BugReporter.cpp revision 63bc186d6ac0b44ba4ec6fccb5f471b05c79b666
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Analysis/ProgramPoint.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include <queue>
34
35using namespace clang;
36using namespace ento;
37
38BugReporterVisitor::~BugReporterVisitor() {}
39
40void BugReporterContext::anchor() {}
41
42//===----------------------------------------------------------------------===//
43// Helper routines for walking the ExplodedGraph and fetching statements.
44//===----------------------------------------------------------------------===//
45
46static inline const Stmt *GetStmt(const ProgramPoint &P) {
47  if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48    return SP->getStmt();
49  else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50    return BE->getSrc()->getTerminator();
51  else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52    return CE->getCallExpr();
53  else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54    return CEE->getCalleeContext()->getCallSite();
55
56  return 0;
57}
58
59static inline const ExplodedNode*
60GetPredecessorNode(const ExplodedNode *N) {
61  return N->pred_empty() ? NULL : *(N->pred_begin());
62}
63
64static inline const ExplodedNode*
65GetSuccessorNode(const ExplodedNode *N) {
66  return N->succ_empty() ? NULL : *(N->succ_begin());
67}
68
69static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71    if (const Stmt *S = GetStmt(N->getLocation()))
72      return S;
73
74  return 0;
75}
76
77static const Stmt *GetNextStmt(const ExplodedNode *N) {
78  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79    if (const Stmt *S = GetStmt(N->getLocation())) {
80      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81      // not actual statement points.
82      switch (S->getStmtClass()) {
83        case Stmt::ChooseExprClass:
84        case Stmt::BinaryConditionalOperatorClass: continue;
85        case Stmt::ConditionalOperatorClass: continue;
86        case Stmt::BinaryOperatorClass: {
87          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88          if (Op == BO_LAnd || Op == BO_LOr)
89            continue;
90          break;
91        }
92        default:
93          break;
94      }
95      return S;
96    }
97
98  return 0;
99}
100
101static inline const Stmt*
102GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103  if (const Stmt *S = GetStmt(N->getLocation()))
104    return S;
105
106  return GetPreviousStmt(N);
107}
108
109static inline const Stmt*
110GetCurrentOrNextStmt(const ExplodedNode *N) {
111  if (const Stmt *S = GetStmt(N->getLocation()))
112    return S;
113
114  return GetNextStmt(N);
115}
116
117//===----------------------------------------------------------------------===//
118// Diagnostic cleanup.
119//===----------------------------------------------------------------------===//
120
121static PathDiagnosticEventPiece *
122eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
123                            PathDiagnosticEventPiece *Y) {
124  // Prefer diagnostics that come from ConditionBRVisitor over
125  // those that came from TrackConstraintBRVisitor.
126  const void *tagPreferred = ConditionBRVisitor::getTag();
127  const void *tagLesser = TrackConstraintBRVisitor::getTag();
128
129  if (X->getLocation() != Y->getLocation())
130    return 0;
131
132  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
133    return X;
134
135  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
136    return Y;
137
138  return 0;
139}
140
141/// An optimization pass over PathPieces that removes redundant diagnostics
142/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
143/// BugReporterVisitors use different methods to generate diagnostics, with
144/// one capable of emitting diagnostics in some cases but not in others.  This
145/// can lead to redundant diagnostic pieces at the same point in a path.
146static void removeRedundantMsgs(PathPieces &path) {
147  unsigned N = path.size();
148  if (N < 2)
149    return;
150  // NOTE: this loop intentionally is not using an iterator.  Instead, we
151  // are streaming the path and modifying it in place.  This is done by
152  // grabbing the front, processing it, and if we decide to keep it append
153  // it to the end of the path.  The entire path is processed in this way.
154  for (unsigned i = 0; i < N; ++i) {
155    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
156    path.pop_front();
157
158    switch (piece->getKind()) {
159      case clang::ento::PathDiagnosticPiece::Call:
160        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
161        break;
162      case clang::ento::PathDiagnosticPiece::Macro:
163        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
164        break;
165      case clang::ento::PathDiagnosticPiece::ControlFlow:
166        break;
167      case clang::ento::PathDiagnosticPiece::Event: {
168        if (i == N-1)
169          break;
170
171        if (PathDiagnosticEventPiece *nextEvent =
172            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
173          PathDiagnosticEventPiece *event =
174            cast<PathDiagnosticEventPiece>(piece);
175          // Check to see if we should keep one of the two pieces.  If we
176          // come up with a preference, record which piece to keep, and consume
177          // another piece from the path.
178          if (PathDiagnosticEventPiece *pieceToKeep =
179              eventsDescribeSameCondition(event, nextEvent)) {
180            piece = pieceToKeep;
181            path.pop_front();
182            ++i;
183          }
184        }
185        break;
186      }
187    }
188    path.push_back(piece);
189  }
190}
191
192/// Recursively scan through a path and prune out calls and macros pieces
193/// that aren't needed.  Return true if afterwards the path contains
194/// "interesting stuff" which means it should be pruned from the parent path.
195bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R,
196                                     PathDiagnosticLocation *LastCallLocation) {
197  bool containsSomethingInteresting = false;
198  const unsigned N = pieces.size();
199
200  for (unsigned i = 0 ; i < N ; ++i) {
201    // Remove the front piece from the path.  If it is still something we
202    // want to keep once we are done, we will push it back on the end.
203    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
204    pieces.pop_front();
205
206    // Throw away pieces with invalid locations.
207    if (piece->getKind() != PathDiagnosticPiece::Call &&
208        piece->getLocation().asLocation().isInvalid())
209      continue;
210
211    switch (piece->getKind()) {
212      case PathDiagnosticPiece::Call: {
213        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
214        // Check if the location context is interesting.
215        assert(LocationContextMap.count(call));
216        if (R->isInteresting(LocationContextMap[call])) {
217          containsSomethingInteresting = true;
218          break;
219        }
220
221        if (LastCallLocation) {
222          if (!call->callEnter.asLocation().isValid())
223            call->callEnter = *LastCallLocation;
224          if (!call->callReturn.asLocation().isValid())
225            call->callReturn = *LastCallLocation;
226        }
227
228        // Recursively clean out the subclass.  Keep this call around if
229        // it contains any informative diagnostics.
230        if (call->callEnterWithin.asLocation().isValid())
231          LastCallLocation = &call->callEnterWithin;
232        else
233          LastCallLocation = &call->callEnter;
234
235        assert(LastCallLocation && "Outermost call has an invalid location");
236        if (!RemoveUneededCalls(call->path, R, LastCallLocation))
237          continue;
238
239        containsSomethingInteresting = true;
240        break;
241      }
242      case PathDiagnosticPiece::Macro: {
243        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
244        if (!RemoveUneededCalls(macro->subPieces, R))
245          continue;
246        containsSomethingInteresting = true;
247        break;
248      }
249      case PathDiagnosticPiece::Event: {
250        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
251
252        // We never throw away an event, but we do throw it away wholesale
253        // as part of a path if we throw the entire path away.
254        containsSomethingInteresting |= !event->isPrunable();
255        break;
256      }
257      case PathDiagnosticPiece::ControlFlow:
258        break;
259    }
260
261    pieces.push_back(piece);
262  }
263
264  return containsSomethingInteresting;
265}
266
267//===----------------------------------------------------------------------===//
268// PathDiagnosticBuilder and its associated routines and helper objects.
269//===----------------------------------------------------------------------===//
270
271typedef llvm::DenseMap<const ExplodedNode*,
272const ExplodedNode*> NodeBackMap;
273
274namespace {
275class NodeMapClosure : public BugReport::NodeResolver {
276  NodeBackMap& M;
277public:
278  NodeMapClosure(NodeBackMap *m) : M(*m) {}
279  ~NodeMapClosure() {}
280
281  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
282    NodeBackMap::iterator I = M.find(N);
283    return I == M.end() ? 0 : I->second;
284  }
285};
286
287class PathDiagnosticBuilder : public BugReporterContext {
288  BugReport *R;
289  PathDiagnosticConsumer *PDC;
290  OwningPtr<ParentMap> PM;
291  NodeMapClosure NMC;
292public:
293  const LocationContext *LC;
294
295  PathDiagnosticBuilder(GRBugReporter &br,
296                        BugReport *r, NodeBackMap *Backmap,
297                        PathDiagnosticConsumer *pdc)
298    : BugReporterContext(br),
299      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
300  {}
301
302  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
303
304  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
305                                            const ExplodedNode *N);
306
307  BugReport *getBugReport() { return R; }
308
309  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
310
311  ParentMap& getParentMap() { return LC->getParentMap(); }
312
313  const Stmt *getParent(const Stmt *S) {
314    return getParentMap().getParent(S);
315  }
316
317  virtual NodeMapClosure& getNodeResolver() { return NMC; }
318
319  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
320
321  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
322    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
323  }
324
325  bool supportsLogicalOpControlFlow() const {
326    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
327  }
328};
329} // end anonymous namespace
330
331PathDiagnosticLocation
332PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
333  if (const Stmt *S = GetNextStmt(N))
334    return PathDiagnosticLocation(S, getSourceManager(), LC);
335
336  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
337                                               getSourceManager());
338}
339
340PathDiagnosticLocation
341PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
342                                          const ExplodedNode *N) {
343
344  // Slow, but probably doesn't matter.
345  if (os.str().empty())
346    os << ' ';
347
348  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
349
350  if (Loc.asStmt())
351    os << "Execution continues on line "
352       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
353       << '.';
354  else {
355    os << "Execution jumps to the end of the ";
356    const Decl *D = N->getLocationContext()->getDecl();
357    if (isa<ObjCMethodDecl>(D))
358      os << "method";
359    else if (isa<FunctionDecl>(D))
360      os << "function";
361    else {
362      assert(isa<BlockDecl>(D));
363      os << "anonymous block";
364    }
365    os << '.';
366  }
367
368  return Loc;
369}
370
371static bool IsNested(const Stmt *S, ParentMap &PM) {
372  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
373    return true;
374
375  const Stmt *Parent = PM.getParentIgnoreParens(S);
376
377  if (Parent)
378    switch (Parent->getStmtClass()) {
379      case Stmt::ForStmtClass:
380      case Stmt::DoStmtClass:
381      case Stmt::WhileStmtClass:
382        return true;
383      default:
384        break;
385    }
386
387  return false;
388}
389
390PathDiagnosticLocation
391PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
392  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
393  ParentMap &P = getParentMap();
394  SourceManager &SMgr = getSourceManager();
395
396  while (IsNested(S, P)) {
397    const Stmt *Parent = P.getParentIgnoreParens(S);
398
399    if (!Parent)
400      break;
401
402    switch (Parent->getStmtClass()) {
403      case Stmt::BinaryOperatorClass: {
404        const BinaryOperator *B = cast<BinaryOperator>(Parent);
405        if (B->isLogicalOp())
406          return PathDiagnosticLocation(S, SMgr, LC);
407        break;
408      }
409      case Stmt::CompoundStmtClass:
410      case Stmt::StmtExprClass:
411        return PathDiagnosticLocation(S, SMgr, LC);
412      case Stmt::ChooseExprClass:
413        // Similar to '?' if we are referring to condition, just have the edge
414        // point to the entire choose expression.
415        if (cast<ChooseExpr>(Parent)->getCond() == S)
416          return PathDiagnosticLocation(Parent, SMgr, LC);
417        else
418          return PathDiagnosticLocation(S, SMgr, LC);
419      case Stmt::BinaryConditionalOperatorClass:
420      case Stmt::ConditionalOperatorClass:
421        // For '?', if we are referring to condition, just have the edge point
422        // to the entire '?' expression.
423        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
424          return PathDiagnosticLocation(Parent, SMgr, LC);
425        else
426          return PathDiagnosticLocation(S, SMgr, LC);
427      case Stmt::DoStmtClass:
428          return PathDiagnosticLocation(S, SMgr, LC);
429      case Stmt::ForStmtClass:
430        if (cast<ForStmt>(Parent)->getBody() == S)
431          return PathDiagnosticLocation(S, SMgr, LC);
432        break;
433      case Stmt::IfStmtClass:
434        if (cast<IfStmt>(Parent)->getCond() != S)
435          return PathDiagnosticLocation(S, SMgr, LC);
436        break;
437      case Stmt::ObjCForCollectionStmtClass:
438        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
439          return PathDiagnosticLocation(S, SMgr, LC);
440        break;
441      case Stmt::WhileStmtClass:
442        if (cast<WhileStmt>(Parent)->getCond() != S)
443          return PathDiagnosticLocation(S, SMgr, LC);
444        break;
445      default:
446        break;
447    }
448
449    S = Parent;
450  }
451
452  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
453
454  // Special case: DeclStmts can appear in for statement declarations, in which
455  //  case the ForStmt is the context.
456  if (isa<DeclStmt>(S)) {
457    if (const Stmt *Parent = P.getParent(S)) {
458      switch (Parent->getStmtClass()) {
459        case Stmt::ForStmtClass:
460        case Stmt::ObjCForCollectionStmtClass:
461          return PathDiagnosticLocation(Parent, SMgr, LC);
462        default:
463          break;
464      }
465    }
466  }
467  else if (isa<BinaryOperator>(S)) {
468    // Special case: the binary operator represents the initialization
469    // code in a for statement (this can happen when the variable being
470    // initialized is an old variable.
471    if (const ForStmt *FS =
472          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
473      if (FS->getInit() == S)
474        return PathDiagnosticLocation(FS, SMgr, LC);
475    }
476  }
477
478  return PathDiagnosticLocation(S, SMgr, LC);
479}
480
481//===----------------------------------------------------------------------===//
482// "Visitors only" path diagnostic generation algorithm.
483//===----------------------------------------------------------------------===//
484static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
485                                               PathDiagnosticBuilder &PDB,
486                                               const ExplodedNode *N,
487                                      ArrayRef<BugReporterVisitor *> visitors) {
488  // All path generation skips the very first node (the error node).
489  // This is because there is special handling for the end-of-path note.
490  N = N->getFirstPred();
491  if (!N)
492    return true;
493
494  BugReport *R = PDB.getBugReport();
495  while (const ExplodedNode *Pred = N->getFirstPred()) {
496    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
497                                                  E = visitors.end();
498         I != E; ++I) {
499      // Visit all the node pairs, but throw the path pieces away.
500      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
501      delete Piece;
502    }
503
504    N = Pred;
505  }
506
507  return R->isValid();
508}
509
510//===----------------------------------------------------------------------===//
511// "Minimal" path diagnostic generation algorithm.
512//===----------------------------------------------------------------------===//
513typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
514typedef SmallVector<StackDiagPair, 6> StackDiagVector;
515
516static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
517                                         StackDiagVector &CallStack) {
518  // If the piece contains a special message, add it to all the call
519  // pieces on the active stack.
520  if (PathDiagnosticEventPiece *ep =
521        dyn_cast<PathDiagnosticEventPiece>(P)) {
522
523    if (ep->hasCallStackHint())
524      for (StackDiagVector::iterator I = CallStack.begin(),
525                                     E = CallStack.end(); I != E; ++I) {
526        PathDiagnosticCallPiece *CP = I->first;
527        const ExplodedNode *N = I->second;
528        std::string stackMsg = ep->getCallStackMessage(N);
529
530        // The last message on the path to final bug is the most important
531        // one. Since we traverse the path backwards, do not add the message
532        // if one has been previously added.
533        if  (!CP->hasCallStackMessage())
534          CP->setCallStackMessage(stackMsg);
535      }
536  }
537}
538
539static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
540
541static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
542                                          PathDiagnosticBuilder &PDB,
543                                          const ExplodedNode *N,
544                                      ArrayRef<BugReporterVisitor *> visitors) {
545
546  SourceManager& SMgr = PDB.getSourceManager();
547  const LocationContext *LC = PDB.LC;
548  const ExplodedNode *NextNode = N->pred_empty()
549                                        ? NULL : *(N->pred_begin());
550
551  StackDiagVector CallStack;
552
553  while (NextNode) {
554    N = NextNode;
555    PDB.LC = N->getLocationContext();
556    NextNode = GetPredecessorNode(N);
557
558    ProgramPoint P = N->getLocation();
559
560    do {
561      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
562        PathDiagnosticCallPiece *C =
563            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
564        GRBugReporter& BR = PDB.getBugReporter();
565        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
566        PD.getActivePath().push_front(C);
567        PD.pushActivePath(&C->path);
568        CallStack.push_back(StackDiagPair(C, N));
569        break;
570      }
571
572      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
573        // Flush all locations, and pop the active path.
574        bool VisitedEntireCall = PD.isWithinCall();
575        PD.popActivePath();
576
577        // Either we just added a bunch of stuff to the top-level path, or
578        // we have a previous CallExitEnd.  If the former, it means that the
579        // path terminated within a function call.  We must then take the
580        // current contents of the active path and place it within
581        // a new PathDiagnosticCallPiece.
582        PathDiagnosticCallPiece *C;
583        if (VisitedEntireCall) {
584          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
585        } else {
586          const Decl *Caller = CE->getLocationContext()->getDecl();
587          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
588          GRBugReporter& BR = PDB.getBugReporter();
589          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
590        }
591
592        C->setCallee(*CE, SMgr);
593        if (!CallStack.empty()) {
594          assert(CallStack.back().first == C);
595          CallStack.pop_back();
596        }
597        break;
598      }
599
600      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
601        const CFGBlock *Src = BE->getSrc();
602        const CFGBlock *Dst = BE->getDst();
603        const Stmt *T = Src->getTerminator();
604
605        if (!T)
606          break;
607
608        PathDiagnosticLocation Start =
609            PathDiagnosticLocation::createBegin(T, SMgr,
610                N->getLocationContext());
611
612        switch (T->getStmtClass()) {
613        default:
614          break;
615
616        case Stmt::GotoStmtClass:
617        case Stmt::IndirectGotoStmtClass: {
618          const Stmt *S = GetNextStmt(N);
619
620          if (!S)
621            break;
622
623          std::string sbuf;
624          llvm::raw_string_ostream os(sbuf);
625          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
626
627          os << "Control jumps to line "
628              << End.asLocation().getExpansionLineNumber();
629          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
630              Start, End, os.str()));
631          break;
632        }
633
634        case Stmt::SwitchStmtClass: {
635          // Figure out what case arm we took.
636          std::string sbuf;
637          llvm::raw_string_ostream os(sbuf);
638
639          if (const Stmt *S = Dst->getLabel()) {
640            PathDiagnosticLocation End(S, SMgr, LC);
641
642            switch (S->getStmtClass()) {
643            default:
644              os << "No cases match in the switch statement. "
645              "Control jumps to line "
646              << End.asLocation().getExpansionLineNumber();
647              break;
648            case Stmt::DefaultStmtClass:
649              os << "Control jumps to the 'default' case at line "
650              << End.asLocation().getExpansionLineNumber();
651              break;
652
653            case Stmt::CaseStmtClass: {
654              os << "Control jumps to 'case ";
655              const CaseStmt *Case = cast<CaseStmt>(S);
656              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
657
658              // Determine if it is an enum.
659              bool GetRawInt = true;
660
661              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
662                // FIXME: Maybe this should be an assertion.  Are there cases
663                // were it is not an EnumConstantDecl?
664                const EnumConstantDecl *D =
665                    dyn_cast<EnumConstantDecl>(DR->getDecl());
666
667                if (D) {
668                  GetRawInt = false;
669                  os << *D;
670                }
671              }
672
673              if (GetRawInt)
674                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
675
676              os << ":'  at line "
677                  << End.asLocation().getExpansionLineNumber();
678              break;
679            }
680            }
681            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
682                Start, End, os.str()));
683          }
684          else {
685            os << "'Default' branch taken. ";
686            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
687            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
688                Start, End, os.str()));
689          }
690
691          break;
692        }
693
694        case Stmt::BreakStmtClass:
695        case Stmt::ContinueStmtClass: {
696          std::string sbuf;
697          llvm::raw_string_ostream os(sbuf);
698          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
699          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
700              Start, End, os.str()));
701          break;
702        }
703
704        // Determine control-flow for ternary '?'.
705        case Stmt::BinaryConditionalOperatorClass:
706        case Stmt::ConditionalOperatorClass: {
707          std::string sbuf;
708          llvm::raw_string_ostream os(sbuf);
709          os << "'?' condition is ";
710
711          if (*(Src->succ_begin()+1) == Dst)
712            os << "false";
713          else
714            os << "true";
715
716          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
717
718          if (const Stmt *S = End.asStmt())
719            End = PDB.getEnclosingStmtLocation(S);
720
721          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
722              Start, End, os.str()));
723          break;
724        }
725
726        // Determine control-flow for short-circuited '&&' and '||'.
727        case Stmt::BinaryOperatorClass: {
728          if (!PDB.supportsLogicalOpControlFlow())
729            break;
730
731          const BinaryOperator *B = cast<BinaryOperator>(T);
732          std::string sbuf;
733          llvm::raw_string_ostream os(sbuf);
734          os << "Left side of '";
735
736          if (B->getOpcode() == BO_LAnd) {
737            os << "&&" << "' is ";
738
739            if (*(Src->succ_begin()+1) == Dst) {
740              os << "false";
741              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
742              PathDiagnosticLocation Start =
743                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
744              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
745                  Start, End, os.str()));
746            }
747            else {
748              os << "true";
749              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
750              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
751              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
752                  Start, End, os.str()));
753            }
754          }
755          else {
756            assert(B->getOpcode() == BO_LOr);
757            os << "||" << "' is ";
758
759            if (*(Src->succ_begin()+1) == Dst) {
760              os << "false";
761              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
762              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
763              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
764                  Start, End, os.str()));
765            }
766            else {
767              os << "true";
768              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
769              PathDiagnosticLocation Start =
770                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
771              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
772                  Start, End, os.str()));
773            }
774          }
775
776          break;
777        }
778
779        case Stmt::DoStmtClass:  {
780          if (*(Src->succ_begin()) == Dst) {
781            std::string sbuf;
782            llvm::raw_string_ostream os(sbuf);
783
784            os << "Loop condition is true. ";
785            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
786
787            if (const Stmt *S = End.asStmt())
788              End = PDB.getEnclosingStmtLocation(S);
789
790            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
791                Start, End, os.str()));
792          }
793          else {
794            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
795
796            if (const Stmt *S = End.asStmt())
797              End = PDB.getEnclosingStmtLocation(S);
798
799            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
800                Start, End, "Loop condition is false.  Exiting loop"));
801          }
802
803          break;
804        }
805
806        case Stmt::WhileStmtClass:
807        case Stmt::ForStmtClass: {
808          if (*(Src->succ_begin()+1) == Dst) {
809            std::string sbuf;
810            llvm::raw_string_ostream os(sbuf);
811
812            os << "Loop condition is false. ";
813            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
814            if (const Stmt *S = End.asStmt())
815              End = PDB.getEnclosingStmtLocation(S);
816
817            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
818                Start, End, os.str()));
819          }
820          else {
821            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
822            if (const Stmt *S = End.asStmt())
823              End = PDB.getEnclosingStmtLocation(S);
824
825            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
826                Start, End, "Loop condition is true.  Entering loop body"));
827          }
828
829          break;
830        }
831
832        case Stmt::IfStmtClass: {
833          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
834
835          if (const Stmt *S = End.asStmt())
836            End = PDB.getEnclosingStmtLocation(S);
837
838          if (*(Src->succ_begin()+1) == Dst)
839            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
840                Start, End, "Taking false branch"));
841          else
842            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
843                Start, End, "Taking true branch"));
844
845          break;
846        }
847        }
848      }
849    } while(0);
850
851    if (NextNode) {
852      // Add diagnostic pieces from custom visitors.
853      BugReport *R = PDB.getBugReport();
854      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
855                                                    E = visitors.end();
856           I != E; ++I) {
857        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
858          PD.getActivePath().push_front(p);
859          updateStackPiecesWithMessage(p, CallStack);
860        }
861      }
862    }
863  }
864
865  if (!PDB.getBugReport()->isValid())
866    return false;
867
868  // After constructing the full PathDiagnostic, do a pass over it to compact
869  // PathDiagnosticPieces that occur within a macro.
870  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
871  return true;
872}
873
874//===----------------------------------------------------------------------===//
875// "Extensive" PathDiagnostic generation.
876//===----------------------------------------------------------------------===//
877
878static bool IsControlFlowExpr(const Stmt *S) {
879  const Expr *E = dyn_cast<Expr>(S);
880
881  if (!E)
882    return false;
883
884  E = E->IgnoreParenCasts();
885
886  if (isa<AbstractConditionalOperator>(E))
887    return true;
888
889  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
890    if (B->isLogicalOp())
891      return true;
892
893  return false;
894}
895
896namespace {
897class ContextLocation : public PathDiagnosticLocation {
898  bool IsDead;
899public:
900  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
901    : PathDiagnosticLocation(L), IsDead(isdead) {}
902
903  void markDead() { IsDead = true; }
904  bool isDead() const { return IsDead; }
905};
906
907class EdgeBuilder {
908  std::vector<ContextLocation> CLocs;
909  typedef std::vector<ContextLocation>::iterator iterator;
910  PathDiagnostic &PD;
911  PathDiagnosticBuilder &PDB;
912  PathDiagnosticLocation PrevLoc;
913
914  bool IsConsumedExpr(const PathDiagnosticLocation &L);
915
916  bool containsLocation(const PathDiagnosticLocation &Container,
917                        const PathDiagnosticLocation &Containee);
918
919  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
920
921  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
922                                         bool firstCharOnly = false) {
923    if (const Stmt *S = L.asStmt()) {
924      const Stmt *Original = S;
925      while (1) {
926        // Adjust the location for some expressions that are best referenced
927        // by one of their subexpressions.
928        switch (S->getStmtClass()) {
929          default:
930            break;
931          case Stmt::ParenExprClass:
932          case Stmt::GenericSelectionExprClass:
933            S = cast<Expr>(S)->IgnoreParens();
934            firstCharOnly = true;
935            continue;
936          case Stmt::BinaryConditionalOperatorClass:
937          case Stmt::ConditionalOperatorClass:
938            S = cast<AbstractConditionalOperator>(S)->getCond();
939            firstCharOnly = true;
940            continue;
941          case Stmt::ChooseExprClass:
942            S = cast<ChooseExpr>(S)->getCond();
943            firstCharOnly = true;
944            continue;
945          case Stmt::BinaryOperatorClass:
946            S = cast<BinaryOperator>(S)->getLHS();
947            firstCharOnly = true;
948            continue;
949        }
950
951        break;
952      }
953
954      if (S != Original)
955        L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
956    }
957
958    if (firstCharOnly)
959      L  = PathDiagnosticLocation::createSingleLocation(L);
960
961    return L;
962  }
963
964  void popLocation() {
965    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
966      // For contexts, we only one the first character as the range.
967      rawAddEdge(cleanUpLocation(CLocs.back(), true));
968    }
969    CLocs.pop_back();
970  }
971
972public:
973  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
974    : PD(pd), PDB(pdb) {
975
976      // If the PathDiagnostic already has pieces, add the enclosing statement
977      // of the first piece as a context as well.
978      if (!PD.path.empty()) {
979        PrevLoc = (*PD.path.begin())->getLocation();
980
981        if (const Stmt *S = PrevLoc.asStmt())
982          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
983      }
984  }
985
986  ~EdgeBuilder() {
987    while (!CLocs.empty()) popLocation();
988
989    // Finally, add an initial edge from the start location of the first
990    // statement (if it doesn't already exist).
991    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
992                                                       PDB.LC,
993                                                       PDB.getSourceManager());
994    if (L.isValid())
995      rawAddEdge(L);
996  }
997
998  void flushLocations() {
999    while (!CLocs.empty())
1000      popLocation();
1001    PrevLoc = PathDiagnosticLocation();
1002  }
1003
1004  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
1005
1006  void rawAddEdge(PathDiagnosticLocation NewLoc);
1007
1008  void addContext(const Stmt *S);
1009  void addContext(const PathDiagnosticLocation &L);
1010  void addExtendedContext(const Stmt *S);
1011};
1012} // end anonymous namespace
1013
1014
1015PathDiagnosticLocation
1016EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1017  if (const Stmt *S = L.asStmt()) {
1018    if (IsControlFlowExpr(S))
1019      return L;
1020
1021    return PDB.getEnclosingStmtLocation(S);
1022  }
1023
1024  return L;
1025}
1026
1027bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1028                                   const PathDiagnosticLocation &Containee) {
1029
1030  if (Container == Containee)
1031    return true;
1032
1033  if (Container.asDecl())
1034    return true;
1035
1036  if (const Stmt *S = Containee.asStmt())
1037    if (const Stmt *ContainerS = Container.asStmt()) {
1038      while (S) {
1039        if (S == ContainerS)
1040          return true;
1041        S = PDB.getParent(S);
1042      }
1043      return false;
1044    }
1045
1046  // Less accurate: compare using source ranges.
1047  SourceRange ContainerR = Container.asRange();
1048  SourceRange ContaineeR = Containee.asRange();
1049
1050  SourceManager &SM = PDB.getSourceManager();
1051  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1052  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1053  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1054  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1055
1056  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1057  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1058  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1059  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1060
1061  assert(ContainerBegLine <= ContainerEndLine);
1062  assert(ContaineeBegLine <= ContaineeEndLine);
1063
1064  return (ContainerBegLine <= ContaineeBegLine &&
1065          ContainerEndLine >= ContaineeEndLine &&
1066          (ContainerBegLine != ContaineeBegLine ||
1067           SM.getExpansionColumnNumber(ContainerRBeg) <=
1068           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1069          (ContainerEndLine != ContaineeEndLine ||
1070           SM.getExpansionColumnNumber(ContainerREnd) >=
1071           SM.getExpansionColumnNumber(ContaineeREnd)));
1072}
1073
1074void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1075  if (!PrevLoc.isValid()) {
1076    PrevLoc = NewLoc;
1077    return;
1078  }
1079
1080  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1081  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1082
1083  if (PrevLocClean.asLocation().isInvalid()) {
1084    PrevLoc = NewLoc;
1085    return;
1086  }
1087
1088  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1089    return;
1090
1091  // FIXME: Ignore intra-macro edges for now.
1092  if (NewLocClean.asLocation().getExpansionLoc() ==
1093      PrevLocClean.asLocation().getExpansionLoc())
1094    return;
1095
1096  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1097  PrevLoc = NewLoc;
1098}
1099
1100void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1101
1102  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1103    return;
1104
1105  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1106
1107  while (!CLocs.empty()) {
1108    ContextLocation &TopContextLoc = CLocs.back();
1109
1110    // Is the top location context the same as the one for the new location?
1111    if (TopContextLoc == CLoc) {
1112      if (alwaysAdd) {
1113        if (IsConsumedExpr(TopContextLoc) &&
1114            !IsControlFlowExpr(TopContextLoc.asStmt()))
1115            TopContextLoc.markDead();
1116
1117        rawAddEdge(NewLoc);
1118      }
1119
1120      return;
1121    }
1122
1123    if (containsLocation(TopContextLoc, CLoc)) {
1124      if (alwaysAdd) {
1125        rawAddEdge(NewLoc);
1126
1127        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1128          CLocs.push_back(ContextLocation(CLoc, true));
1129          return;
1130        }
1131      }
1132
1133      CLocs.push_back(CLoc);
1134      return;
1135    }
1136
1137    // Context does not contain the location.  Flush it.
1138    popLocation();
1139  }
1140
1141  // If we reach here, there is no enclosing context.  Just add the edge.
1142  rawAddEdge(NewLoc);
1143}
1144
1145bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1146  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1147    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1148
1149  return false;
1150}
1151
1152void EdgeBuilder::addExtendedContext(const Stmt *S) {
1153  if (!S)
1154    return;
1155
1156  const Stmt *Parent = PDB.getParent(S);
1157  while (Parent) {
1158    if (isa<CompoundStmt>(Parent))
1159      Parent = PDB.getParent(Parent);
1160    else
1161      break;
1162  }
1163
1164  if (Parent) {
1165    switch (Parent->getStmtClass()) {
1166      case Stmt::DoStmtClass:
1167      case Stmt::ObjCAtSynchronizedStmtClass:
1168        addContext(Parent);
1169      default:
1170        break;
1171    }
1172  }
1173
1174  addContext(S);
1175}
1176
1177void EdgeBuilder::addContext(const Stmt *S) {
1178  if (!S)
1179    return;
1180
1181  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1182  addContext(L);
1183}
1184
1185void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1186  while (!CLocs.empty()) {
1187    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1188
1189    // Is the top location context the same as the one for the new location?
1190    if (TopContextLoc == L)
1191      return;
1192
1193    if (containsLocation(TopContextLoc, L)) {
1194      CLocs.push_back(L);
1195      return;
1196    }
1197
1198    // Context does not contain the location.  Flush it.
1199    popLocation();
1200  }
1201
1202  CLocs.push_back(L);
1203}
1204
1205// Cone-of-influence: support the reverse propagation of "interesting" symbols
1206// and values by tracing interesting calculations backwards through evaluated
1207// expressions along a path.  This is probably overly complicated, but the idea
1208// is that if an expression computed an "interesting" value, the child
1209// expressions are are also likely to be "interesting" as well (which then
1210// propagates to the values they in turn compute).  This reverse propagation
1211// is needed to track interesting correlations across function call boundaries,
1212// where formal arguments bind to actual arguments, etc.  This is also needed
1213// because the constraint solver sometimes simplifies certain symbolic values
1214// into constants when appropriate, and this complicates reasoning about
1215// interesting values.
1216typedef llvm::DenseSet<const Expr *> InterestingExprs;
1217
1218static void reversePropagateIntererstingSymbols(BugReport &R,
1219                                                InterestingExprs &IE,
1220                                                const ProgramState *State,
1221                                                const Expr *Ex,
1222                                                const LocationContext *LCtx) {
1223  SVal V = State->getSVal(Ex, LCtx);
1224  if (!(R.isInteresting(V) || IE.count(Ex)))
1225    return;
1226
1227  switch (Ex->getStmtClass()) {
1228    default:
1229      if (!isa<CastExpr>(Ex))
1230        break;
1231      // Fall through.
1232    case Stmt::BinaryOperatorClass:
1233    case Stmt::UnaryOperatorClass: {
1234      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1235            CE = Ex->child_end();
1236            CI != CE; ++CI) {
1237        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1238          IE.insert(child);
1239          SVal ChildV = State->getSVal(child, LCtx);
1240          R.markInteresting(ChildV);
1241        }
1242        break;
1243      }
1244    }
1245  }
1246
1247  R.markInteresting(V);
1248}
1249
1250static void reversePropagateInterestingSymbols(BugReport &R,
1251                                               InterestingExprs &IE,
1252                                               const ProgramState *State,
1253                                               const LocationContext *CalleeCtx,
1254                                               const LocationContext *CallerCtx)
1255{
1256  // FIXME: Handle non-CallExpr-based CallEvents.
1257  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1258  const Stmt *CallSite = Callee->getCallSite();
1259  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1260    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1261      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1262                                         PE = FD->param_end();
1263      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1264      for (; AI != AE && PI != PE; ++AI, ++PI) {
1265        if (const Expr *ArgE = *AI) {
1266          if (const ParmVarDecl *PD = *PI) {
1267            Loc LV = State->getLValue(PD, CalleeCtx);
1268            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1269              IE.insert(ArgE);
1270          }
1271        }
1272      }
1273    }
1274  }
1275}
1276
1277static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1278                                            PathDiagnosticBuilder &PDB,
1279                                            const ExplodedNode *N,
1280                                      ArrayRef<BugReporterVisitor *> visitors) {
1281  EdgeBuilder EB(PD, PDB);
1282  const SourceManager& SM = PDB.getSourceManager();
1283  StackDiagVector CallStack;
1284  InterestingExprs IE;
1285
1286  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1287  while (NextNode) {
1288    N = NextNode;
1289    NextNode = GetPredecessorNode(N);
1290    ProgramPoint P = N->getLocation();
1291
1292    do {
1293      if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1294        if (const Expr *Ex = PS->getStmtAs<Expr>())
1295          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1296                                              N->getState().getPtr(), Ex,
1297                                              N->getLocationContext());
1298      }
1299
1300      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1301        const Stmt *S = CE->getCalleeContext()->getCallSite();
1302        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1303            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1304                                                N->getState().getPtr(), Ex,
1305                                                N->getLocationContext());
1306        }
1307
1308        PathDiagnosticCallPiece *C =
1309          PathDiagnosticCallPiece::construct(N, *CE, SM);
1310        GRBugReporter& BR = PDB.getBugReporter();
1311        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1312
1313        EB.addEdge(C->callReturn, true);
1314        EB.flushLocations();
1315
1316        PD.getActivePath().push_front(C);
1317        PD.pushActivePath(&C->path);
1318        CallStack.push_back(StackDiagPair(C, N));
1319        break;
1320      }
1321
1322      // Pop the call hierarchy if we are done walking the contents
1323      // of a function call.
1324      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1325        // Add an edge to the start of the function.
1326        const Decl *D = CE->getCalleeContext()->getDecl();
1327        PathDiagnosticLocation pos =
1328          PathDiagnosticLocation::createBegin(D, SM);
1329        EB.addEdge(pos);
1330
1331        // Flush all locations, and pop the active path.
1332        bool VisitedEntireCall = PD.isWithinCall();
1333        EB.flushLocations();
1334        PD.popActivePath();
1335        PDB.LC = N->getLocationContext();
1336
1337        // Either we just added a bunch of stuff to the top-level path, or
1338        // we have a previous CallExitEnd.  If the former, it means that the
1339        // path terminated within a function call.  We must then take the
1340        // current contents of the active path and place it within
1341        // a new PathDiagnosticCallPiece.
1342        PathDiagnosticCallPiece *C;
1343        if (VisitedEntireCall) {
1344          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1345        } else {
1346          const Decl *Caller = CE->getLocationContext()->getDecl();
1347          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1348          GRBugReporter& BR = PDB.getBugReporter();
1349          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1350        }
1351
1352        C->setCallee(*CE, SM);
1353        EB.addContext(C->getLocation());
1354
1355        if (!CallStack.empty()) {
1356          assert(CallStack.back().first == C);
1357          CallStack.pop_back();
1358        }
1359        break;
1360      }
1361
1362      // Note that is important that we update the LocationContext
1363      // after looking at CallExits.  CallExit basically adds an
1364      // edge in the *caller*, so we don't want to update the LocationContext
1365      // too soon.
1366      PDB.LC = N->getLocationContext();
1367
1368      // Block edges.
1369      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1370        // Does this represent entering a call?  If so, look at propagating
1371        // interesting symbols across call boundaries.
1372        if (NextNode) {
1373          const LocationContext *CallerCtx = NextNode->getLocationContext();
1374          const LocationContext *CalleeCtx = PDB.LC;
1375          if (CallerCtx != CalleeCtx) {
1376            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1377                                               N->getState().getPtr(),
1378                                               CalleeCtx, CallerCtx);
1379          }
1380        }
1381
1382        // Are we jumping to the head of a loop?  Add a special diagnostic.
1383        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1384          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1385          const CompoundStmt *CS = NULL;
1386
1387          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1388            CS = dyn_cast<CompoundStmt>(FS->getBody());
1389          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1390            CS = dyn_cast<CompoundStmt>(WS->getBody());
1391
1392          PathDiagnosticEventPiece *p =
1393            new PathDiagnosticEventPiece(L,
1394                                        "Looping back to the head of the loop");
1395          p->setPrunable(true);
1396
1397          EB.addEdge(p->getLocation(), true);
1398          PD.getActivePath().push_front(p);
1399
1400          if (CS) {
1401            PathDiagnosticLocation BL =
1402              PathDiagnosticLocation::createEndBrace(CS, SM);
1403            EB.addEdge(BL);
1404          }
1405        }
1406
1407        if (const Stmt *Term = BE->getSrc()->getTerminator())
1408          EB.addContext(Term);
1409
1410        break;
1411      }
1412
1413      if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1414        CFGElement First = BE->getFirstElement();
1415        if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1416          const Stmt *stmt = S->getStmt();
1417          if (IsControlFlowExpr(stmt)) {
1418            // Add the proper context for '&&', '||', and '?'.
1419            EB.addContext(stmt);
1420          }
1421          else
1422            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1423        }
1424
1425        break;
1426      }
1427
1428
1429    } while (0);
1430
1431    if (!NextNode)
1432      continue;
1433
1434    // Add pieces from custom visitors.
1435    BugReport *R = PDB.getBugReport();
1436    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1437                                                  E = visitors.end();
1438         I != E; ++I) {
1439      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1440        const PathDiagnosticLocation &Loc = p->getLocation();
1441        EB.addEdge(Loc, true);
1442        PD.getActivePath().push_front(p);
1443        updateStackPiecesWithMessage(p, CallStack);
1444
1445        if (const Stmt *S = Loc.asStmt())
1446          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1447      }
1448    }
1449  }
1450
1451  return PDB.getBugReport()->isValid();
1452}
1453
1454//===----------------------------------------------------------------------===//
1455// Methods for BugType and subclasses.
1456//===----------------------------------------------------------------------===//
1457BugType::~BugType() { }
1458
1459void BugType::FlushReports(BugReporter &BR) {}
1460
1461void BuiltinBug::anchor() {}
1462
1463//===----------------------------------------------------------------------===//
1464// Methods for BugReport and subclasses.
1465//===----------------------------------------------------------------------===//
1466
1467void BugReport::NodeResolver::anchor() {}
1468
1469void BugReport::addVisitor(BugReporterVisitor* visitor) {
1470  if (!visitor)
1471    return;
1472
1473  llvm::FoldingSetNodeID ID;
1474  visitor->Profile(ID);
1475  void *InsertPos;
1476
1477  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1478    delete visitor;
1479    return;
1480  }
1481
1482  CallbacksSet.InsertNode(visitor, InsertPos);
1483  Callbacks.push_back(visitor);
1484  ++ConfigurationChangeToken;
1485}
1486
1487BugReport::~BugReport() {
1488  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1489    delete *I;
1490  }
1491  while (!interestingSymbols.empty()) {
1492    popInterestingSymbolsAndRegions();
1493  }
1494}
1495
1496const Decl *BugReport::getDeclWithIssue() const {
1497  if (DeclWithIssue)
1498    return DeclWithIssue;
1499
1500  const ExplodedNode *N = getErrorNode();
1501  if (!N)
1502    return 0;
1503
1504  const LocationContext *LC = N->getLocationContext();
1505  return LC->getCurrentStackFrame()->getDecl();
1506}
1507
1508void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1509  hash.AddPointer(&BT);
1510  hash.AddString(Description);
1511  if (UniqueingLocation.isValid()) {
1512    UniqueingLocation.Profile(hash);
1513  } else if (Location.isValid()) {
1514    Location.Profile(hash);
1515  } else {
1516    assert(ErrorNode);
1517    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1518  }
1519
1520  for (SmallVectorImpl<SourceRange>::const_iterator I =
1521      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1522    const SourceRange range = *I;
1523    if (!range.isValid())
1524      continue;
1525    hash.AddInteger(range.getBegin().getRawEncoding());
1526    hash.AddInteger(range.getEnd().getRawEncoding());
1527  }
1528}
1529
1530void BugReport::markInteresting(SymbolRef sym) {
1531  if (!sym)
1532    return;
1533
1534  // If the symbol wasn't already in our set, note a configuration change.
1535  if (getInterestingSymbols().insert(sym).second)
1536    ++ConfigurationChangeToken;
1537
1538  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1539    getInterestingRegions().insert(meta->getRegion());
1540}
1541
1542void BugReport::markInteresting(const MemRegion *R) {
1543  if (!R)
1544    return;
1545
1546  // If the base region wasn't already in our set, note a configuration change.
1547  R = R->getBaseRegion();
1548  if (getInterestingRegions().insert(R).second)
1549    ++ConfigurationChangeToken;
1550
1551  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1552    getInterestingSymbols().insert(SR->getSymbol());
1553}
1554
1555void BugReport::markInteresting(SVal V) {
1556  markInteresting(V.getAsRegion());
1557  markInteresting(V.getAsSymbol());
1558}
1559
1560void BugReport::markInteresting(const LocationContext *LC) {
1561  if (!LC)
1562    return;
1563  InterestingLocationContexts.insert(LC);
1564}
1565
1566bool BugReport::isInteresting(SVal V) {
1567  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1568}
1569
1570bool BugReport::isInteresting(SymbolRef sym) {
1571  if (!sym)
1572    return false;
1573  // We don't currently consider metadata symbols to be interesting
1574  // even if we know their region is interesting. Is that correct behavior?
1575  return getInterestingSymbols().count(sym);
1576}
1577
1578bool BugReport::isInteresting(const MemRegion *R) {
1579  if (!R)
1580    return false;
1581  R = R->getBaseRegion();
1582  bool b = getInterestingRegions().count(R);
1583  if (b)
1584    return true;
1585  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1586    return getInterestingSymbols().count(SR->getSymbol());
1587  return false;
1588}
1589
1590bool BugReport::isInteresting(const LocationContext *LC) {
1591  if (!LC)
1592    return false;
1593  return InterestingLocationContexts.count(LC);
1594}
1595
1596void BugReport::lazyInitializeInterestingSets() {
1597  if (interestingSymbols.empty()) {
1598    interestingSymbols.push_back(new Symbols());
1599    interestingRegions.push_back(new Regions());
1600  }
1601}
1602
1603BugReport::Symbols &BugReport::getInterestingSymbols() {
1604  lazyInitializeInterestingSets();
1605  return *interestingSymbols.back();
1606}
1607
1608BugReport::Regions &BugReport::getInterestingRegions() {
1609  lazyInitializeInterestingSets();
1610  return *interestingRegions.back();
1611}
1612
1613void BugReport::pushInterestingSymbolsAndRegions() {
1614  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1615  interestingRegions.push_back(new Regions(getInterestingRegions()));
1616}
1617
1618void BugReport::popInterestingSymbolsAndRegions() {
1619  delete interestingSymbols.back();
1620  interestingSymbols.pop_back();
1621  delete interestingRegions.back();
1622  interestingRegions.pop_back();
1623}
1624
1625const Stmt *BugReport::getStmt() const {
1626  if (!ErrorNode)
1627    return 0;
1628
1629  ProgramPoint ProgP = ErrorNode->getLocation();
1630  const Stmt *S = NULL;
1631
1632  if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1633    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1634    if (BE->getBlock() == &Exit)
1635      S = GetPreviousStmt(ErrorNode);
1636  }
1637  if (!S)
1638    S = GetStmt(ProgP);
1639
1640  return S;
1641}
1642
1643std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1644BugReport::getRanges() {
1645    // If no custom ranges, add the range of the statement corresponding to
1646    // the error node.
1647    if (Ranges.empty()) {
1648      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1649        addRange(E->getSourceRange());
1650      else
1651        return std::make_pair(ranges_iterator(), ranges_iterator());
1652    }
1653
1654    // User-specified absence of range info.
1655    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1656      return std::make_pair(ranges_iterator(), ranges_iterator());
1657
1658    return std::make_pair(Ranges.begin(), Ranges.end());
1659}
1660
1661PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1662  if (ErrorNode) {
1663    assert(!Location.isValid() &&
1664     "Either Location or ErrorNode should be specified but not both.");
1665
1666    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1667      const LocationContext *LC = ErrorNode->getLocationContext();
1668
1669      // For member expressions, return the location of the '.' or '->'.
1670      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1671        return PathDiagnosticLocation::createMemberLoc(ME, SM);
1672      // For binary operators, return the location of the operator.
1673      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1674        return PathDiagnosticLocation::createOperatorLoc(B, SM);
1675
1676      if (isa<PostStmtPurgeDeadSymbols>(ErrorNode->getLocation()))
1677        return PathDiagnosticLocation::createEnd(S, SM, LC);
1678
1679      return PathDiagnosticLocation::createBegin(S, SM, LC);
1680    }
1681  } else {
1682    assert(Location.isValid());
1683    return Location;
1684  }
1685
1686  return PathDiagnosticLocation();
1687}
1688
1689//===----------------------------------------------------------------------===//
1690// Methods for BugReporter and subclasses.
1691//===----------------------------------------------------------------------===//
1692
1693BugReportEquivClass::~BugReportEquivClass() { }
1694GRBugReporter::~GRBugReporter() { }
1695BugReporterData::~BugReporterData() {}
1696
1697ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1698
1699ProgramStateManager&
1700GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1701
1702BugReporter::~BugReporter() {
1703  FlushReports();
1704
1705  // Free the bug reports we are tracking.
1706  typedef std::vector<BugReportEquivClass *> ContTy;
1707  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1708       I != E; ++I) {
1709    delete *I;
1710  }
1711}
1712
1713void BugReporter::FlushReports() {
1714  if (BugTypes.isEmpty())
1715    return;
1716
1717  // First flush the warnings for each BugType.  This may end up creating new
1718  // warnings and new BugTypes.
1719  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1720  // Turn NSErrorChecker into a proper checker and remove this.
1721  SmallVector<const BugType*, 16> bugTypes;
1722  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1723    bugTypes.push_back(*I);
1724  for (SmallVector<const BugType*, 16>::iterator
1725         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1726    const_cast<BugType*>(*I)->FlushReports(*this);
1727
1728  // We need to flush reports in deterministic order to ensure the order
1729  // of the reports is consistent between runs.
1730  typedef std::vector<BugReportEquivClass *> ContVecTy;
1731  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1732       EI != EE; ++EI){
1733    BugReportEquivClass& EQ = **EI;
1734    FlushReport(EQ);
1735  }
1736
1737  // BugReporter owns and deletes only BugTypes created implicitly through
1738  // EmitBasicReport.
1739  // FIXME: There are leaks from checkers that assume that the BugTypes they
1740  // create will be destroyed by the BugReporter.
1741  for (llvm::StringMap<BugType*>::iterator
1742         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1743    delete I->second;
1744
1745  // Remove all references to the BugType objects.
1746  BugTypes = F.getEmptySet();
1747}
1748
1749//===----------------------------------------------------------------------===//
1750// PathDiagnostics generation.
1751//===----------------------------------------------------------------------===//
1752
1753static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1754                 std::pair<ExplodedNode*, unsigned> >
1755MakeReportGraph(const ExplodedGraph* G,
1756                SmallVectorImpl<const ExplodedNode*> &nodes) {
1757
1758  // Create the trimmed graph.  It will contain the shortest paths from the
1759  // error nodes to the root.  In the new graph we should only have one
1760  // error node unless there are two or more error nodes with the same minimum
1761  // path length.
1762  ExplodedGraph* GTrim;
1763  InterExplodedGraphMap* NMap;
1764
1765  llvm::DenseMap<const void*, const void*> InverseMap;
1766  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1767                                   &InverseMap);
1768
1769  // Create owning pointers for GTrim and NMap just to ensure that they are
1770  // released when this function exists.
1771  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1772  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1773
1774  // Find the (first) error node in the trimmed graph.  We just need to consult
1775  // the node map (NMap) which maps from nodes in the original graph to nodes
1776  // in the new graph.
1777
1778  std::queue<const ExplodedNode*> WS;
1779  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1780  IndexMapTy IndexMap;
1781
1782  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1783    const ExplodedNode *originalNode = nodes[nodeIndex];
1784    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1785      WS.push(N);
1786      IndexMap[originalNode] = nodeIndex;
1787    }
1788  }
1789
1790  assert(!WS.empty() && "No error node found in the trimmed graph.");
1791
1792  // Create a new (third!) graph with a single path.  This is the graph
1793  // that will be returned to the caller.
1794  ExplodedGraph *GNew = new ExplodedGraph();
1795
1796  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1797  // to the root node, and then construct a new graph that contains only
1798  // a single path.
1799  llvm::DenseMap<const void*,unsigned> Visited;
1800
1801  unsigned cnt = 0;
1802  const ExplodedNode *Root = 0;
1803
1804  while (!WS.empty()) {
1805    const ExplodedNode *Node = WS.front();
1806    WS.pop();
1807
1808    if (Visited.find(Node) != Visited.end())
1809      continue;
1810
1811    Visited[Node] = cnt++;
1812
1813    if (Node->pred_empty()) {
1814      Root = Node;
1815      break;
1816    }
1817
1818    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1819         E=Node->pred_end(); I!=E; ++I)
1820      WS.push(*I);
1821  }
1822
1823  assert(Root);
1824
1825  // Now walk from the root down the BFS path, always taking the successor
1826  // with the lowest number.
1827  ExplodedNode *Last = 0, *First = 0;
1828  NodeBackMap *BM = new NodeBackMap();
1829  unsigned NodeIndex = 0;
1830
1831  for ( const ExplodedNode *N = Root ;;) {
1832    // Lookup the number associated with the current node.
1833    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1834    assert(I != Visited.end());
1835
1836    // Create the equivalent node in the new graph with the same state
1837    // and location.
1838    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1839
1840    // Store the mapping to the original node.
1841    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1842    assert(IMitr != InverseMap.end() && "No mapping to original node.");
1843    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1844
1845    // Link up the new node with the previous node.
1846    if (Last)
1847      NewN->addPredecessor(Last, *GNew);
1848
1849    Last = NewN;
1850
1851    // Are we at the final node?
1852    IndexMapTy::iterator IMI =
1853      IndexMap.find((const ExplodedNode*)(IMitr->second));
1854    if (IMI != IndexMap.end()) {
1855      First = NewN;
1856      NodeIndex = IMI->second;
1857      break;
1858    }
1859
1860    // Find the next successor node.  We choose the node that is marked
1861    // with the lowest DFS number.
1862    ExplodedNode::const_succ_iterator SI = N->succ_begin();
1863    ExplodedNode::const_succ_iterator SE = N->succ_end();
1864    N = 0;
1865
1866    for (unsigned MinVal = 0; SI != SE; ++SI) {
1867
1868      I = Visited.find(*SI);
1869
1870      if (I == Visited.end())
1871        continue;
1872
1873      if (!N || I->second < MinVal) {
1874        N = *SI;
1875        MinVal = I->second;
1876      }
1877    }
1878
1879    assert(N);
1880  }
1881
1882  assert(First);
1883
1884  return std::make_pair(std::make_pair(GNew, BM),
1885                        std::make_pair(First, NodeIndex));
1886}
1887
1888/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1889///  and collapses PathDiagosticPieces that are expanded by macros.
1890static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1891  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1892                                SourceLocation> > MacroStackTy;
1893
1894  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1895          PiecesTy;
1896
1897  MacroStackTy MacroStack;
1898  PiecesTy Pieces;
1899
1900  for (PathPieces::const_iterator I = path.begin(), E = path.end();
1901       I!=E; ++I) {
1902
1903    PathDiagnosticPiece *piece = I->getPtr();
1904
1905    // Recursively compact calls.
1906    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1907      CompactPathDiagnostic(call->path, SM);
1908    }
1909
1910    // Get the location of the PathDiagnosticPiece.
1911    const FullSourceLoc Loc = piece->getLocation().asLocation();
1912
1913    // Determine the instantiation location, which is the location we group
1914    // related PathDiagnosticPieces.
1915    SourceLocation InstantiationLoc = Loc.isMacroID() ?
1916                                      SM.getExpansionLoc(Loc) :
1917                                      SourceLocation();
1918
1919    if (Loc.isFileID()) {
1920      MacroStack.clear();
1921      Pieces.push_back(piece);
1922      continue;
1923    }
1924
1925    assert(Loc.isMacroID());
1926
1927    // Is the PathDiagnosticPiece within the same macro group?
1928    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1929      MacroStack.back().first->subPieces.push_back(piece);
1930      continue;
1931    }
1932
1933    // We aren't in the same group.  Are we descending into a new macro
1934    // or are part of an old one?
1935    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1936
1937    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1938                                          SM.getExpansionLoc(Loc) :
1939                                          SourceLocation();
1940
1941    // Walk the entire macro stack.
1942    while (!MacroStack.empty()) {
1943      if (InstantiationLoc == MacroStack.back().second) {
1944        MacroGroup = MacroStack.back().first;
1945        break;
1946      }
1947
1948      if (ParentInstantiationLoc == MacroStack.back().second) {
1949        MacroGroup = MacroStack.back().first;
1950        break;
1951      }
1952
1953      MacroStack.pop_back();
1954    }
1955
1956    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1957      // Create a new macro group and add it to the stack.
1958      PathDiagnosticMacroPiece *NewGroup =
1959        new PathDiagnosticMacroPiece(
1960          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1961
1962      if (MacroGroup)
1963        MacroGroup->subPieces.push_back(NewGroup);
1964      else {
1965        assert(InstantiationLoc.isFileID());
1966        Pieces.push_back(NewGroup);
1967      }
1968
1969      MacroGroup = NewGroup;
1970      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1971    }
1972
1973    // Finally, add the PathDiagnosticPiece to the group.
1974    MacroGroup->subPieces.push_back(piece);
1975  }
1976
1977  // Now take the pieces and construct a new PathDiagnostic.
1978  path.clear();
1979
1980  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1981    path.push_back(*I);
1982}
1983
1984bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
1985                                           PathDiagnosticConsumer &PC,
1986                                           ArrayRef<BugReport *> &bugReports) {
1987  assert(!bugReports.empty());
1988
1989  bool HasValid = false;
1990  SmallVector<const ExplodedNode *, 10> errorNodes;
1991  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1992                                      E = bugReports.end(); I != E; ++I) {
1993    if ((*I)->isValid()) {
1994      HasValid = true;
1995      errorNodes.push_back((*I)->getErrorNode());
1996    } else {
1997      errorNodes.push_back(0);
1998    }
1999  }
2000
2001  // If all the reports have been marked invalid, we're done.
2002  if (!HasValid)
2003    return false;
2004
2005  // Construct a new graph that contains only a single path from the error
2006  // node to a root.
2007  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
2008  std::pair<ExplodedNode*, unsigned> >&
2009    GPair = MakeReportGraph(&getGraph(), errorNodes);
2010
2011  // Find the BugReport with the original location.
2012  assert(GPair.second.second < bugReports.size());
2013  BugReport *R = bugReports[GPair.second.second];
2014  assert(R && "No original report found for sliced graph.");
2015  assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
2016
2017  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
2018  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
2019  const ExplodedNode *N = GPair.second.first;
2020
2021  // Start building the path diagnostic...
2022  PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
2023
2024  // Register additional node visitors.
2025  R->addVisitor(new NilReceiverBRVisitor());
2026  R->addVisitor(new ConditionBRVisitor());
2027
2028  BugReport::VisitorList visitors;
2029  unsigned originalReportConfigToken, finalReportConfigToken;
2030
2031  // While generating diagnostics, it's possible the visitors will decide
2032  // new symbols and regions are interesting, or add other visitors based on
2033  // the information they find. If they do, we need to regenerate the path
2034  // based on our new report configuration.
2035  do {
2036    // Get a clean copy of all the visitors.
2037    for (BugReport::visitor_iterator I = R->visitor_begin(),
2038                                     E = R->visitor_end(); I != E; ++I)
2039       visitors.push_back((*I)->clone());
2040
2041    // Clear out the active path from any previous work.
2042    PD.resetPath();
2043    originalReportConfigToken = R->getConfigurationChangeToken();
2044
2045    // Generate the very last diagnostic piece - the piece is visible before
2046    // the trace is expanded.
2047    if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
2048      PathDiagnosticPiece *LastPiece = 0;
2049      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2050           I != E; ++I) {
2051        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2052          assert (!LastPiece &&
2053                  "There can only be one final piece in a diagnostic.");
2054          LastPiece = Piece;
2055        }
2056      }
2057      if (!LastPiece)
2058        LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2059      if (LastPiece)
2060        PD.setEndOfPath(LastPiece);
2061      else
2062        return false;
2063    }
2064
2065    switch (PDB.getGenerationScheme()) {
2066    case PathDiagnosticConsumer::Extensive:
2067      if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
2068        assert(!R->isValid() && "Failed on valid report");
2069        // Try again. We'll filter out the bad report when we trim the graph.
2070        // FIXME: It would be more efficient to use the same intermediate
2071        // trimmed graph, and just repeat the shortest-path search.
2072        return generatePathDiagnostic(PD, PC, bugReports);
2073      }
2074      break;
2075    case PathDiagnosticConsumer::Minimal:
2076      if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
2077        assert(!R->isValid() && "Failed on valid report");
2078        // Try again. We'll filter out the bad report when we trim the graph.
2079        return generatePathDiagnostic(PD, PC, bugReports);
2080      }
2081      break;
2082    case PathDiagnosticConsumer::None:
2083      if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
2084        assert(!R->isValid() && "Failed on valid report");
2085        // Try again. We'll filter out the bad report when we trim the graph.
2086        return generatePathDiagnostic(PD, PC, bugReports);
2087      }
2088      break;
2089    }
2090
2091    // Clean up the visitors we used.
2092    llvm::DeleteContainerPointers(visitors);
2093
2094    // Did anything change while generating this path?
2095    finalReportConfigToken = R->getConfigurationChangeToken();
2096  } while(finalReportConfigToken != originalReportConfigToken);
2097
2098  // Finally, prune the diagnostic path of uninteresting stuff.
2099  if (!PD.path.empty()) {
2100    // Remove messages that are basically the same.
2101    removeRedundantMsgs(PD.getMutablePieces());
2102
2103    if (R->shouldPrunePath()) {
2104      bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(),
2105                                                        R);
2106      assert(hasSomethingInteresting);
2107      (void) hasSomethingInteresting;
2108    }
2109  }
2110
2111  return true;
2112}
2113
2114void BugReporter::Register(BugType *BT) {
2115  BugTypes = F.add(BugTypes, BT);
2116}
2117
2118void BugReporter::emitReport(BugReport* R) {
2119  // Compute the bug report's hash to determine its equivalence class.
2120  llvm::FoldingSetNodeID ID;
2121  R->Profile(ID);
2122
2123  // Lookup the equivance class.  If there isn't one, create it.
2124  BugType& BT = R->getBugType();
2125  Register(&BT);
2126  void *InsertPos;
2127  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2128
2129  if (!EQ) {
2130    EQ = new BugReportEquivClass(R);
2131    EQClasses.InsertNode(EQ, InsertPos);
2132    EQClassesVector.push_back(EQ);
2133  }
2134  else
2135    EQ->AddReport(R);
2136}
2137
2138
2139//===----------------------------------------------------------------------===//
2140// Emitting reports in equivalence classes.
2141//===----------------------------------------------------------------------===//
2142
2143namespace {
2144struct FRIEC_WLItem {
2145  const ExplodedNode *N;
2146  ExplodedNode::const_succ_iterator I, E;
2147
2148  FRIEC_WLItem(const ExplodedNode *n)
2149  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2150};
2151}
2152
2153static BugReport *
2154FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2155                             SmallVectorImpl<BugReport*> &bugReports) {
2156
2157  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2158  assert(I != E);
2159  BugType& BT = I->getBugType();
2160
2161  // If we don't need to suppress any of the nodes because they are
2162  // post-dominated by a sink, simply add all the nodes in the equivalence class
2163  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2164  if (!BT.isSuppressOnSink()) {
2165    BugReport *R = I;
2166    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2167      const ExplodedNode *N = I->getErrorNode();
2168      if (N) {
2169        R = I;
2170        bugReports.push_back(R);
2171      }
2172    }
2173    return R;
2174  }
2175
2176  // For bug reports that should be suppressed when all paths are post-dominated
2177  // by a sink node, iterate through the reports in the equivalence class
2178  // until we find one that isn't post-dominated (if one exists).  We use a
2179  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2180  // this as a recursive function, but we don't want to risk blowing out the
2181  // stack for very long paths.
2182  BugReport *exampleReport = 0;
2183
2184  for (; I != E; ++I) {
2185    const ExplodedNode *errorNode = I->getErrorNode();
2186
2187    if (!errorNode)
2188      continue;
2189    if (errorNode->isSink()) {
2190      llvm_unreachable(
2191           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2192    }
2193    // No successors?  By definition this nodes isn't post-dominated by a sink.
2194    if (errorNode->succ_empty()) {
2195      bugReports.push_back(I);
2196      if (!exampleReport)
2197        exampleReport = I;
2198      continue;
2199    }
2200
2201    // At this point we know that 'N' is not a sink and it has at least one
2202    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2203    typedef FRIEC_WLItem WLItem;
2204    typedef SmallVector<WLItem, 10> DFSWorkList;
2205    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2206
2207    DFSWorkList WL;
2208    WL.push_back(errorNode);
2209    Visited[errorNode] = 1;
2210
2211    while (!WL.empty()) {
2212      WLItem &WI = WL.back();
2213      assert(!WI.N->succ_empty());
2214
2215      for (; WI.I != WI.E; ++WI.I) {
2216        const ExplodedNode *Succ = *WI.I;
2217        // End-of-path node?
2218        if (Succ->succ_empty()) {
2219          // If we found an end-of-path node that is not a sink.
2220          if (!Succ->isSink()) {
2221            bugReports.push_back(I);
2222            if (!exampleReport)
2223              exampleReport = I;
2224            WL.clear();
2225            break;
2226          }
2227          // Found a sink?  Continue on to the next successor.
2228          continue;
2229        }
2230        // Mark the successor as visited.  If it hasn't been explored,
2231        // enqueue it to the DFS worklist.
2232        unsigned &mark = Visited[Succ];
2233        if (!mark) {
2234          mark = 1;
2235          WL.push_back(Succ);
2236          break;
2237        }
2238      }
2239
2240      // The worklist may have been cleared at this point.  First
2241      // check if it is empty before checking the last item.
2242      if (!WL.empty() && &WL.back() == &WI)
2243        WL.pop_back();
2244    }
2245  }
2246
2247  // ExampleReport will be NULL if all the nodes in the equivalence class
2248  // were post-dominated by sinks.
2249  return exampleReport;
2250}
2251
2252void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2253  SmallVector<BugReport*, 10> bugReports;
2254  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2255  if (exampleReport) {
2256    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2257    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2258                                                 E=C.end(); I != E; ++I) {
2259      FlushReport(exampleReport, **I, bugReports);
2260    }
2261  }
2262}
2263
2264void BugReporter::FlushReport(BugReport *exampleReport,
2265                              PathDiagnosticConsumer &PD,
2266                              ArrayRef<BugReport*> bugReports) {
2267
2268  // FIXME: Make sure we use the 'R' for the path that was actually used.
2269  // Probably doesn't make a difference in practice.
2270  BugType& BT = exampleReport->getBugType();
2271
2272  OwningPtr<PathDiagnostic>
2273    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2274                         exampleReport->getBugType().getName(),
2275                         exampleReport->getDescription(),
2276                         exampleReport->getShortDescription(/*Fallback=*/false),
2277                         BT.getCategory()));
2278
2279  // Generate the full path diagnostic, using the generation scheme
2280  // specified by the PathDiagnosticConsumer. Note that we have to generate
2281  // path diagnostics even for consumers which do not support paths, because
2282  // the BugReporterVisitors may mark this bug as a false positive.
2283  if (!bugReports.empty())
2284    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2285      return;
2286
2287  // If the path is empty, generate a single step path with the location
2288  // of the issue.
2289  if (D->path.empty()) {
2290    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2291    PathDiagnosticPiece *piece =
2292      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2293    BugReport::ranges_iterator Beg, End;
2294    llvm::tie(Beg, End) = exampleReport->getRanges();
2295    for ( ; Beg != End; ++Beg)
2296      piece->addRange(*Beg);
2297    D->setEndOfPath(piece);
2298  }
2299
2300  // Get the meta data.
2301  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2302  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2303                                                e = Meta.end(); i != e; ++i) {
2304    D->addMeta(*i);
2305  }
2306
2307  PD.HandlePathDiagnostic(D.take());
2308}
2309
2310void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2311                                  StringRef name,
2312                                  StringRef category,
2313                                  StringRef str, PathDiagnosticLocation Loc,
2314                                  SourceRange* RBeg, unsigned NumRanges) {
2315
2316  // 'BT' is owned by BugReporter.
2317  BugType *BT = getBugTypeForName(name, category);
2318  BugReport *R = new BugReport(*BT, str, Loc);
2319  R->setDeclWithIssue(DeclWithIssue);
2320  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2321  emitReport(R);
2322}
2323
2324BugType *BugReporter::getBugTypeForName(StringRef name,
2325                                        StringRef category) {
2326  SmallString<136> fullDesc;
2327  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2328  llvm::StringMapEntry<BugType *> &
2329      entry = StrBugTypes.GetOrCreateValue(fullDesc);
2330  BugType *BT = entry.getValue();
2331  if (!BT) {
2332    BT = new BugType(name, category);
2333    entry.setValue(BT);
2334  }
2335  return BT;
2336}
2337