LCtx);
1296  state = checkNonNull(C, state, srcExpr, srcVal);
1297  if (!state)
1298    return;
1299
1300  // Get the string length of the source.
1301  SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1302
1303  // If the source isn't a valid C string, give up.
1304  if (strLength.isUndef())
1305    return;
1306
1307  SValBuilder &svalBuilder = C.getSValBuilder();
1308  QualType cmpTy = svalBuilder.getConditionType();
1309  QualType sizeTy = svalBuilder.getContext().getSizeType();
1310
1311  // These two values allow checking two kinds of errors:
1312  // - actual overflows caused by a source that doesn't fit in the destination
1313  // - potential overflows caused by a bound that could exceed the destination
1314  SVal amountCopied = UnknownVal();
1315  SVal maxLastElementIndex = UnknownVal();
1316  const char *boundWarning = NULL;
1317
1318  // If the function is strncpy, strncat, etc... it is bounded.
1319  if (isBounded) {
1320    // Get the max number of characters to copy.
1321    const Expr *lenExpr = CE->getArg(2);
1322    SVal lenVal = state->getSVal(lenExpr, LCtx);
1323
1324    // Protect against misdeclared strncpy().
1325    lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1326
1327    llvm::Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1328    llvm::Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1329
1330    // If we know both values, we might be able to figure out how much
1331    // we're copying.
1332    if (strLengthNL && lenValNL) {
1333      ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1334
1335      // Check if the max number to copy is less than the length of the src.
1336      // If the bound is equal to the source length, strncpy won't null-
1337      // terminate the result!
1338      llvm::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1339          svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1340              .castAs<DefinedOrUnknownSVal>());
1341
1342      if (stateSourceTooLong && !stateSourceNotTooLong) {
1343        // Max number to copy is less than the length of the src, so the actual
1344        // strLength copied is the max number arg.
1345        state = stateSourceTooLong;
1346        amountCopied = lenVal;
1347
1348      } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1349        // The source buffer entirely fits in the bound.
1350        state = stateSourceNotTooLong;
1351        amountCopied = strLength;
1352      }
1353    }
1354
1355    // We still want to know if the bound is known to be too large.
1356    if (lenValNL) {
1357      if (isAppending) {
1358        // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1359
1360        // Get the string length of the destination. If the destination is
1361        // memory that can't have a string length, we shouldn't be copying
1362        // into it anyway.
1363        SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1364        if (dstStrLength.isUndef())
1365          return;
1366
1367        if (llvm::Optional<NonLoc> dstStrLengthNL =
1368                dstStrLength.getAs<NonLoc>()) {
1369          maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1370                                                        *lenValNL,
1371                                                        *dstStrLengthNL,
1372                                                        sizeTy);
1373          boundWarning = "Size argument is greater than the free space in the "
1374                         "destination buffer";
1375        }
1376
1377      } else {
1378        // For strncpy, this is just checking that lenVal <= sizeof(dst)
1379        // (Yes, strncpy and strncat differ in how they treat termination.
1380        // strncat ALWAYS terminates, but strncpy doesn't.)
1381
1382        // We need a special case for when the copy size is zero, in which
1383        // case strncpy will do no work at all. Our bounds check uses n-1
1384        // as the last element accessed, so n == 0 is problematic.
1385        ProgramStateRef StateZeroSize, StateNonZeroSize;
1386        llvm::tie(StateZeroSize, StateNonZeroSize) =
1387          assumeZero(C, state, *lenValNL, sizeTy);
1388
1389        // If the size is known to be zero, we're done.
1390        if (StateZeroSize && !StateNonZeroSize) {
1391          StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1392          C.addTransition(StateZeroSize);
1393          return;
1394        }
1395
1396        // Otherwise, go ahead and figure out the last element we'll touch.
1397        // We don't record the non-zero assumption here because we can't
1398        // be sure. We won't warn on a possible zero.
1399        NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1400        maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1401                                                      one, sizeTy);
1402        boundWarning = "Size argument is greater than the length of the "
1403                       "destination buffer";
1404      }
1405    }
1406
1407    // If we couldn't pin down the copy length, at least bound it.
1408    // FIXME: We should actually run this code path for append as well, but
1409    // right now it creates problems with constraints (since we can end up
1410    // trying to pass constraints from symbol to symbol).
1411    if (amountCopied.isUnknown() && !isAppending) {
1412      // Try to get a "hypothetical" string length symbol, which we can later
1413      // set as a real value if that turns out to be the case.
1414      amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1415      assert(!amountCopied.isUndef());
1416
1417      if (llvm::Optional<NonLoc> amountCopiedNL =
1418              amountCopied.getAs<NonLoc>()) {
1419        if (lenValNL) {
1420          // amountCopied <= lenVal
1421          SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1422                                                             *amountCopiedNL,
1423                                                             *lenValNL,
1424                                                             cmpTy);
1425          state = state->assume(
1426              copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1427          if (!state)
1428            return;
1429        }
1430
1431        if (strLengthNL) {
1432          // amountCopied <= strlen(source)
1433          SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1434                                                           *amountCopiedNL,
1435                                                           *strLengthNL,
1436                                                           cmpTy);
1437          state = state->assume(
1438              copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1439          if (!state)
1440            return;
1441        }
1442      }
1443    }
1444
1445  } else {
1446    // The function isn't bounded. The amount copied should match the length
1447    // of the source buffer.
1448    amountCopied = strLength;
1449  }
1450
1451  assert(state);
1452
1453  // This represents the number of characters copied into the destination
1454  // buffer. (It may not actually be the strlen if the destination buffer
1455  // is not terminated.)
1456  SVal finalStrLength = UnknownVal();
1457
1458  // If this is an appending function (strcat, strncat...) then set the
1459  // string length to strlen(src) + strlen(dst) since the buffer will
1460  // ultimately contain both.
1461  if (isAppending) {
1462    // Get the string length of the destination. If the destination is memory
1463    // that can't have a string length, we shouldn't be copying into it anyway.
1464    SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1465    if (dstStrLength.isUndef())
1466      return;
1467
1468    llvm::Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1469    llvm::Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1470
1471    // If we know both string lengths, we might know the final string length.
1472    if (srcStrLengthNL && dstStrLengthNL) {
1473      // Make sure the two lengths together don't overflow a size_t.
1474      state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1475      if (!state)
1476        return;
1477
1478      finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1479                                               *dstStrLengthNL, sizeTy);
1480    }
1481
1482    // If we couldn't get a single value for the final string length,
1483    // we can at least bound it by the individual lengths.
1484    if (finalStrLength.isUnknown()) {
1485      // Try to get a "hypothetical" string length symbol, which we can later
1486      // set as a real value if that turns out to be the case.
1487      finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1488      assert(!finalStrLength.isUndef());
1489
1490      if (llvm::Optional<NonLoc> finalStrLengthNL =
1491              finalStrLength.getAs<NonLoc>()) {
1492        if (srcStrLengthNL) {
1493          // finalStrLength >= srcStrLength
1494          SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1495                                                        *finalStrLengthNL,
1496                                                        *srcStrLengthNL,
1497                                                        cmpTy);
1498          state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1499                                true);
1500          if (!state)
1501            return;
1502        }
1503
1504        if (dstStrLengthNL) {
1505          // finalStrLength >= dstStrLength
1506          SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1507                                                      *finalStrLengthNL,
1508                                                      *dstStrLengthNL,
1509                                                      cmpTy);
1510          state =
1511              state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1512          if (!state)
1513            return;
1514        }
1515      }
1516    }
1517
1518  } else {
1519    // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1520    // the final string length will match the input string length.
1521    finalStrLength = amountCopied;
1522  }
1523
1524  // The final result of the function will either be a pointer past the last
1525  // copied element, or a pointer to the start of the destination buffer.
1526  SVal Result = (returnEnd ? UnknownVal() : DstVal);
1527
1528  assert(state);
1529
1530  // If the destination is a MemRegion, try to check for a buffer overflow and
1531  // record the new string length.
1532  if (llvm::Optional<loc::MemRegionVal> dstRegVal =
1533          DstVal.getAs<loc::MemRegionVal>()) {
1534    QualType ptrTy = Dst->getType();
1535
1536    // If we have an exact value on a bounded copy, use that to check for
1537    // overflows, rather than our estimate about how much is actually copied.
1538    if (boundWarning) {
1539      if (llvm::Optional<NonLoc> maxLastNL =
1540              maxLastElementIndex.getAs<NonLoc>()) {
1541        SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1542                                                      *maxLastNL, ptrTy);
1543        state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1544                              boundWarning);
1545        if (!state)
1546          return;
1547      }
1548    }
1549
1550    // Then, if the final length is known...
1551    if (llvm::Optional<NonLoc> knownStrLength =
1552            finalStrLength.getAs<NonLoc>()) {
1553      SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1554                                                 *knownStrLength, ptrTy);
1555
1556      // ...and we haven't checked the bound, we'll check the actual copy.
1557      if (!boundWarning) {
1558        const char * const warningMsg =
1559          "String copy function overflows destination buffer";
1560        state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1561        if (!state)
1562          return;
1563      }
1564
1565      // If this is a stpcpy-style copy, the last element is the return value.
1566      if (returnEnd)
1567        Result = lastElement;
1568    }
1569
1570    // Invalidate the destination. This must happen before we set the C string
1571    // length because invalidation will clear the length.
1572    // FIXME: Even if we can't perfectly model the copy, we should see if we
1573    // can use LazyCompoundVals to copy the source values into the destination.
1574    // This would probably remove any existing bindings past the end of the
1575    // string, but that's still an improvement over blank invalidation.
1576    state = InvalidateBuffer(C, state, Dst, *dstRegVal);
1577
1578    // Set the C string length of the destination, if we know it.
1579    if (isBounded && !isAppending) {
1580      // strncpy is annoying in that it doesn't guarantee to null-terminate
1581      // the result string. If the original string didn't fit entirely inside
1582      // the bound (including the null-terminator), we don't know how long the
1583      // result is.
1584      if (amountCopied != strLength)
1585        finalStrLength = UnknownVal();
1586    }
1587    state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1588  }
1589
1590  assert(state);
1591
1592  // If this is a stpcpy-style copy, but we were unable to check for a buffer
1593  // overflow, we still need a result. Conjure a return value.
1594  if (returnEnd && Result.isUnknown()) {
1595    Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1596  }
1597
1598  // Set the return value.
1599  state = state->BindExpr(CE, LCtx, Result);
1600  C.addTransition(state);
1601}
1602
1603void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1604  if (CE->getNumArgs() < 2)
1605    return;
1606
1607  //int strcmp(const char *s1, const char *s2);
1608  evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1609}
1610
1611void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1612  if (CE->getNumArgs() < 3)
1613    return;
1614
1615  //int strncmp(const char *s1, const char *s2, size_t n);
1616  evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1617}
1618
1619void CStringChecker::evalStrcasecmp(CheckerContext &C,
1620                                    const CallExpr *CE) const {
1621  if (CE->getNumArgs() < 2)
1622    return;
1623
1624  //int strcasecmp(const char *s1, const char *s2);
1625  evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1626}
1627
1628void CStringChecker::evalStrncasecmp(CheckerContext &C,
1629                                     const CallExpr *CE) const {
1630  if (CE->getNumArgs() < 3)
1631    return;
1632
1633  //int strncasecmp(const char *s1, const char *s2, size_t n);
1634  evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1635}
1636
1637void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1638                                      bool isBounded, bool ignoreCase) const {
1639  CurrentFunctionDescription = "string comparison function";
1640  ProgramStateRef state = C.getState();
1641  const LocationContext *LCtx = C.getLocationContext();
1642
1643  // Check that the first string is non-null
1644  const Expr *s1 = CE->getArg(0);
1645  SVal s1Val = state->getSVal(s1, LCtx);
1646  state = checkNonNull(C, state, s1, s1Val);
1647  if (!state)
1648    return;
1649
1650  // Check that the second string is non-null.
1651  const Expr *s2 = CE->getArg(1);
1652  SVal s2Val = state->getSVal(s2, LCtx);
1653  state = checkNonNull(C, state, s2, s2Val);
1654  if (!state)
1655    return;
1656
1657  // Get the string length of the first string or give up.
1658  SVal s1Length = getCStringLength(C, state, s1, s1Val);
1659  if (s1Length.isUndef())
1660    return;
1661
1662  // Get the string length of the second string or give up.
1663  SVal s2Length = getCStringLength(C, state, s2, s2Val);
1664  if (s2Length.isUndef())
1665    return;
1666
1667  // If we know the two buffers are the same, we know the result is 0.
1668  // First, get the two buffers' addresses. Another checker will have already
1669  // made sure they're not undefined.
1670  DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1671  DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1672
1673  // See if they are the same.
1674  SValBuilder &svalBuilder = C.getSValBuilder();
1675  DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1676  ProgramStateRef StSameBuf, StNotSameBuf;
1677  llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1678
1679  // If the two arguments might be the same buffer, we know the result is 0,
1680  // and we only need to check one size.
1681  if (StSameBuf) {
1682    StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1683                                    svalBuilder.makeZeroVal(CE->getType()));
1684    C.addTransition(StSameBuf);
1685
1686    // If the two arguments are GUARANTEED to be the same, we're done!
1687    if (!StNotSameBuf)
1688      return;
1689  }
1690
1691  assert(StNotSameBuf);
1692  state = StNotSameBuf;
1693
1694  // At this point we can go about comparing the two buffers.
1695  // For now, we only do this if they're both known string literals.
1696
1697  // Attempt to extract string literals from both expressions.
1698  const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1699  const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1700  bool canComputeResult = false;
1701
1702  if (s1StrLiteral && s2StrLiteral) {
1703    StringRef s1StrRef = s1StrLiteral->getString();
1704    StringRef s2StrRef = s2StrLiteral->getString();
1705
1706    if (isBounded) {
1707      // Get the max number of characters to compare.
1708      const Expr *lenExpr = CE->getArg(2);
1709      SVal lenVal = state->getSVal(lenExpr, LCtx);
1710
1711      // If the length is known, we can get the right substrings.
1712      if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1713        // Create substrings of each to compare the prefix.
1714        s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1715        s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1716        canComputeResult = true;
1717      }
1718    } else {
1719      // This is a normal, unbounded strcmp.
1720      canComputeResult = true;
1721    }
1722
1723    if (canComputeResult) {
1724      // Real strcmp stops at null characters.
1725      size_t s1Term = s1StrRef.find('\0');
1726      if (s1Term != StringRef::npos)
1727        s1StrRef = s1StrRef.substr(0, s1Term);
1728
1729      size_t s2Term = s2StrRef.find('\0');
1730      if (s2Term != StringRef::npos)
1731        s2StrRef = s2StrRef.substr(0, s2Term);
1732
1733      // Use StringRef's comparison methods to compute the actual result.
1734      int result;
1735
1736      if (ignoreCase) {
1737        // Compare string 1 to string 2 the same way strcasecmp() does.
1738        result = s1StrRef.compare_lower(s2StrRef);
1739      } else {
1740        // Compare string 1 to string 2 the same way strcmp() does.
1741        result = s1StrRef.compare(s2StrRef);
1742      }
1743
1744      // Build the SVal of the comparison and bind the return value.
1745      SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1746      state = state->BindExpr(CE, LCtx, resultVal);
1747    }
1748  }
1749
1750  if (!canComputeResult) {
1751    // Conjure a symbolic value. It's the best we can do.
1752    SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1753    state = state->BindExpr(CE, LCtx, resultVal);
1754  }
1755
1756  // Record this as a possible path.
1757  C.addTransition(state);
1758}
1759
1760//===----------------------------------------------------------------------===//
1761// The driver method, and other Checker callbacks.
1762//===----------------------------------------------------------------------===//
1763
1764bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1765  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1766
1767  if (!FDecl)
1768    return false;
1769
1770  FnCheck evalFunction = 0;
1771  if (C.isCLibraryFunction(FDecl, "memcpy"))
1772    evalFunction =  &CStringChecker::evalMemcpy;
1773  else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1774    evalFunction =  &CStringChecker::evalMempcpy;
1775  else if (C.isCLibraryFunction(FDecl, "memcmp"))
1776    evalFunction =  &CStringChecker::evalMemcmp;
1777  else if (C.isCLibraryFunction(FDecl, "memmove"))
1778    evalFunction =  &CStringChecker::evalMemmove;
1779  else if (C.isCLibraryFunction(FDecl, "strcpy"))
1780    evalFunction =  &CStringChecker::evalStrcpy;
1781  else if (C.isCLibraryFunction(FDecl, "strncpy"))
1782    evalFunction =  &CStringChecker::evalStrncpy;
1783  else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1784    evalFunction =  &CStringChecker::evalStpcpy;
1785  else if (C.isCLibraryFunction(FDecl, "strcat"))
1786    evalFunction =  &CStringChecker::evalStrcat;
1787  else if (C.isCLibraryFunction(FDecl, "strncat"))
1788    evalFunction =  &CStringChecker::evalStrncat;
1789  else if (C.isCLibraryFunction(FDecl, "strlen"))
1790    evalFunction =  &CStringChecker::evalstrLength;
1791  else if (C.isCLibraryFunction(FDecl, "strnlen"))
1792    evalFunction =  &CStringChecker::evalstrnLength;
1793  else if (C.isCLibraryFunction(FDecl, "strcmp"))
1794    evalFunction =  &CStringChecker::evalStrcmp;
1795  else if (C.isCLibraryFunction(FDecl, "strncmp"))
1796    evalFunction =  &CStringChecker::evalStrncmp;
1797  else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1798    evalFunction =  &CStringChecker::evalStrcasecmp;
1799  else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1800    evalFunction =  &CStringChecker::evalStrncasecmp;
1801  else if (C.isCLibraryFunction(FDecl, "bcopy"))
1802    evalFunction =  &CStringChecker::evalBcopy;
1803  else if (C.isCLibraryFunction(FDecl, "bcmp"))
1804    evalFunction =  &CStringChecker::evalMemcmp;
1805
1806  // If the callee isn't a string function, let another checker handle it.
1807  if (!evalFunction)
1808    return false;
1809
1810  // Make sure each function sets its own description.
1811  // (But don't bother in a release build.)
1812  assert(!(CurrentFunctionDescription = NULL));
1813
1814  // Check and evaluate the call.
1815  (this->*evalFunction)(C, CE);
1816
1817  // If the evaluate call resulted in no change, chain to the next eval call
1818  // handler.
1819  // Note, the custom CString evaluation calls assume that basic safety
1820  // properties are held. However, if the user chooses to turn off some of these
1821  // checks, we ignore the issues and leave the call evaluation to a generic
1822  // handler.
1823  if (!C.isDifferent())
1824    return false;
1825
1826  return true;
1827}
1828
1829void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1830  // Record string length for char a[] = "abc";
1831  ProgramStateRef state = C.getState();
1832
1833  for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1834       I != E; ++I) {
1835    const VarDecl *D = dyn_cast<VarDecl>(*I);
1836    if (!D)
1837      continue;
1838
1839    // FIXME: Handle array fields of structs.
1840    if (!D->getType()->isArrayType())
1841      continue;
1842
1843    const Expr *Init = D->getInit();
1844    if (!Init)
1845      continue;
1846    if (!isa<StringLiteral>(Init))
1847      continue;
1848
1849    Loc VarLoc = state->getLValue(D, C.getLocationContext());
1850    const MemRegion *MR = VarLoc.getAsRegion();
1851    if (!MR)
1852      continue;
1853
1854    SVal StrVal = state->getSVal(Init, C.getLocationContext());
1855    assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1856    DefinedOrUnknownSVal strLength =
1857        getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
1858
1859    state = state->set<CStringLength>(MR, strLength);
1860  }
1861
1862  C.addTransition(state);
1863}
1864
1865bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1866  CStringLengthTy Entries = state->get<CStringLength>();
1867  return !Entries.isEmpty();
1868}
1869
1870ProgramStateRef
1871CStringChecker::checkRegionChanges(ProgramStateRef state,
1872                                   const InvalidatedSymbols *,
1873                                   ArrayRef<const MemRegion *> ExplicitRegions,
1874                                   ArrayRef<const MemRegion *> Regions,
1875                                   const CallEvent *Call) const {
1876  CStringLengthTy Entries = state->get<CStringLength>();
1877  if (Entries.isEmpty())
1878    return state;
1879
1880  llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1881  llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1882
1883  // First build sets for the changed regions and their super-regions.
1884  for (ArrayRef<const MemRegion *>::iterator
1885       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
1886    const MemRegion *MR = *I;
1887    Invalidated.insert(MR);
1888
1889    SuperRegions.insert(MR);
1890    while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
1891      MR = SR->getSuperRegion();
1892      SuperRegions.insert(MR);
1893    }
1894  }
1895
1896  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
1897
1898  // Then loop over the entries in the current state.
1899  for (CStringLengthTy::iterator I = Entries.begin(),
1900       E = Entries.end(); I != E; ++I) {
1901    const MemRegion *MR = I.getKey();
1902
1903    // Is this entry for a super-region of a changed region?
1904    if (SuperRegions.count(MR)) {
1905      Entries = F.remove(Entries, MR);
1906      continue;
1907    }
1908
1909    // Is this entry for a sub-region of a changed region?
1910    const MemRegion *Super = MR;
1911    while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
1912      Super = SR->getSuperRegion();
1913      if (Invalidated.count(Super)) {
1914        Entries = F.remove(Entries, MR);
1915        break;
1916      }
1917    }
1918  }
1919
1920  return state->set<CStringLength>(Entries);
1921}
1922
1923void CStringChecker::checkLiveSymbols(ProgramStateRef state,
1924                                      SymbolReaper &SR) const {
1925  // Mark all symbols in our string length map as valid.
1926  CStringLengthTy Entries = state->get<CStringLength>();
1927
1928  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
1929       I != E; ++I) {
1930    SVal Len = I.getData();
1931
1932    for (SymExpr::symbol_iterator si = Len.symbol_begin(),
1933                                  se = Len.symbol_end(); si != se; ++si)
1934      SR.markInUse(*si);
1935  }
1936}
1937
1938void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
1939                                      CheckerContext &C) const {
1940  if (!SR.hasDeadSymbols())
1941    return;
1942
1943  ProgramStateRef state = C.getState();
1944  CStringLengthTy Entries = state->get<CStringLength>();
1945  if (Entries.isEmpty())
1946    return;
1947
1948  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
1949  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
1950       I != E; ++I) {
1951    SVal Len = I.getData();
1952    if (SymbolRef Sym = Len.getAsSymbol()) {
1953      if (SR.isDead(Sym))
1954        Entries = F.remove(Entries, I.getKey());
1955    }
1956  }
1957
1958  state = state->set<CStringLength>(Entries);
1959  C.addTransition(state);
1960}
1961
1962#define REGISTER_CHECKER(name) \
1963void ento::register##name(CheckerManager &mgr) {\
1964  static CStringChecker *TheChecker = 0; \
1965  if (TheChecker == 0) \
1966    TheChecker = mgr.registerChecker<CStringChecker>(); \
1967  TheChecker->Filter.Check##name = true; \
1968}
1969
1970REGISTER_CHECKER(CStringNullArg)
1971REGISTER_CHECKER(CStringOutOfBounds)
1972REGISTER_CHECKER(CStringBufferOverlap)
1973REGISTER_CHECKER(CStringNotNullTerm)
1974
1975void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
1976  registerCStringNullArg(Mgr);
1977}
1978