BugReporter.cpp revision 4970ef8e3527ac356c3e9fde0710561fcb63e424
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Analysis/ProgramPoint.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include <queue>
34
35using namespace clang;
36using namespace ento;
37
38BugReporterVisitor::~BugReporterVisitor() {}
39
40void BugReporterContext::anchor() {}
41
42//===----------------------------------------------------------------------===//
43// Helper routines for walking the ExplodedGraph and fetching statements.
44//===----------------------------------------------------------------------===//
45
46static inline const Stmt *GetStmt(const ProgramPoint &P) {
47  if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48    return SP->getStmt();
49  else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50    return BE->getSrc()->getTerminator();
51
52  return 0;
53}
54
55static inline const ExplodedNode*
56GetPredecessorNode(const ExplodedNode *N) {
57  return N->pred_empty() ? NULL : *(N->pred_begin());
58}
59
60static inline const ExplodedNode*
61GetSuccessorNode(const ExplodedNode *N) {
62  return N->succ_empty() ? NULL : *(N->succ_begin());
63}
64
65static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
66  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
67    if (const Stmt *S = GetStmt(N->getLocation()))
68      return S;
69
70  return 0;
71}
72
73static const Stmt *GetNextStmt(const ExplodedNode *N) {
74  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
75    if (const Stmt *S = GetStmt(N->getLocation())) {
76      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
77      // not actual statement points.
78      switch (S->getStmtClass()) {
79        case Stmt::ChooseExprClass:
80        case Stmt::BinaryConditionalOperatorClass: continue;
81        case Stmt::ConditionalOperatorClass: continue;
82        case Stmt::BinaryOperatorClass: {
83          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
84          if (Op == BO_LAnd || Op == BO_LOr)
85            continue;
86          break;
87        }
88        default:
89          break;
90      }
91      return S;
92    }
93
94  return 0;
95}
96
97static inline const Stmt*
98GetCurrentOrPreviousStmt(const ExplodedNode *N) {
99  if (const Stmt *S = GetStmt(N->getLocation()))
100    return S;
101
102  return GetPreviousStmt(N);
103}
104
105static inline const Stmt*
106GetCurrentOrNextStmt(const ExplodedNode *N) {
107  if (const Stmt *S = GetStmt(N->getLocation()))
108    return S;
109
110  return GetNextStmt(N);
111}
112
113//===----------------------------------------------------------------------===//
114// PathDiagnosticBuilder and its associated routines and helper objects.
115//===----------------------------------------------------------------------===//
116
117typedef llvm::DenseMap<const ExplodedNode*,
118const ExplodedNode*> NodeBackMap;
119
120namespace {
121class NodeMapClosure : public BugReport::NodeResolver {
122  NodeBackMap& M;
123public:
124  NodeMapClosure(NodeBackMap *m) : M(*m) {}
125  ~NodeMapClosure() {}
126
127  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
128    NodeBackMap::iterator I = M.find(N);
129    return I == M.end() ? 0 : I->second;
130  }
131};
132
133class PathDiagnosticBuilder : public BugReporterContext {
134  BugReport *R;
135  PathDiagnosticConsumer *PDC;
136  OwningPtr<ParentMap> PM;
137  NodeMapClosure NMC;
138public:
139  PathDiagnosticBuilder(GRBugReporter &br,
140                        BugReport *r, NodeBackMap *Backmap,
141                        PathDiagnosticConsumer *pdc)
142    : BugReporterContext(br),
143      R(r), PDC(pdc), NMC(Backmap) {}
144
145  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
146
147  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
148                                            const ExplodedNode *N);
149
150  BugReport *getBugReport() { return R; }
151
152  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
153
154  const LocationContext* getLocationContext() {
155    return R->getErrorNode()->getLocationContext();
156  }
157
158  ParentMap& getParentMap() { return R->getErrorNode()->getParentMap(); }
159
160  const Stmt *getParent(const Stmt *S) {
161    return getParentMap().getParent(S);
162  }
163
164  virtual NodeMapClosure& getNodeResolver() { return NMC; }
165
166  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
167
168  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
169    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
170  }
171
172  bool supportsLogicalOpControlFlow() const {
173    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
174  }
175};
176} // end anonymous namespace
177
178PathDiagnosticLocation
179PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
180  if (const Stmt *S = GetNextStmt(N))
181    return PathDiagnosticLocation(S, getSourceManager(), getLocationContext());
182
183  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
184                                               getSourceManager());
185}
186
187PathDiagnosticLocation
188PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
189                                          const ExplodedNode *N) {
190
191  // Slow, but probably doesn't matter.
192  if (os.str().empty())
193    os << ' ';
194
195  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
196
197  if (Loc.asStmt())
198    os << "Execution continues on line "
199       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
200       << '.';
201  else {
202    os << "Execution jumps to the end of the ";
203    const Decl *D = N->getLocationContext()->getDecl();
204    if (isa<ObjCMethodDecl>(D))
205      os << "method";
206    else if (isa<FunctionDecl>(D))
207      os << "function";
208    else {
209      assert(isa<BlockDecl>(D));
210      os << "anonymous block";
211    }
212    os << '.';
213  }
214
215  return Loc;
216}
217
218static bool IsNested(const Stmt *S, ParentMap &PM) {
219  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
220    return true;
221
222  const Stmt *Parent = PM.getParentIgnoreParens(S);
223
224  if (Parent)
225    switch (Parent->getStmtClass()) {
226      case Stmt::ForStmtClass:
227      case Stmt::DoStmtClass:
228      case Stmt::WhileStmtClass:
229        return true;
230      default:
231        break;
232    }
233
234  return false;
235}
236
237PathDiagnosticLocation
238PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
239  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
240  ParentMap &P = getParentMap();
241  SourceManager &SMgr = getSourceManager();
242  const LocationContext *LC = getLocationContext();
243
244  while (IsNested(S, P)) {
245    const Stmt *Parent = P.getParentIgnoreParens(S);
246
247    if (!Parent)
248      break;
249
250    switch (Parent->getStmtClass()) {
251      case Stmt::BinaryOperatorClass: {
252        const BinaryOperator *B = cast<BinaryOperator>(Parent);
253        if (B->isLogicalOp())
254          return PathDiagnosticLocation(S, SMgr, LC);
255        break;
256      }
257      case Stmt::CompoundStmtClass:
258      case Stmt::StmtExprClass:
259        return PathDiagnosticLocation(S, SMgr, LC);
260      case Stmt::ChooseExprClass:
261        // Similar to '?' if we are referring to condition, just have the edge
262        // point to the entire choose expression.
263        if (cast<ChooseExpr>(Parent)->getCond() == S)
264          return PathDiagnosticLocation(Parent, SMgr, LC);
265        else
266          return PathDiagnosticLocation(S, SMgr, LC);
267      case Stmt::BinaryConditionalOperatorClass:
268      case Stmt::ConditionalOperatorClass:
269        // For '?', if we are referring to condition, just have the edge point
270        // to the entire '?' expression.
271        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
272          return PathDiagnosticLocation(Parent, SMgr, LC);
273        else
274          return PathDiagnosticLocation(S, SMgr, LC);
275      case Stmt::DoStmtClass:
276          return PathDiagnosticLocation(S, SMgr, LC);
277      case Stmt::ForStmtClass:
278        if (cast<ForStmt>(Parent)->getBody() == S)
279          return PathDiagnosticLocation(S, SMgr, LC);
280        break;
281      case Stmt::IfStmtClass:
282        if (cast<IfStmt>(Parent)->getCond() != S)
283          return PathDiagnosticLocation(S, SMgr, LC);
284        break;
285      case Stmt::ObjCForCollectionStmtClass:
286        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
287          return PathDiagnosticLocation(S, SMgr, LC);
288        break;
289      case Stmt::WhileStmtClass:
290        if (cast<WhileStmt>(Parent)->getCond() != S)
291          return PathDiagnosticLocation(S, SMgr, LC);
292        break;
293      default:
294        break;
295    }
296
297    S = Parent;
298  }
299
300  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
301
302  // Special case: DeclStmts can appear in for statement declarations, in which
303  //  case the ForStmt is the context.
304  if (isa<DeclStmt>(S)) {
305    if (const Stmt *Parent = P.getParent(S)) {
306      switch (Parent->getStmtClass()) {
307        case Stmt::ForStmtClass:
308        case Stmt::ObjCForCollectionStmtClass:
309          return PathDiagnosticLocation(Parent, SMgr, LC);
310        default:
311          break;
312      }
313    }
314  }
315  else if (isa<BinaryOperator>(S)) {
316    // Special case: the binary operator represents the initialization
317    // code in a for statement (this can happen when the variable being
318    // initialized is an old variable.
319    if (const ForStmt *FS =
320          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
321      if (FS->getInit() == S)
322        return PathDiagnosticLocation(FS, SMgr, LC);
323    }
324  }
325
326  return PathDiagnosticLocation(S, SMgr, LC);
327}
328
329//===----------------------------------------------------------------------===//
330// ScanNotableSymbols: closure-like callback for scanning Store bindings.
331//===----------------------------------------------------------------------===//
332
333static const VarDecl* GetMostRecentVarDeclBinding(const ExplodedNode *N,
334                                                  ProgramStateManager& VMgr,
335                                                  SVal X) {
336
337  for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
338
339    ProgramPoint P = N->getLocation();
340
341    if (!isa<PostStmt>(P))
342      continue;
343
344    const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
345
346    if (!DR)
347      continue;
348
349    SVal Y = N->getState()->getSVal(DR, N->getLocationContext());
350
351    if (X != Y)
352      continue;
353
354    const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
355
356    if (!VD)
357      continue;
358
359    return VD;
360  }
361
362  return 0;
363}
364
365namespace {
366class NotableSymbolHandler
367: public StoreManager::BindingsHandler {
368
369  SymbolRef Sym;
370  ProgramStateRef PrevSt;
371  const Stmt *S;
372  ProgramStateManager& VMgr;
373  const ExplodedNode *Pred;
374  PathDiagnostic& PD;
375  BugReporter& BR;
376
377public:
378
379  NotableSymbolHandler(SymbolRef sym,
380                       ProgramStateRef prevst,
381                       const Stmt *s,
382                       ProgramStateManager& vmgr,
383                       const ExplodedNode *pred,
384                       PathDiagnostic& pd,
385                       BugReporter& br)
386  : Sym(sym),
387    PrevSt(prevst),
388    S(s),
389    VMgr(vmgr),
390    Pred(pred),
391    PD(pd),
392    BR(br) {}
393
394  bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
395                     SVal V) {
396
397    SymbolRef ScanSym = V.getAsSymbol();
398
399    if (ScanSym != Sym)
400      return true;
401
402    // Check if the previous state has this binding.
403    SVal X = PrevSt->getSVal(loc::MemRegionVal(R));
404
405    if (X == V) // Same binding?
406      return true;
407
408    // Different binding.  Only handle assignments for now.  We don't pull
409    // this check out of the loop because we will eventually handle other
410    // cases.
411
412    VarDecl *VD = 0;
413
414    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
415      if (!B->isAssignmentOp())
416        return true;
417
418      // What variable did we assign to?
419      DeclRefExpr *DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
420
421      if (!DR)
422        return true;
423
424      VD = dyn_cast<VarDecl>(DR->getDecl());
425    }
426    else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
427      // FIXME: Eventually CFGs won't have DeclStmts.  Right now we
428      //  assume that each DeclStmt has a single Decl.  This invariant
429      //  holds by construction in the CFG.
430      VD = dyn_cast<VarDecl>(*DS->decl_begin());
431    }
432
433    if (!VD)
434      return true;
435
436    // What is the most recently referenced variable with this binding?
437    const VarDecl *MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
438
439    if (!MostRecent)
440      return true;
441
442    // Create the diagnostic.
443    if (Loc::isLocType(VD->getType())) {
444      SmallString<64> buf;
445      llvm::raw_svector_ostream os(buf);
446      os << '\'' << *VD << "' now aliases '" << *MostRecent << '\'';
447      PathDiagnosticLocation L =
448        PathDiagnosticLocation::createBegin(S, BR.getSourceManager(),
449                                                   Pred->getLocationContext());
450      PD.getActivePath().push_front(new PathDiagnosticEventPiece(L, os.str()));
451    }
452
453    return true;
454  }
455};
456}
457
458static void HandleNotableSymbol(const ExplodedNode *N,
459                                const Stmt *S,
460                                SymbolRef Sym, BugReporter& BR,
461                                PathDiagnostic& PD) {
462
463  const ExplodedNode *Pred = N->pred_empty() ? 0 : *N->pred_begin();
464  ProgramStateRef PrevSt = Pred ? Pred->getState() : 0;
465
466  if (!PrevSt)
467    return;
468
469  // Look at the region bindings of the current state that map to the
470  // specified symbol.  Are any of them not in the previous state?
471  ProgramStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
472  NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
473  cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
474}
475
476namespace {
477class ScanNotableSymbols
478: public StoreManager::BindingsHandler {
479
480  llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
481  const ExplodedNode *N;
482  const Stmt *S;
483  GRBugReporter& BR;
484  PathDiagnostic& PD;
485
486public:
487  ScanNotableSymbols(const ExplodedNode *n, const Stmt *s,
488                     GRBugReporter& br, PathDiagnostic& pd)
489  : N(n), S(s), BR(br), PD(pd) {}
490
491  bool HandleBinding(StoreManager& SMgr, Store store,
492                     const MemRegion* R, SVal V) {
493
494    SymbolRef ScanSym = V.getAsSymbol();
495
496    if (!ScanSym)
497      return true;
498
499    if (!BR.isNotable(ScanSym))
500      return true;
501
502    if (AlreadyProcessed.count(ScanSym))
503      return true;
504
505    AlreadyProcessed.insert(ScanSym);
506
507    HandleNotableSymbol(N, S, ScanSym, BR, PD);
508    return true;
509  }
510};
511} // end anonymous namespace
512
513//===----------------------------------------------------------------------===//
514// "Minimal" path diagnostic generation algorithm.
515//===----------------------------------------------------------------------===//
516
517static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM);
518
519static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
520                                          PathDiagnosticBuilder &PDB,
521                                          const ExplodedNode *N) {
522
523  SourceManager& SMgr = PDB.getSourceManager();
524  const LocationContext *LC = PDB.getLocationContext();
525  const ExplodedNode *NextNode = N->pred_empty()
526                                        ? NULL : *(N->pred_begin());
527  while (NextNode) {
528    N = NextNode;
529    NextNode = GetPredecessorNode(N);
530
531    ProgramPoint P = N->getLocation();
532
533    if (const CallExit *CE = dyn_cast<CallExit>(&P)) {
534      PathDiagnosticCallPiece *C =
535        PathDiagnosticCallPiece::construct(N, *CE, SMgr);
536      PD.getActivePath().push_front(C);
537      PD.pushActivePath(&C->path);
538      continue;
539    }
540
541    if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
542      PD.popActivePath();
543      // The current active path should never be empty.  Either we
544      // just added a bunch of stuff to the top-level path, or
545      // we have a previous CallExit.  If the front of the active
546      // path is not a PathDiagnosticCallPiece, it means that the
547      // path terminated within a function call.  We must then take the
548      // current contents of the active path and place it within
549      // a new PathDiagnosticCallPiece.
550      assert(!PD.getActivePath().empty());
551      PathDiagnosticCallPiece *C =
552        dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
553      if (!C)
554        C = PathDiagnosticCallPiece::construct(PD.getActivePath());
555      C->setCallee(*CE, SMgr);
556      continue;
557    }
558
559    if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
560      const CFGBlock *Src = BE->getSrc();
561      const CFGBlock *Dst = BE->getDst();
562      const Stmt *T = Src->getTerminator();
563
564      if (!T)
565        continue;
566
567      PathDiagnosticLocation Start =
568        PathDiagnosticLocation::createBegin(T, SMgr,
569                                                N->getLocationContext());
570
571      switch (T->getStmtClass()) {
572        default:
573          break;
574
575        case Stmt::GotoStmtClass:
576        case Stmt::IndirectGotoStmtClass: {
577          const Stmt *S = GetNextStmt(N);
578
579          if (!S)
580            continue;
581
582          std::string sbuf;
583          llvm::raw_string_ostream os(sbuf);
584          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
585
586          os << "Control jumps to line "
587          << End.asLocation().getExpansionLineNumber();
588          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
589                                                                os.str()));
590          break;
591        }
592
593        case Stmt::SwitchStmtClass: {
594          // Figure out what case arm we took.
595          std::string sbuf;
596          llvm::raw_string_ostream os(sbuf);
597
598          if (const Stmt *S = Dst->getLabel()) {
599            PathDiagnosticLocation End(S, SMgr, LC);
600
601            switch (S->getStmtClass()) {
602              default:
603                os << "No cases match in the switch statement. "
604                "Control jumps to line "
605                << End.asLocation().getExpansionLineNumber();
606                break;
607              case Stmt::DefaultStmtClass:
608                os << "Control jumps to the 'default' case at line "
609                << End.asLocation().getExpansionLineNumber();
610                break;
611
612              case Stmt::CaseStmtClass: {
613                os << "Control jumps to 'case ";
614                const CaseStmt *Case = cast<CaseStmt>(S);
615                const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
616
617                // Determine if it is an enum.
618                bool GetRawInt = true;
619
620                if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
621                  // FIXME: Maybe this should be an assertion.  Are there cases
622                  // were it is not an EnumConstantDecl?
623                  const EnumConstantDecl *D =
624                    dyn_cast<EnumConstantDecl>(DR->getDecl());
625
626                  if (D) {
627                    GetRawInt = false;
628                    os << *D;
629                  }
630                }
631
632                if (GetRawInt)
633                  os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
634
635                os << ":'  at line "
636                << End.asLocation().getExpansionLineNumber();
637                break;
638              }
639            }
640            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
641                                                             os.str()));
642          }
643          else {
644            os << "'Default' branch taken. ";
645            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
646            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
647                                                             os.str()));
648          }
649
650          break;
651        }
652
653        case Stmt::BreakStmtClass:
654        case Stmt::ContinueStmtClass: {
655          std::string sbuf;
656          llvm::raw_string_ostream os(sbuf);
657          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
658          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
659                                                           os.str()));
660          break;
661        }
662
663          // Determine control-flow for ternary '?'.
664        case Stmt::BinaryConditionalOperatorClass:
665        case Stmt::ConditionalOperatorClass: {
666          std::string sbuf;
667          llvm::raw_string_ostream os(sbuf);
668          os << "'?' condition is ";
669
670          if (*(Src->succ_begin()+1) == Dst)
671            os << "false";
672          else
673            os << "true";
674
675          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
676
677          if (const Stmt *S = End.asStmt())
678            End = PDB.getEnclosingStmtLocation(S);
679
680          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
681                                                           os.str()));
682          break;
683        }
684
685          // Determine control-flow for short-circuited '&&' and '||'.
686        case Stmt::BinaryOperatorClass: {
687          if (!PDB.supportsLogicalOpControlFlow())
688            break;
689
690          const BinaryOperator *B = cast<BinaryOperator>(T);
691          std::string sbuf;
692          llvm::raw_string_ostream os(sbuf);
693          os << "Left side of '";
694
695          if (B->getOpcode() == BO_LAnd) {
696            os << "&&" << "' is ";
697
698            if (*(Src->succ_begin()+1) == Dst) {
699              os << "false";
700              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
701              PathDiagnosticLocation Start =
702                PathDiagnosticLocation::createOperatorLoc(B, SMgr);
703              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
704                                                               os.str()));
705            }
706            else {
707              os << "true";
708              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
709              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
710              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
711                                                               os.str()));
712            }
713          }
714          else {
715            assert(B->getOpcode() == BO_LOr);
716            os << "||" << "' is ";
717
718            if (*(Src->succ_begin()+1) == Dst) {
719              os << "false";
720              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
721              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
722              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
723                                                               os.str()));
724            }
725            else {
726              os << "true";
727              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
728              PathDiagnosticLocation Start =
729                PathDiagnosticLocation::createOperatorLoc(B, SMgr);
730              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
731                                                               os.str()));
732            }
733          }
734
735          break;
736        }
737
738        case Stmt::DoStmtClass:  {
739          if (*(Src->succ_begin()) == Dst) {
740            std::string sbuf;
741            llvm::raw_string_ostream os(sbuf);
742
743            os << "Loop condition is true. ";
744            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
745
746            if (const Stmt *S = End.asStmt())
747              End = PDB.getEnclosingStmtLocation(S);
748
749            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
750                                                             os.str()));
751          }
752          else {
753            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
754
755            if (const Stmt *S = End.asStmt())
756              End = PDB.getEnclosingStmtLocation(S);
757
758            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
759                              "Loop condition is false.  Exiting loop"));
760          }
761
762          break;
763        }
764
765        case Stmt::WhileStmtClass:
766        case Stmt::ForStmtClass: {
767          if (*(Src->succ_begin()+1) == Dst) {
768            std::string sbuf;
769            llvm::raw_string_ostream os(sbuf);
770
771            os << "Loop condition is false. ";
772            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
773            if (const Stmt *S = End.asStmt())
774              End = PDB.getEnclosingStmtLocation(S);
775
776            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
777                                                             os.str()));
778          }
779          else {
780            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
781            if (const Stmt *S = End.asStmt())
782              End = PDB.getEnclosingStmtLocation(S);
783
784            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
785                            "Loop condition is true.  Entering loop body"));
786          }
787
788          break;
789        }
790
791        case Stmt::IfStmtClass: {
792          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
793
794          if (const Stmt *S = End.asStmt())
795            End = PDB.getEnclosingStmtLocation(S);
796
797          if (*(Src->succ_begin()+1) == Dst)
798            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
799                                                        "Taking false branch"));
800          else
801            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
802                                                         "Taking true branch"));
803
804          break;
805        }
806      }
807    }
808
809    if (NextNode) {
810      // Add diagnostic pieces from custom visitors.
811      BugReport *R = PDB.getBugReport();
812      for (BugReport::visitor_iterator I = R->visitor_begin(),
813           E = R->visitor_end(); I!=E; ++I) {
814        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R))
815          PD.getActivePath().push_front(p);
816      }
817    }
818
819    if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
820      // Scan the region bindings, and see if a "notable" symbol has a new
821      // lval binding.
822      ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD);
823      PDB.getStateManager().iterBindings(N->getState(), SNS);
824    }
825  }
826
827  // After constructing the full PathDiagnostic, do a pass over it to compact
828  // PathDiagnosticPieces that occur within a macro.
829  CompactPathDiagnostic(PD, PDB.getSourceManager());
830}
831
832//===----------------------------------------------------------------------===//
833// "Extensive" PathDiagnostic generation.
834//===----------------------------------------------------------------------===//
835
836static bool IsControlFlowExpr(const Stmt *S) {
837  const Expr *E = dyn_cast<Expr>(S);
838
839  if (!E)
840    return false;
841
842  E = E->IgnoreParenCasts();
843
844  if (isa<AbstractConditionalOperator>(E))
845    return true;
846
847  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
848    if (B->isLogicalOp())
849      return true;
850
851  return false;
852}
853
854namespace {
855class ContextLocation : public PathDiagnosticLocation {
856  bool IsDead;
857public:
858  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
859    : PathDiagnosticLocation(L), IsDead(isdead) {}
860
861  void markDead() { IsDead = true; }
862  bool isDead() const { return IsDead; }
863};
864
865class EdgeBuilder {
866  std::vector<ContextLocation> CLocs;
867  typedef std::vector<ContextLocation>::iterator iterator;
868  PathDiagnostic &PD;
869  PathDiagnosticBuilder &PDB;
870  PathDiagnosticLocation PrevLoc;
871
872  bool IsConsumedExpr(const PathDiagnosticLocation &L);
873
874  bool containsLocation(const PathDiagnosticLocation &Container,
875                        const PathDiagnosticLocation &Containee);
876
877  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
878
879  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
880                                         bool firstCharOnly = false) {
881    if (const Stmt *S = L.asStmt()) {
882      const Stmt *Original = S;
883      while (1) {
884        // Adjust the location for some expressions that are best referenced
885        // by one of their subexpressions.
886        switch (S->getStmtClass()) {
887          default:
888            break;
889          case Stmt::ParenExprClass:
890          case Stmt::GenericSelectionExprClass:
891            S = cast<Expr>(S)->IgnoreParens();
892            firstCharOnly = true;
893            continue;
894          case Stmt::BinaryConditionalOperatorClass:
895          case Stmt::ConditionalOperatorClass:
896            S = cast<AbstractConditionalOperator>(S)->getCond();
897            firstCharOnly = true;
898            continue;
899          case Stmt::ChooseExprClass:
900            S = cast<ChooseExpr>(S)->getCond();
901            firstCharOnly = true;
902            continue;
903          case Stmt::BinaryOperatorClass:
904            S = cast<BinaryOperator>(S)->getLHS();
905            firstCharOnly = true;
906            continue;
907        }
908
909        break;
910      }
911
912      if (S != Original)
913        L = PathDiagnosticLocation(S, L.getManager(), PDB.getLocationContext());
914    }
915
916    if (firstCharOnly)
917      L  = PathDiagnosticLocation::createSingleLocation(L);
918
919    return L;
920  }
921
922  void popLocation() {
923    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
924      // For contexts, we only one the first character as the range.
925      rawAddEdge(cleanUpLocation(CLocs.back(), true));
926    }
927    CLocs.pop_back();
928  }
929
930public:
931  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
932    : PD(pd), PDB(pdb) {
933
934      // If the PathDiagnostic already has pieces, add the enclosing statement
935      // of the first piece as a context as well.
936      if (!PD.path.empty()) {
937        PrevLoc = (*PD.path.begin())->getLocation();
938
939        if (const Stmt *S = PrevLoc.asStmt())
940          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
941      }
942  }
943
944  ~EdgeBuilder() {
945    while (!CLocs.empty()) popLocation();
946
947    // Finally, add an initial edge from the start location of the first
948    // statement (if it doesn't already exist).
949    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
950                                                       PDB.getLocationContext(),
951                                                       PDB.getSourceManager());
952    if (L.isValid())
953      rawAddEdge(L);
954  }
955
956  void flushLocations() {
957    while (!CLocs.empty())
958      popLocation();
959    PrevLoc = PathDiagnosticLocation();
960  }
961
962  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
963
964  void rawAddEdge(PathDiagnosticLocation NewLoc);
965
966  void addContext(const Stmt *S);
967  void addExtendedContext(const Stmt *S);
968};
969} // end anonymous namespace
970
971
972PathDiagnosticLocation
973EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
974  if (const Stmt *S = L.asStmt()) {
975    if (IsControlFlowExpr(S))
976      return L;
977
978    return PDB.getEnclosingStmtLocation(S);
979  }
980
981  return L;
982}
983
984bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
985                                   const PathDiagnosticLocation &Containee) {
986
987  if (Container == Containee)
988    return true;
989
990  if (Container.asDecl())
991    return true;
992
993  if (const Stmt *S = Containee.asStmt())
994    if (const Stmt *ContainerS = Container.asStmt()) {
995      while (S) {
996        if (S == ContainerS)
997          return true;
998        S = PDB.getParent(S);
999      }
1000      return false;
1001    }
1002
1003  // Less accurate: compare using source ranges.
1004  SourceRange ContainerR = Container.asRange();
1005  SourceRange ContaineeR = Containee.asRange();
1006
1007  SourceManager &SM = PDB.getSourceManager();
1008  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1009  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1010  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1011  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1012
1013  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1014  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1015  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1016  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1017
1018  assert(ContainerBegLine <= ContainerEndLine);
1019  assert(ContaineeBegLine <= ContaineeEndLine);
1020
1021  return (ContainerBegLine <= ContaineeBegLine &&
1022          ContainerEndLine >= ContaineeEndLine &&
1023          (ContainerBegLine != ContaineeBegLine ||
1024           SM.getExpansionColumnNumber(ContainerRBeg) <=
1025           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1026          (ContainerEndLine != ContaineeEndLine ||
1027           SM.getExpansionColumnNumber(ContainerREnd) >=
1028           SM.getExpansionColumnNumber(ContainerREnd)));
1029}
1030
1031void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1032  if (!PrevLoc.isValid()) {
1033    PrevLoc = NewLoc;
1034    return;
1035  }
1036
1037  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1038  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1039
1040  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1041    return;
1042
1043  // FIXME: Ignore intra-macro edges for now.
1044  if (NewLocClean.asLocation().getExpansionLoc() ==
1045      PrevLocClean.asLocation().getExpansionLoc())
1046    return;
1047
1048  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1049  PrevLoc = NewLoc;
1050}
1051
1052void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1053
1054  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1055    return;
1056
1057  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1058
1059  while (!CLocs.empty()) {
1060    ContextLocation &TopContextLoc = CLocs.back();
1061
1062    // Is the top location context the same as the one for the new location?
1063    if (TopContextLoc == CLoc) {
1064      if (alwaysAdd) {
1065        if (IsConsumedExpr(TopContextLoc) &&
1066            !IsControlFlowExpr(TopContextLoc.asStmt()))
1067            TopContextLoc.markDead();
1068
1069        rawAddEdge(NewLoc);
1070      }
1071
1072      return;
1073    }
1074
1075    if (containsLocation(TopContextLoc, CLoc)) {
1076      if (alwaysAdd) {
1077        rawAddEdge(NewLoc);
1078
1079        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1080          CLocs.push_back(ContextLocation(CLoc, true));
1081          return;
1082        }
1083      }
1084
1085      CLocs.push_back(CLoc);
1086      return;
1087    }
1088
1089    // Context does not contain the location.  Flush it.
1090    popLocation();
1091  }
1092
1093  // If we reach here, there is no enclosing context.  Just add the edge.
1094  rawAddEdge(NewLoc);
1095}
1096
1097bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1098  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1099    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1100
1101  return false;
1102}
1103
1104void EdgeBuilder::addExtendedContext(const Stmt *S) {
1105  if (!S)
1106    return;
1107
1108  const Stmt *Parent = PDB.getParent(S);
1109  while (Parent) {
1110    if (isa<CompoundStmt>(Parent))
1111      Parent = PDB.getParent(Parent);
1112    else
1113      break;
1114  }
1115
1116  if (Parent) {
1117    switch (Parent->getStmtClass()) {
1118      case Stmt::DoStmtClass:
1119      case Stmt::ObjCAtSynchronizedStmtClass:
1120        addContext(Parent);
1121      default:
1122        break;
1123    }
1124  }
1125
1126  addContext(S);
1127}
1128
1129void EdgeBuilder::addContext(const Stmt *S) {
1130  if (!S)
1131    return;
1132
1133  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.getLocationContext());
1134
1135  while (!CLocs.empty()) {
1136    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1137
1138    // Is the top location context the same as the one for the new location?
1139    if (TopContextLoc == L)
1140      return;
1141
1142    if (containsLocation(TopContextLoc, L)) {
1143      CLocs.push_back(L);
1144      return;
1145    }
1146
1147    // Context does not contain the location.  Flush it.
1148    popLocation();
1149  }
1150
1151  CLocs.push_back(L);
1152}
1153
1154static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1155                                            PathDiagnosticBuilder &PDB,
1156                                            const ExplodedNode *N) {
1157  EdgeBuilder EB(PD, PDB);
1158  const SourceManager& SM = PDB.getSourceManager();
1159
1160  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1161  while (NextNode) {
1162    N = NextNode;
1163    NextNode = GetPredecessorNode(N);
1164    ProgramPoint P = N->getLocation();
1165
1166    do {
1167      if (const CallExit *CE = dyn_cast<CallExit>(&P)) {
1168        const StackFrameContext *LCtx =
1169        CE->getLocationContext()->getCurrentStackFrame();
1170        PathDiagnosticLocation Loc(LCtx->getCallSite(),
1171                                   PDB.getSourceManager(),
1172                                   LCtx);
1173        EB.addEdge(Loc, true);
1174        EB.flushLocations();
1175        PathDiagnosticCallPiece *C =
1176          PathDiagnosticCallPiece::construct(N, *CE, SM);
1177        PD.getActivePath().push_front(C);
1178        PD.pushActivePath(&C->path);
1179        break;
1180      }
1181
1182      // Was the predecessor in a different stack frame?
1183      if (NextNode &&
1184          !isa<CallExit>(NextNode->getLocation()) &&
1185          NextNode->getLocationContext()->getCurrentStackFrame() !=
1186          N->getLocationContext()->getCurrentStackFrame()) {
1187        EB.flushLocations();
1188      }
1189
1190      // Pop the call hierarchy if we are done walking the contents
1191      // of a function call.
1192      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1193        PD.popActivePath();
1194        // The current active path should never be empty.  Either we
1195        // just added a bunch of stuff to the top-level path, or
1196        // we have a previous CallExit.  If the front of the active
1197        // path is not a PathDiagnosticCallPiece, it means that the
1198        // path terminated within a function call.  We must then take the
1199        // current contents of the active path and place it within
1200        // a new PathDiagnosticCallPiece.
1201        assert(!PD.getActivePath().empty());
1202        PathDiagnosticCallPiece *C =
1203          dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1204        if (!C)
1205          C = PathDiagnosticCallPiece::construct(PD.getActivePath());
1206        C->setCallee(*CE, SM);
1207        EB.addContext(CE->getCallExpr());
1208        break;
1209      }
1210
1211      // Block edges.
1212      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1213        const CFGBlock &Blk = *BE->getSrc();
1214        const Stmt *Term = Blk.getTerminator();
1215
1216        // Are we jumping to the head of a loop?  Add a special diagnostic.
1217        if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1218          PathDiagnosticLocation L(Loop, SM, PDB.getLocationContext());
1219          const CompoundStmt *CS = NULL;
1220
1221          if (!Term) {
1222            if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1223              CS = dyn_cast<CompoundStmt>(FS->getBody());
1224            else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1225              CS = dyn_cast<CompoundStmt>(WS->getBody());
1226          }
1227
1228          PathDiagnosticEventPiece *p =
1229            new PathDiagnosticEventPiece(L,
1230                                        "Looping back to the head of the loop");
1231
1232          EB.addEdge(p->getLocation(), true);
1233          PD.getActivePath().push_front(p);
1234
1235          if (CS) {
1236            PathDiagnosticLocation BL =
1237              PathDiagnosticLocation::createEndBrace(CS, SM);
1238            EB.addEdge(BL);
1239          }
1240        }
1241
1242        if (Term)
1243          EB.addContext(Term);
1244
1245        break;
1246      }
1247
1248      if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1249        if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1250          const Stmt *stmt = S->getStmt();
1251          if (IsControlFlowExpr(stmt)) {
1252            // Add the proper context for '&&', '||', and '?'.
1253            EB.addContext(stmt);
1254          }
1255          else
1256            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1257        }
1258
1259        break;
1260      }
1261
1262
1263    } while (0);
1264
1265    if (!NextNode)
1266      continue;
1267
1268    // Add pieces from custom visitors.
1269    BugReport *R = PDB.getBugReport();
1270    for (BugReport::visitor_iterator I = R->visitor_begin(),
1271                                     E = R->visitor_end(); I!=E; ++I) {
1272      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1273        const PathDiagnosticLocation &Loc = p->getLocation();
1274        EB.addEdge(Loc, true);
1275        PD.getActivePath().push_front(p);
1276        if (const Stmt *S = Loc.asStmt())
1277          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1278      }
1279    }
1280  }
1281}
1282
1283//===----------------------------------------------------------------------===//
1284// Methods for BugType and subclasses.
1285//===----------------------------------------------------------------------===//
1286BugType::~BugType() { }
1287
1288void BugType::FlushReports(BugReporter &BR) {}
1289
1290void BuiltinBug::anchor() {}
1291
1292//===----------------------------------------------------------------------===//
1293// Methods for BugReport and subclasses.
1294//===----------------------------------------------------------------------===//
1295
1296void BugReport::NodeResolver::anchor() {}
1297
1298void BugReport::addVisitor(BugReporterVisitor* visitor) {
1299  if (!visitor)
1300    return;
1301
1302  llvm::FoldingSetNodeID ID;
1303  visitor->Profile(ID);
1304  void *InsertPos;
1305
1306  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1307    delete visitor;
1308    return;
1309  }
1310
1311  CallbacksSet.InsertNode(visitor, InsertPos);
1312  Callbacks = F.add(visitor, Callbacks);
1313}
1314
1315BugReport::~BugReport() {
1316  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1317    delete *I;
1318  }
1319}
1320
1321void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1322  hash.AddPointer(&BT);
1323  hash.AddString(Description);
1324  if (UniqueingLocation.isValid()) {
1325    UniqueingLocation.Profile(hash);
1326  } else if (Location.isValid()) {
1327    Location.Profile(hash);
1328  } else {
1329    assert(ErrorNode);
1330    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1331  }
1332
1333  for (SmallVectorImpl<SourceRange>::const_iterator I =
1334      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1335    const SourceRange range = *I;
1336    if (!range.isValid())
1337      continue;
1338    hash.AddInteger(range.getBegin().getRawEncoding());
1339    hash.AddInteger(range.getEnd().getRawEncoding());
1340  }
1341}
1342
1343const Stmt *BugReport::getStmt() const {
1344  if (!ErrorNode)
1345    return 0;
1346
1347  ProgramPoint ProgP = ErrorNode->getLocation();
1348  const Stmt *S = NULL;
1349
1350  if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1351    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1352    if (BE->getBlock() == &Exit)
1353      S = GetPreviousStmt(ErrorNode);
1354  }
1355  if (!S)
1356    S = GetStmt(ProgP);
1357
1358  return S;
1359}
1360
1361std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1362BugReport::getRanges() {
1363    // If no custom ranges, add the range of the statement corresponding to
1364    // the error node.
1365    if (Ranges.empty()) {
1366      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1367        addRange(E->getSourceRange());
1368      else
1369        return std::make_pair(ranges_iterator(), ranges_iterator());
1370    }
1371
1372    // User-specified absence of range info.
1373    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1374      return std::make_pair(ranges_iterator(), ranges_iterator());
1375
1376    return std::make_pair(Ranges.begin(), Ranges.end());
1377}
1378
1379PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1380  if (ErrorNode) {
1381    assert(!Location.isValid() &&
1382     "Either Location or ErrorNode should be specified but not both.");
1383
1384    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1385      const LocationContext *LC = ErrorNode->getLocationContext();
1386
1387      // For member expressions, return the location of the '.' or '->'.
1388      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1389        return PathDiagnosticLocation::createMemberLoc(ME, SM);
1390      // For binary operators, return the location of the operator.
1391      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1392        return PathDiagnosticLocation::createOperatorLoc(B, SM);
1393
1394      return PathDiagnosticLocation::createBegin(S, SM, LC);
1395    }
1396  } else {
1397    assert(Location.isValid());
1398    return Location;
1399  }
1400
1401  return PathDiagnosticLocation();
1402}
1403
1404//===----------------------------------------------------------------------===//
1405// Methods for BugReporter and subclasses.
1406//===----------------------------------------------------------------------===//
1407
1408BugReportEquivClass::~BugReportEquivClass() {
1409  for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
1410}
1411
1412GRBugReporter::~GRBugReporter() { }
1413BugReporterData::~BugReporterData() {}
1414
1415ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1416
1417ProgramStateManager&
1418GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1419
1420BugReporter::~BugReporter() {
1421  FlushReports();
1422
1423  // Free the bug reports we are tracking.
1424  typedef std::vector<BugReportEquivClass *> ContTy;
1425  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1426       I != E; ++I) {
1427    delete *I;
1428  }
1429}
1430
1431void BugReporter::FlushReports() {
1432  if (BugTypes.isEmpty())
1433    return;
1434
1435  // First flush the warnings for each BugType.  This may end up creating new
1436  // warnings and new BugTypes.
1437  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1438  // Turn NSErrorChecker into a proper checker and remove this.
1439  SmallVector<const BugType*, 16> bugTypes;
1440  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1441    bugTypes.push_back(*I);
1442  for (SmallVector<const BugType*, 16>::iterator
1443         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1444    const_cast<BugType*>(*I)->FlushReports(*this);
1445
1446  typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
1447  for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
1448    BugReportEquivClass& EQ = *EI;
1449    FlushReport(EQ);
1450  }
1451
1452  // BugReporter owns and deletes only BugTypes created implicitly through
1453  // EmitBasicReport.
1454  // FIXME: There are leaks from checkers that assume that the BugTypes they
1455  // create will be destroyed by the BugReporter.
1456  for (llvm::StringMap<BugType*>::iterator
1457         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1458    delete I->second;
1459
1460  // Remove all references to the BugType objects.
1461  BugTypes = F.getEmptySet();
1462}
1463
1464//===----------------------------------------------------------------------===//
1465// PathDiagnostics generation.
1466//===----------------------------------------------------------------------===//
1467
1468static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1469                 std::pair<ExplodedNode*, unsigned> >
1470MakeReportGraph(const ExplodedGraph* G,
1471                SmallVectorImpl<const ExplodedNode*> &nodes) {
1472
1473  // Create the trimmed graph.  It will contain the shortest paths from the
1474  // error nodes to the root.  In the new graph we should only have one
1475  // error node unless there are two or more error nodes with the same minimum
1476  // path length.
1477  ExplodedGraph* GTrim;
1478  InterExplodedGraphMap* NMap;
1479
1480  llvm::DenseMap<const void*, const void*> InverseMap;
1481  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1482                                   &InverseMap);
1483
1484  // Create owning pointers for GTrim and NMap just to ensure that they are
1485  // released when this function exists.
1486  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1487  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1488
1489  // Find the (first) error node in the trimmed graph.  We just need to consult
1490  // the node map (NMap) which maps from nodes in the original graph to nodes
1491  // in the new graph.
1492
1493  std::queue<const ExplodedNode*> WS;
1494  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1495  IndexMapTy IndexMap;
1496
1497  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1498    const ExplodedNode *originalNode = nodes[nodeIndex];
1499    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1500      WS.push(N);
1501      IndexMap[originalNode] = nodeIndex;
1502    }
1503  }
1504
1505  assert(!WS.empty() && "No error node found in the trimmed graph.");
1506
1507  // Create a new (third!) graph with a single path.  This is the graph
1508  // that will be returned to the caller.
1509  ExplodedGraph *GNew = new ExplodedGraph();
1510
1511  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1512  // to the root node, and then construct a new graph that contains only
1513  // a single path.
1514  llvm::DenseMap<const void*,unsigned> Visited;
1515
1516  unsigned cnt = 0;
1517  const ExplodedNode *Root = 0;
1518
1519  while (!WS.empty()) {
1520    const ExplodedNode *Node = WS.front();
1521    WS.pop();
1522
1523    if (Visited.find(Node) != Visited.end())
1524      continue;
1525
1526    Visited[Node] = cnt++;
1527
1528    if (Node->pred_empty()) {
1529      Root = Node;
1530      break;
1531    }
1532
1533    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1534         E=Node->pred_end(); I!=E; ++I)
1535      WS.push(*I);
1536  }
1537
1538  assert(Root);
1539
1540  // Now walk from the root down the BFS path, always taking the successor
1541  // with the lowest number.
1542  ExplodedNode *Last = 0, *First = 0;
1543  NodeBackMap *BM = new NodeBackMap();
1544  unsigned NodeIndex = 0;
1545
1546  for ( const ExplodedNode *N = Root ;;) {
1547    // Lookup the number associated with the current node.
1548    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1549    assert(I != Visited.end());
1550
1551    // Create the equivalent node in the new graph with the same state
1552    // and location.
1553    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1554
1555    // Store the mapping to the original node.
1556    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1557    assert(IMitr != InverseMap.end() && "No mapping to original node.");
1558    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1559
1560    // Link up the new node with the previous node.
1561    if (Last)
1562      NewN->addPredecessor(Last, *GNew);
1563
1564    Last = NewN;
1565
1566    // Are we at the final node?
1567    IndexMapTy::iterator IMI =
1568      IndexMap.find((const ExplodedNode*)(IMitr->second));
1569    if (IMI != IndexMap.end()) {
1570      First = NewN;
1571      NodeIndex = IMI->second;
1572      break;
1573    }
1574
1575    // Find the next successor node.  We choose the node that is marked
1576    // with the lowest DFS number.
1577    ExplodedNode::const_succ_iterator SI = N->succ_begin();
1578    ExplodedNode::const_succ_iterator SE = N->succ_end();
1579    N = 0;
1580
1581    for (unsigned MinVal = 0; SI != SE; ++SI) {
1582
1583      I = Visited.find(*SI);
1584
1585      if (I == Visited.end())
1586        continue;
1587
1588      if (!N || I->second < MinVal) {
1589        N = *SI;
1590        MinVal = I->second;
1591      }
1592    }
1593
1594    assert(N);
1595  }
1596
1597  assert(First);
1598
1599  return std::make_pair(std::make_pair(GNew, BM),
1600                        std::make_pair(First, NodeIndex));
1601}
1602
1603/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1604///  and collapses PathDiagosticPieces that are expanded by macros.
1605static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
1606  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1607                                SourceLocation> > MacroStackTy;
1608
1609  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1610          PiecesTy;
1611
1612  MacroStackTy MacroStack;
1613  PiecesTy Pieces;
1614
1615  for (PathPieces::const_iterator I = PD.path.begin(), E = PD.path.end();
1616       I!=E; ++I) {
1617    // Get the location of the PathDiagnosticPiece.
1618    const FullSourceLoc Loc = (*I)->getLocation().asLocation();
1619
1620    // Determine the instantiation location, which is the location we group
1621    // related PathDiagnosticPieces.
1622    SourceLocation InstantiationLoc = Loc.isMacroID() ?
1623                                      SM.getExpansionLoc(Loc) :
1624                                      SourceLocation();
1625
1626    if (Loc.isFileID()) {
1627      MacroStack.clear();
1628      Pieces.push_back(*I);
1629      continue;
1630    }
1631
1632    assert(Loc.isMacroID());
1633
1634    // Is the PathDiagnosticPiece within the same macro group?
1635    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1636      MacroStack.back().first->subPieces.push_back(*I);
1637      continue;
1638    }
1639
1640    // We aren't in the same group.  Are we descending into a new macro
1641    // or are part of an old one?
1642    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1643
1644    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1645                                          SM.getExpansionLoc(Loc) :
1646                                          SourceLocation();
1647
1648    // Walk the entire macro stack.
1649    while (!MacroStack.empty()) {
1650      if (InstantiationLoc == MacroStack.back().second) {
1651        MacroGroup = MacroStack.back().first;
1652        break;
1653      }
1654
1655      if (ParentInstantiationLoc == MacroStack.back().second) {
1656        MacroGroup = MacroStack.back().first;
1657        break;
1658      }
1659
1660      MacroStack.pop_back();
1661    }
1662
1663    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1664      // Create a new macro group and add it to the stack.
1665      PathDiagnosticMacroPiece *NewGroup =
1666        new PathDiagnosticMacroPiece(
1667          PathDiagnosticLocation::createSingleLocation((*I)->getLocation()));
1668
1669      if (MacroGroup)
1670        MacroGroup->subPieces.push_back(NewGroup);
1671      else {
1672        assert(InstantiationLoc.isFileID());
1673        Pieces.push_back(NewGroup);
1674      }
1675
1676      MacroGroup = NewGroup;
1677      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1678    }
1679
1680    // Finally, add the PathDiagnosticPiece to the group.
1681    MacroGroup->subPieces.push_back(*I);
1682  }
1683
1684  // Now take the pieces and construct a new PathDiagnostic.
1685  PD.getMutablePieces().clear();
1686
1687  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
1688    if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I))
1689      if (!MP->containsEvent())
1690        continue;
1691    PD.getMutablePieces().push_back(*I);
1692  }
1693}
1694
1695void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1696                        SmallVectorImpl<BugReport *> &bugReports) {
1697
1698  assert(!bugReports.empty());
1699  SmallVector<const ExplodedNode *, 10> errorNodes;
1700  for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
1701    E = bugReports.end(); I != E; ++I) {
1702      errorNodes.push_back((*I)->getErrorNode());
1703  }
1704
1705  // Construct a new graph that contains only a single path from the error
1706  // node to a root.
1707  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1708  std::pair<ExplodedNode*, unsigned> >&
1709    GPair = MakeReportGraph(&getGraph(), errorNodes);
1710
1711  // Find the BugReport with the original location.
1712  assert(GPair.second.second < bugReports.size());
1713  BugReport *R = bugReports[GPair.second.second];
1714  assert(R && "No original report found for sliced graph.");
1715
1716  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1717  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1718  const ExplodedNode *N = GPair.second.first;
1719
1720  // Start building the path diagnostic...
1721  PathDiagnosticBuilder PDB(*this, R, BackMap.get(),
1722                            getPathDiagnosticConsumer());
1723
1724  // Register additional node visitors.
1725  R->addVisitor(new NilReceiverBRVisitor());
1726  R->addVisitor(new ConditionBRVisitor());
1727
1728  // Generate the very last diagnostic piece - the piece is visible before
1729  // the trace is expanded.
1730  PathDiagnosticPiece *LastPiece = 0;
1731  for (BugReport::visitor_iterator I = R->visitor_begin(),
1732                                   E = R->visitor_end(); I!=E; ++I) {
1733    if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1734      assert (!LastPiece &&
1735              "There can only be one final piece in a diagnostic.");
1736      LastPiece = Piece;
1737    }
1738  }
1739  if (!LastPiece)
1740    LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1741  if (LastPiece)
1742    PD.getActivePath().push_back(LastPiece);
1743  else
1744    return;
1745
1746  switch (PDB.getGenerationScheme()) {
1747    case PathDiagnosticConsumer::Extensive:
1748      GenerateExtensivePathDiagnostic(PD, PDB, N);
1749      break;
1750    case PathDiagnosticConsumer::Minimal:
1751      GenerateMinimalPathDiagnostic(PD, PDB, N);
1752      break;
1753  }
1754}
1755
1756void BugReporter::Register(BugType *BT) {
1757  BugTypes = F.add(BugTypes, BT);
1758}
1759
1760void BugReporter::EmitReport(BugReport* R) {
1761  // Compute the bug report's hash to determine its equivalence class.
1762  llvm::FoldingSetNodeID ID;
1763  R->Profile(ID);
1764
1765  // Lookup the equivance class.  If there isn't one, create it.
1766  BugType& BT = R->getBugType();
1767  Register(&BT);
1768  void *InsertPos;
1769  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1770
1771  if (!EQ) {
1772    EQ = new BugReportEquivClass(R);
1773    EQClasses.InsertNode(EQ, InsertPos);
1774    EQClassesVector.push_back(EQ);
1775  }
1776  else
1777    EQ->AddReport(R);
1778}
1779
1780
1781//===----------------------------------------------------------------------===//
1782// Emitting reports in equivalence classes.
1783//===----------------------------------------------------------------------===//
1784
1785namespace {
1786struct FRIEC_WLItem {
1787  const ExplodedNode *N;
1788  ExplodedNode::const_succ_iterator I, E;
1789
1790  FRIEC_WLItem(const ExplodedNode *n)
1791  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1792};
1793}
1794
1795static BugReport *
1796FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1797                             SmallVectorImpl<BugReport*> &bugReports) {
1798
1799  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1800  assert(I != E);
1801  BugReport *R = *I;
1802  BugType& BT = R->getBugType();
1803
1804  // If we don't need to suppress any of the nodes because they are
1805  // post-dominated by a sink, simply add all the nodes in the equivalence class
1806  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1807  if (!BT.isSuppressOnSink()) {
1808    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1809      const ExplodedNode *N = I->getErrorNode();
1810      if (N) {
1811        R = *I;
1812        bugReports.push_back(R);
1813      }
1814    }
1815    return R;
1816  }
1817
1818  // For bug reports that should be suppressed when all paths are post-dominated
1819  // by a sink node, iterate through the reports in the equivalence class
1820  // until we find one that isn't post-dominated (if one exists).  We use a
1821  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
1822  // this as a recursive function, but we don't want to risk blowing out the
1823  // stack for very long paths.
1824  BugReport *exampleReport = 0;
1825
1826  for (; I != E; ++I) {
1827    R = *I;
1828    const ExplodedNode *errorNode = R->getErrorNode();
1829
1830    if (!errorNode)
1831      continue;
1832    if (errorNode->isSink()) {
1833      llvm_unreachable(
1834           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1835    }
1836    // No successors?  By definition this nodes isn't post-dominated by a sink.
1837    if (errorNode->succ_empty()) {
1838      bugReports.push_back(R);
1839      if (!exampleReport)
1840        exampleReport = R;
1841      continue;
1842    }
1843
1844    // At this point we know that 'N' is not a sink and it has at least one
1845    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
1846    typedef FRIEC_WLItem WLItem;
1847    typedef SmallVector<WLItem, 10> DFSWorkList;
1848    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
1849
1850    DFSWorkList WL;
1851    WL.push_back(errorNode);
1852    Visited[errorNode] = 1;
1853
1854    while (!WL.empty()) {
1855      WLItem &WI = WL.back();
1856      assert(!WI.N->succ_empty());
1857
1858      for (; WI.I != WI.E; ++WI.I) {
1859        const ExplodedNode *Succ = *WI.I;
1860        // End-of-path node?
1861        if (Succ->succ_empty()) {
1862          // If we found an end-of-path node that is not a sink.
1863          if (!Succ->isSink()) {
1864            bugReports.push_back(R);
1865            if (!exampleReport)
1866              exampleReport = R;
1867            WL.clear();
1868            break;
1869          }
1870          // Found a sink?  Continue on to the next successor.
1871          continue;
1872        }
1873        // Mark the successor as visited.  If it hasn't been explored,
1874        // enqueue it to the DFS worklist.
1875        unsigned &mark = Visited[Succ];
1876        if (!mark) {
1877          mark = 1;
1878          WL.push_back(Succ);
1879          break;
1880        }
1881      }
1882
1883      // The worklist may have been cleared at this point.  First
1884      // check if it is empty before checking the last item.
1885      if (!WL.empty() && &WL.back() == &WI)
1886        WL.pop_back();
1887    }
1888  }
1889
1890  // ExampleReport will be NULL if all the nodes in the equivalence class
1891  // were post-dominated by sinks.
1892  return exampleReport;
1893}
1894
1895//===----------------------------------------------------------------------===//
1896// DiagnosticCache.  This is a hack to cache analyzer diagnostics.  It
1897// uses global state, which eventually should go elsewhere.
1898//===----------------------------------------------------------------------===//
1899namespace {
1900class DiagCacheItem : public llvm::FoldingSetNode {
1901  llvm::FoldingSetNodeID ID;
1902public:
1903  DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
1904    R->Profile(ID);
1905    PD->Profile(ID);
1906  }
1907
1908  void Profile(llvm::FoldingSetNodeID &id) {
1909    id = ID;
1910  }
1911
1912  llvm::FoldingSetNodeID &getID() { return ID; }
1913};
1914}
1915
1916static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
1917  // FIXME: Eventually this diagnostic cache should reside in something
1918  // like AnalysisManager instead of being a static variable.  This is
1919  // really unsafe in the long term.
1920  typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
1921  static DiagnosticCache DC;
1922
1923  void *InsertPos;
1924  DiagCacheItem *Item = new DiagCacheItem(R, PD);
1925
1926  if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
1927    delete Item;
1928    return true;
1929  }
1930
1931  DC.InsertNode(Item, InsertPos);
1932  return false;
1933}
1934
1935void BugReporter::FlushReport(BugReportEquivClass& EQ) {
1936  SmallVector<BugReport*, 10> bugReports;
1937  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
1938  if (!exampleReport)
1939    return;
1940
1941  PathDiagnosticConsumer* PD = getPathDiagnosticConsumer();
1942
1943  // FIXME: Make sure we use the 'R' for the path that was actually used.
1944  // Probably doesn't make a difference in practice.
1945  BugType& BT = exampleReport->getBugType();
1946
1947  OwningPtr<PathDiagnostic>
1948    D(new PathDiagnostic(exampleReport->getBugType().getName(),
1949                         !PD || PD->useVerboseDescription()
1950                         ? exampleReport->getDescription()
1951                         : exampleReport->getShortDescription(),
1952                         BT.getCategory()));
1953
1954  if (!bugReports.empty())
1955    GeneratePathDiagnostic(*D.get(), bugReports);
1956
1957  if (IsCachedDiagnostic(exampleReport, D.get()))
1958    return;
1959
1960  // Get the meta data.
1961  const BugReport::ExtraTextList &Meta =
1962                                  exampleReport->getExtraText();
1963  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
1964                                                e = Meta.end(); i != e; ++i) {
1965    D->addMeta(*i);
1966  }
1967
1968  // Emit a summary diagnostic to the regular Diagnostics engine.
1969  BugReport::ranges_iterator Beg, End;
1970  llvm::tie(Beg, End) = exampleReport->getRanges();
1971  DiagnosticsEngine &Diag = getDiagnostic();
1972
1973  // Search the description for '%', as that will be interpretted as a
1974  // format character by FormatDiagnostics.
1975  StringRef desc = exampleReport->getShortDescription();
1976  unsigned ErrorDiag;
1977  {
1978    SmallString<512> TmpStr;
1979    llvm::raw_svector_ostream Out(TmpStr);
1980    for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I)
1981      if (*I == '%')
1982        Out << "%%";
1983      else
1984        Out << *I;
1985
1986    Out.flush();
1987    ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr);
1988  }
1989
1990  {
1991    DiagnosticBuilder diagBuilder = Diag.Report(
1992      exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag);
1993    for (BugReport::ranges_iterator I = Beg; I != End; ++I)
1994      diagBuilder << *I;
1995  }
1996
1997  // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer.
1998  if (!PD)
1999    return;
2000
2001  if (D->path.empty()) {
2002    PathDiagnosticPiece *piece = new PathDiagnosticEventPiece(
2003                                 exampleReport->getLocation(getSourceManager()),
2004                                 exampleReport->getDescription());
2005
2006    for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
2007    D->getActivePath().push_back(piece);
2008  }
2009
2010  PD->HandlePathDiagnostic(D.take());
2011}
2012
2013void BugReporter::EmitBasicReport(StringRef name, StringRef str,
2014                                  PathDiagnosticLocation Loc,
2015                                  SourceRange* RBeg, unsigned NumRanges) {
2016  EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
2017}
2018
2019void BugReporter::EmitBasicReport(StringRef name,
2020                                  StringRef category,
2021                                  StringRef str, PathDiagnosticLocation Loc,
2022                                  SourceRange* RBeg, unsigned NumRanges) {
2023
2024  // 'BT' is owned by BugReporter.
2025  BugType *BT = getBugTypeForName(name, category);
2026  BugReport *R = new BugReport(*BT, str, Loc);
2027  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2028  EmitReport(R);
2029}
2030
2031BugType *BugReporter::getBugTypeForName(StringRef name,
2032                                        StringRef category) {
2033  SmallString<136> fullDesc;
2034  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2035  llvm::StringMapEntry<BugType *> &
2036      entry = StrBugTypes.GetOrCreateValue(fullDesc);
2037  BugType *BT = entry.getValue();
2038  if (!BT) {
2039    BT = new BugType(name, category);
2040    entry.setValue(BT);
2041  }
2042  return BT;
2043}
2044