BugReporter.cpp revision 84e1513beb8450f31d9589dcdfc33b0890405ab6
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Analysis/ProgramPoint.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include <queue>
34
35using namespace clang;
36using namespace ento;
37
38BugReporterVisitor::~BugReporterVisitor() {}
39
40void BugReporterContext::anchor() {}
41
42//===----------------------------------------------------------------------===//
43// Helper routines for walking the ExplodedGraph and fetching statements.
44//===----------------------------------------------------------------------===//
45
46static inline const Stmt *GetStmt(const ProgramPoint &P) {
47  if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48    return SP->getStmt();
49  else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50    return BE->getSrc()->getTerminator();
51  else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52    return CE->getCallExpr();
53  else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54    return CEE->getCalleeContext()->getCallSite();
55
56  return 0;
57}
58
59static inline const ExplodedNode*
60GetPredecessorNode(const ExplodedNode *N) {
61  return N->pred_empty() ? NULL : *(N->pred_begin());
62}
63
64static inline const ExplodedNode*
65GetSuccessorNode(const ExplodedNode *N) {
66  return N->succ_empty() ? NULL : *(N->succ_begin());
67}
68
69static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71    if (const Stmt *S = GetStmt(N->getLocation()))
72      return S;
73
74  return 0;
75}
76
77static const Stmt *GetNextStmt(const ExplodedNode *N) {
78  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79    if (const Stmt *S = GetStmt(N->getLocation())) {
80      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81      // not actual statement points.
82      switch (S->getStmtClass()) {
83        case Stmt::ChooseExprClass:
84        case Stmt::BinaryConditionalOperatorClass: continue;
85        case Stmt::ConditionalOperatorClass: continue;
86        case Stmt::BinaryOperatorClass: {
87          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88          if (Op == BO_LAnd || Op == BO_LOr)
89            continue;
90          break;
91        }
92        default:
93          break;
94      }
95      return S;
96    }
97
98  return 0;
99}
100
101static inline const Stmt*
102GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103  if (const Stmt *S = GetStmt(N->getLocation()))
104    return S;
105
106  return GetPreviousStmt(N);
107}
108
109static inline const Stmt*
110GetCurrentOrNextStmt(const ExplodedNode *N) {
111  if (const Stmt *S = GetStmt(N->getLocation()))
112    return S;
113
114  return GetNextStmt(N);
115}
116
117//===----------------------------------------------------------------------===//
118// Diagnostic cleanup.
119//===----------------------------------------------------------------------===//
120
121static PathDiagnosticEventPiece *
122eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
123                            PathDiagnosticEventPiece *Y) {
124  // Prefer diagnostics that come from ConditionBRVisitor over
125  // those that came from TrackConstraintBRVisitor.
126  const void *tagPreferred = ConditionBRVisitor::getTag();
127  const void *tagLesser = TrackConstraintBRVisitor::getTag();
128
129  if (X->getLocation() != Y->getLocation())
130    return 0;
131
132  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
133    return X;
134
135  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
136    return Y;
137
138  return 0;
139}
140
141/// An optimization pass over PathPieces that removes redundant diagnostics
142/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
143/// BugReporterVisitors use different methods to generate diagnostics, with
144/// one capable of emitting diagnostics in some cases but not in others.  This
145/// can lead to redundant diagnostic pieces at the same point in a path.
146static void removeRedundantMsgs(PathPieces &path) {
147  unsigned N = path.size();
148  if (N < 2)
149    return;
150  // NOTE: this loop intentionally is not using an iterator.  Instead, we
151  // are streaming the path and modifying it in place.  This is done by
152  // grabbing the front, processing it, and if we decide to keep it append
153  // it to the end of the path.  The entire path is processed in this way.
154  for (unsigned i = 0; i < N; ++i) {
155    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
156    path.pop_front();
157
158    switch (piece->getKind()) {
159      case clang::ento::PathDiagnosticPiece::Call:
160        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
161        break;
162      case clang::ento::PathDiagnosticPiece::Macro:
163        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
164        break;
165      case clang::ento::PathDiagnosticPiece::ControlFlow:
166        break;
167      case clang::ento::PathDiagnosticPiece::Event: {
168        if (i == N-1)
169          break;
170
171        if (PathDiagnosticEventPiece *nextEvent =
172            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
173          PathDiagnosticEventPiece *event =
174            cast<PathDiagnosticEventPiece>(piece);
175          // Check to see if we should keep one of the two pieces.  If we
176          // come up with a preference, record which piece to keep, and consume
177          // another piece from the path.
178          if (PathDiagnosticEventPiece *pieceToKeep =
179              eventsDescribeSameCondition(event, nextEvent)) {
180            piece = pieceToKeep;
181            path.pop_front();
182            ++i;
183          }
184        }
185        break;
186      }
187    }
188    path.push_back(piece);
189  }
190}
191
192/// Recursively scan through a path and prune out calls and macros pieces
193/// that aren't needed.  Return true if afterwards the path contains
194/// "interesting stuff" which means it should be pruned from the parent path.
195bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R,
196                                     PathDiagnosticLocation *LastCallLocation) {
197  bool containsSomethingInteresting = false;
198  const unsigned N = pieces.size();
199
200  for (unsigned i = 0 ; i < N ; ++i) {
201    // Remove the front piece from the path.  If it is still something we
202    // want to keep once we are done, we will push it back on the end.
203    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
204    pieces.pop_front();
205
206    // Throw away pieces with invalid locations.
207    if (piece->getKind() != PathDiagnosticPiece::Call &&
208        piece->getLocation().asLocation().isInvalid())
209      continue;
210
211    switch (piece->getKind()) {
212      case PathDiagnosticPiece::Call: {
213        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
214        // Check if the location context is interesting.
215        assert(LocationContextMap.count(call));
216        if (R->isInteresting(LocationContextMap[call])) {
217          containsSomethingInteresting = true;
218          break;
219        }
220
221        if (LastCallLocation) {
222          if (!call->callEnter.asLocation().isValid())
223            call->callEnter = *LastCallLocation;
224          if (!call->callReturn.asLocation().isValid())
225            call->callReturn = *LastCallLocation;
226        }
227
228        // Recursively clean out the subclass.  Keep this call around if
229        // it contains any informative diagnostics.
230        PathDiagnosticLocation *ThisCallLocation;
231        if (call->callEnterWithin.asLocation().isValid())
232          ThisCallLocation = &call->callEnterWithin;
233        else
234          ThisCallLocation = &call->callEnter;
235
236        assert(ThisCallLocation && "Outermost call has an invalid location");
237        if (!RemoveUneededCalls(call->path, R, ThisCallLocation))
238          continue;
239
240        containsSomethingInteresting = true;
241        break;
242      }
243      case PathDiagnosticPiece::Macro: {
244        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
245        if (!RemoveUneededCalls(macro->subPieces, R))
246          continue;
247        containsSomethingInteresting = true;
248        break;
249      }
250      case PathDiagnosticPiece::Event: {
251        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
252
253        // We never throw away an event, but we do throw it away wholesale
254        // as part of a path if we throw the entire path away.
255        containsSomethingInteresting |= !event->isPrunable();
256        break;
257      }
258      case PathDiagnosticPiece::ControlFlow:
259        break;
260    }
261
262    pieces.push_back(piece);
263  }
264
265  return containsSomethingInteresting;
266}
267
268//===----------------------------------------------------------------------===//
269// PathDiagnosticBuilder and its associated routines and helper objects.
270//===----------------------------------------------------------------------===//
271
272typedef llvm::DenseMap<const ExplodedNode*,
273const ExplodedNode*> NodeBackMap;
274
275namespace {
276class NodeMapClosure : public BugReport::NodeResolver {
277  NodeBackMap& M;
278public:
279  NodeMapClosure(NodeBackMap *m) : M(*m) {}
280  ~NodeMapClosure() {}
281
282  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
283    NodeBackMap::iterator I = M.find(N);
284    return I == M.end() ? 0 : I->second;
285  }
286};
287
288class PathDiagnosticBuilder : public BugReporterContext {
289  BugReport *R;
290  PathDiagnosticConsumer *PDC;
291  OwningPtr<ParentMap> PM;
292  NodeMapClosure NMC;
293public:
294  const LocationContext *LC;
295
296  PathDiagnosticBuilder(GRBugReporter &br,
297                        BugReport *r, NodeBackMap *Backmap,
298                        PathDiagnosticConsumer *pdc)
299    : BugReporterContext(br),
300      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
301  {}
302
303  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
304
305  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
306                                            const ExplodedNode *N);
307
308  BugReport *getBugReport() { return R; }
309
310  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
311
312  ParentMap& getParentMap() { return LC->getParentMap(); }
313
314  const Stmt *getParent(const Stmt *S) {
315    return getParentMap().getParent(S);
316  }
317
318  virtual NodeMapClosure& getNodeResolver() { return NMC; }
319
320  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
321
322  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
323    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
324  }
325
326  bool supportsLogicalOpControlFlow() const {
327    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
328  }
329};
330} // end anonymous namespace
331
332PathDiagnosticLocation
333PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
334  if (const Stmt *S = GetNextStmt(N))
335    return PathDiagnosticLocation(S, getSourceManager(), LC);
336
337  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
338                                               getSourceManager());
339}
340
341PathDiagnosticLocation
342PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
343                                          const ExplodedNode *N) {
344
345  // Slow, but probably doesn't matter.
346  if (os.str().empty())
347    os << ' ';
348
349  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
350
351  if (Loc.asStmt())
352    os << "Execution continues on line "
353       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
354       << '.';
355  else {
356    os << "Execution jumps to the end of the ";
357    const Decl *D = N->getLocationContext()->getDecl();
358    if (isa<ObjCMethodDecl>(D))
359      os << "method";
360    else if (isa<FunctionDecl>(D))
361      os << "function";
362    else {
363      assert(isa<BlockDecl>(D));
364      os << "anonymous block";
365    }
366    os << '.';
367  }
368
369  return Loc;
370}
371
372static bool IsNested(const Stmt *S, ParentMap &PM) {
373  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
374    return true;
375
376  const Stmt *Parent = PM.getParentIgnoreParens(S);
377
378  if (Parent)
379    switch (Parent->getStmtClass()) {
380      case Stmt::ForStmtClass:
381      case Stmt::DoStmtClass:
382      case Stmt::WhileStmtClass:
383        return true;
384      default:
385        break;
386    }
387
388  return false;
389}
390
391PathDiagnosticLocation
392PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
393  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
394  ParentMap &P = getParentMap();
395  SourceManager &SMgr = getSourceManager();
396
397  while (IsNested(S, P)) {
398    const Stmt *Parent = P.getParentIgnoreParens(S);
399
400    if (!Parent)
401      break;
402
403    switch (Parent->getStmtClass()) {
404      case Stmt::BinaryOperatorClass: {
405        const BinaryOperator *B = cast<BinaryOperator>(Parent);
406        if (B->isLogicalOp())
407          return PathDiagnosticLocation(S, SMgr, LC);
408        break;
409      }
410      case Stmt::CompoundStmtClass:
411      case Stmt::StmtExprClass:
412        return PathDiagnosticLocation(S, SMgr, LC);
413      case Stmt::ChooseExprClass:
414        // Similar to '?' if we are referring to condition, just have the edge
415        // point to the entire choose expression.
416        if (cast<ChooseExpr>(Parent)->getCond() == S)
417          return PathDiagnosticLocation(Parent, SMgr, LC);
418        else
419          return PathDiagnosticLocation(S, SMgr, LC);
420      case Stmt::BinaryConditionalOperatorClass:
421      case Stmt::ConditionalOperatorClass:
422        // For '?', if we are referring to condition, just have the edge point
423        // to the entire '?' expression.
424        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
425          return PathDiagnosticLocation(Parent, SMgr, LC);
426        else
427          return PathDiagnosticLocation(S, SMgr, LC);
428      case Stmt::DoStmtClass:
429          return PathDiagnosticLocation(S, SMgr, LC);
430      case Stmt::ForStmtClass:
431        if (cast<ForStmt>(Parent)->getBody() == S)
432          return PathDiagnosticLocation(S, SMgr, LC);
433        break;
434      case Stmt::IfStmtClass:
435        if (cast<IfStmt>(Parent)->getCond() != S)
436          return PathDiagnosticLocation(S, SMgr, LC);
437        break;
438      case Stmt::ObjCForCollectionStmtClass:
439        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
440          return PathDiagnosticLocation(S, SMgr, LC);
441        break;
442      case Stmt::WhileStmtClass:
443        if (cast<WhileStmt>(Parent)->getCond() != S)
444          return PathDiagnosticLocation(S, SMgr, LC);
445        break;
446      default:
447        break;
448    }
449
450    S = Parent;
451  }
452
453  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
454
455  // Special case: DeclStmts can appear in for statement declarations, in which
456  //  case the ForStmt is the context.
457  if (isa<DeclStmt>(S)) {
458    if (const Stmt *Parent = P.getParent(S)) {
459      switch (Parent->getStmtClass()) {
460        case Stmt::ForStmtClass:
461        case Stmt::ObjCForCollectionStmtClass:
462          return PathDiagnosticLocation(Parent, SMgr, LC);
463        default:
464          break;
465      }
466    }
467  }
468  else if (isa<BinaryOperator>(S)) {
469    // Special case: the binary operator represents the initialization
470    // code in a for statement (this can happen when the variable being
471    // initialized is an old variable.
472    if (const ForStmt *FS =
473          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
474      if (FS->getInit() == S)
475        return PathDiagnosticLocation(FS, SMgr, LC);
476    }
477  }
478
479  return PathDiagnosticLocation(S, SMgr, LC);
480}
481
482//===----------------------------------------------------------------------===//
483// "Visitors only" path diagnostic generation algorithm.
484//===----------------------------------------------------------------------===//
485static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
486                                               PathDiagnosticBuilder &PDB,
487                                               const ExplodedNode *N,
488                                      ArrayRef<BugReporterVisitor *> visitors) {
489  // All path generation skips the very first node (the error node).
490  // This is because there is special handling for the end-of-path note.
491  N = N->getFirstPred();
492  if (!N)
493    return true;
494
495  BugReport *R = PDB.getBugReport();
496  while (const ExplodedNode *Pred = N->getFirstPred()) {
497    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
498                                                  E = visitors.end();
499         I != E; ++I) {
500      // Visit all the node pairs, but throw the path pieces away.
501      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
502      delete Piece;
503    }
504
505    N = Pred;
506  }
507
508  return R->isValid();
509}
510
511//===----------------------------------------------------------------------===//
512// "Minimal" path diagnostic generation algorithm.
513//===----------------------------------------------------------------------===//
514typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
515typedef SmallVector<StackDiagPair, 6> StackDiagVector;
516
517static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
518                                         StackDiagVector &CallStack) {
519  // If the piece contains a special message, add it to all the call
520  // pieces on the active stack.
521  if (PathDiagnosticEventPiece *ep =
522        dyn_cast<PathDiagnosticEventPiece>(P)) {
523
524    if (ep->hasCallStackHint())
525      for (StackDiagVector::iterator I = CallStack.begin(),
526                                     E = CallStack.end(); I != E; ++I) {
527        PathDiagnosticCallPiece *CP = I->first;
528        const ExplodedNode *N = I->second;
529        std::string stackMsg = ep->getCallStackMessage(N);
530
531        // The last message on the path to final bug is the most important
532        // one. Since we traverse the path backwards, do not add the message
533        // if one has been previously added.
534        if  (!CP->hasCallStackMessage())
535          CP->setCallStackMessage(stackMsg);
536      }
537  }
538}
539
540static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
541
542static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
543                                          PathDiagnosticBuilder &PDB,
544                                          const ExplodedNode *N,
545                                      ArrayRef<BugReporterVisitor *> visitors) {
546
547  SourceManager& SMgr = PDB.getSourceManager();
548  const LocationContext *LC = PDB.LC;
549  const ExplodedNode *NextNode = N->pred_empty()
550                                        ? NULL : *(N->pred_begin());
551
552  StackDiagVector CallStack;
553
554  while (NextNode) {
555    N = NextNode;
556    PDB.LC = N->getLocationContext();
557    NextNode = GetPredecessorNode(N);
558
559    ProgramPoint P = N->getLocation();
560
561    do {
562      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
563        PathDiagnosticCallPiece *C =
564            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
565        GRBugReporter& BR = PDB.getBugReporter();
566        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
567        PD.getActivePath().push_front(C);
568        PD.pushActivePath(&C->path);
569        CallStack.push_back(StackDiagPair(C, N));
570        break;
571      }
572
573      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
574        // Flush all locations, and pop the active path.
575        bool VisitedEntireCall = PD.isWithinCall();
576        PD.popActivePath();
577
578        // Either we just added a bunch of stuff to the top-level path, or
579        // we have a previous CallExitEnd.  If the former, it means that the
580        // path terminated within a function call.  We must then take the
581        // current contents of the active path and place it within
582        // a new PathDiagnosticCallPiece.
583        PathDiagnosticCallPiece *C;
584        if (VisitedEntireCall) {
585          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
586        } else {
587          const Decl *Caller = CE->getLocationContext()->getDecl();
588          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
589          GRBugReporter& BR = PDB.getBugReporter();
590          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
591        }
592
593        C->setCallee(*CE, SMgr);
594        if (!CallStack.empty()) {
595          assert(CallStack.back().first == C);
596          CallStack.pop_back();
597        }
598        break;
599      }
600
601      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
602        const CFGBlock *Src = BE->getSrc();
603        const CFGBlock *Dst = BE->getDst();
604        const Stmt *T = Src->getTerminator();
605
606        if (!T)
607          break;
608
609        PathDiagnosticLocation Start =
610            PathDiagnosticLocation::createBegin(T, SMgr,
611                N->getLocationContext());
612
613        switch (T->getStmtClass()) {
614        default:
615          break;
616
617        case Stmt::GotoStmtClass:
618        case Stmt::IndirectGotoStmtClass: {
619          const Stmt *S = GetNextStmt(N);
620
621          if (!S)
622            break;
623
624          std::string sbuf;
625          llvm::raw_string_ostream os(sbuf);
626          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
627
628          os << "Control jumps to line "
629              << End.asLocation().getExpansionLineNumber();
630          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
631              Start, End, os.str()));
632          break;
633        }
634
635        case Stmt::SwitchStmtClass: {
636          // Figure out what case arm we took.
637          std::string sbuf;
638          llvm::raw_string_ostream os(sbuf);
639
640          if (const Stmt *S = Dst->getLabel()) {
641            PathDiagnosticLocation End(S, SMgr, LC);
642
643            switch (S->getStmtClass()) {
644            default:
645              os << "No cases match in the switch statement. "
646              "Control jumps to line "
647              << End.asLocation().getExpansionLineNumber();
648              break;
649            case Stmt::DefaultStmtClass:
650              os << "Control jumps to the 'default' case at line "
651              << End.asLocation().getExpansionLineNumber();
652              break;
653
654            case Stmt::CaseStmtClass: {
655              os << "Control jumps to 'case ";
656              const CaseStmt *Case = cast<CaseStmt>(S);
657              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
658
659              // Determine if it is an enum.
660              bool GetRawInt = true;
661
662              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
663                // FIXME: Maybe this should be an assertion.  Are there cases
664                // were it is not an EnumConstantDecl?
665                const EnumConstantDecl *D =
666                    dyn_cast<EnumConstantDecl>(DR->getDecl());
667
668                if (D) {
669                  GetRawInt = false;
670                  os << *D;
671                }
672              }
673
674              if (GetRawInt)
675                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
676
677              os << ":'  at line "
678                  << End.asLocation().getExpansionLineNumber();
679              break;
680            }
681            }
682            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
683                Start, End, os.str()));
684          }
685          else {
686            os << "'Default' branch taken. ";
687            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
688            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
689                Start, End, os.str()));
690          }
691
692          break;
693        }
694
695        case Stmt::BreakStmtClass:
696        case Stmt::ContinueStmtClass: {
697          std::string sbuf;
698          llvm::raw_string_ostream os(sbuf);
699          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
700          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
701              Start, End, os.str()));
702          break;
703        }
704
705        // Determine control-flow for ternary '?'.
706        case Stmt::BinaryConditionalOperatorClass:
707        case Stmt::ConditionalOperatorClass: {
708          std::string sbuf;
709          llvm::raw_string_ostream os(sbuf);
710          os << "'?' condition is ";
711
712          if (*(Src->succ_begin()+1) == Dst)
713            os << "false";
714          else
715            os << "true";
716
717          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
718
719          if (const Stmt *S = End.asStmt())
720            End = PDB.getEnclosingStmtLocation(S);
721
722          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
723              Start, End, os.str()));
724          break;
725        }
726
727        // Determine control-flow for short-circuited '&&' and '||'.
728        case Stmt::BinaryOperatorClass: {
729          if (!PDB.supportsLogicalOpControlFlow())
730            break;
731
732          const BinaryOperator *B = cast<BinaryOperator>(T);
733          std::string sbuf;
734          llvm::raw_string_ostream os(sbuf);
735          os << "Left side of '";
736
737          if (B->getOpcode() == BO_LAnd) {
738            os << "&&" << "' is ";
739
740            if (*(Src->succ_begin()+1) == Dst) {
741              os << "false";
742              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
743              PathDiagnosticLocation Start =
744                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
745              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
746                  Start, End, os.str()));
747            }
748            else {
749              os << "true";
750              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
751              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
752              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
753                  Start, End, os.str()));
754            }
755          }
756          else {
757            assert(B->getOpcode() == BO_LOr);
758            os << "||" << "' is ";
759
760            if (*(Src->succ_begin()+1) == Dst) {
761              os << "false";
762              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
763              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
764              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
765                  Start, End, os.str()));
766            }
767            else {
768              os << "true";
769              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
770              PathDiagnosticLocation Start =
771                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
772              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
773                  Start, End, os.str()));
774            }
775          }
776
777          break;
778        }
779
780        case Stmt::DoStmtClass:  {
781          if (*(Src->succ_begin()) == Dst) {
782            std::string sbuf;
783            llvm::raw_string_ostream os(sbuf);
784
785            os << "Loop condition is true. ";
786            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
787
788            if (const Stmt *S = End.asStmt())
789              End = PDB.getEnclosingStmtLocation(S);
790
791            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
792                Start, End, os.str()));
793          }
794          else {
795            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
796
797            if (const Stmt *S = End.asStmt())
798              End = PDB.getEnclosingStmtLocation(S);
799
800            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
801                Start, End, "Loop condition is false.  Exiting loop"));
802          }
803
804          break;
805        }
806
807        case Stmt::WhileStmtClass:
808        case Stmt::ForStmtClass: {
809          if (*(Src->succ_begin()+1) == Dst) {
810            std::string sbuf;
811            llvm::raw_string_ostream os(sbuf);
812
813            os << "Loop condition is false. ";
814            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
815            if (const Stmt *S = End.asStmt())
816              End = PDB.getEnclosingStmtLocation(S);
817
818            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
819                Start, End, os.str()));
820          }
821          else {
822            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
823            if (const Stmt *S = End.asStmt())
824              End = PDB.getEnclosingStmtLocation(S);
825
826            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
827                Start, End, "Loop condition is true.  Entering loop body"));
828          }
829
830          break;
831        }
832
833        case Stmt::IfStmtClass: {
834          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
835
836          if (const Stmt *S = End.asStmt())
837            End = PDB.getEnclosingStmtLocation(S);
838
839          if (*(Src->succ_begin()+1) == Dst)
840            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
841                Start, End, "Taking false branch"));
842          else
843            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
844                Start, End, "Taking true branch"));
845
846          break;
847        }
848        }
849      }
850    } while(0);
851
852    if (NextNode) {
853      // Add diagnostic pieces from custom visitors.
854      BugReport *R = PDB.getBugReport();
855      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
856                                                    E = visitors.end();
857           I != E; ++I) {
858        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
859          PD.getActivePath().push_front(p);
860          updateStackPiecesWithMessage(p, CallStack);
861        }
862      }
863    }
864  }
865
866  if (!PDB.getBugReport()->isValid())
867    return false;
868
869  // After constructing the full PathDiagnostic, do a pass over it to compact
870  // PathDiagnosticPieces that occur within a macro.
871  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
872  return true;
873}
874
875//===----------------------------------------------------------------------===//
876// "Extensive" PathDiagnostic generation.
877//===----------------------------------------------------------------------===//
878
879static bool IsControlFlowExpr(const Stmt *S) {
880  const Expr *E = dyn_cast<Expr>(S);
881
882  if (!E)
883    return false;
884
885  E = E->IgnoreParenCasts();
886
887  if (isa<AbstractConditionalOperator>(E))
888    return true;
889
890  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
891    if (B->isLogicalOp())
892      return true;
893
894  return false;
895}
896
897namespace {
898class ContextLocation : public PathDiagnosticLocation {
899  bool IsDead;
900public:
901  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
902    : PathDiagnosticLocation(L), IsDead(isdead) {}
903
904  void markDead() { IsDead = true; }
905  bool isDead() const { return IsDead; }
906};
907
908class EdgeBuilder {
909  std::vector<ContextLocation> CLocs;
910  typedef std::vector<ContextLocation>::iterator iterator;
911  PathDiagnostic &PD;
912  PathDiagnosticBuilder &PDB;
913  PathDiagnosticLocation PrevLoc;
914
915  bool IsConsumedExpr(const PathDiagnosticLocation &L);
916
917  bool containsLocation(const PathDiagnosticLocation &Container,
918                        const PathDiagnosticLocation &Containee);
919
920  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
921
922  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
923                                         bool firstCharOnly = false) {
924    if (const Stmt *S = L.asStmt()) {
925      const Stmt *Original = S;
926      while (1) {
927        // Adjust the location for some expressions that are best referenced
928        // by one of their subexpressions.
929        switch (S->getStmtClass()) {
930          default:
931            break;
932          case Stmt::ParenExprClass:
933          case Stmt::GenericSelectionExprClass:
934            S = cast<Expr>(S)->IgnoreParens();
935            firstCharOnly = true;
936            continue;
937          case Stmt::BinaryConditionalOperatorClass:
938          case Stmt::ConditionalOperatorClass:
939            S = cast<AbstractConditionalOperator>(S)->getCond();
940            firstCharOnly = true;
941            continue;
942          case Stmt::ChooseExprClass:
943            S = cast<ChooseExpr>(S)->getCond();
944            firstCharOnly = true;
945            continue;
946          case Stmt::BinaryOperatorClass:
947            S = cast<BinaryOperator>(S)->getLHS();
948            firstCharOnly = true;
949            continue;
950        }
951
952        break;
953      }
954
955      if (S != Original)
956        L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
957    }
958
959    if (firstCharOnly)
960      L  = PathDiagnosticLocation::createSingleLocation(L);
961
962    return L;
963  }
964
965  void popLocation() {
966    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
967      // For contexts, we only one the first character as the range.
968      rawAddEdge(cleanUpLocation(CLocs.back(), true));
969    }
970    CLocs.pop_back();
971  }
972
973public:
974  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
975    : PD(pd), PDB(pdb) {
976
977      // If the PathDiagnostic already has pieces, add the enclosing statement
978      // of the first piece as a context as well.
979      if (!PD.path.empty()) {
980        PrevLoc = (*PD.path.begin())->getLocation();
981
982        if (const Stmt *S = PrevLoc.asStmt())
983          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
984      }
985  }
986
987  ~EdgeBuilder() {
988    while (!CLocs.empty()) popLocation();
989
990    // Finally, add an initial edge from the start location of the first
991    // statement (if it doesn't already exist).
992    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
993                                                       PDB.LC,
994                                                       PDB.getSourceManager());
995    if (L.isValid())
996      rawAddEdge(L);
997  }
998
999  void flushLocations() {
1000    while (!CLocs.empty())
1001      popLocation();
1002    PrevLoc = PathDiagnosticLocation();
1003  }
1004
1005  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
1006
1007  void rawAddEdge(PathDiagnosticLocation NewLoc);
1008
1009  void addContext(const Stmt *S);
1010  void addContext(const PathDiagnosticLocation &L);
1011  void addExtendedContext(const Stmt *S);
1012};
1013} // end anonymous namespace
1014
1015
1016PathDiagnosticLocation
1017EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1018  if (const Stmt *S = L.asStmt()) {
1019    if (IsControlFlowExpr(S))
1020      return L;
1021
1022    return PDB.getEnclosingStmtLocation(S);
1023  }
1024
1025  return L;
1026}
1027
1028bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1029                                   const PathDiagnosticLocation &Containee) {
1030
1031  if (Container == Containee)
1032    return true;
1033
1034  if (Container.asDecl())
1035    return true;
1036
1037  if (const Stmt *S = Containee.asStmt())
1038    if (const Stmt *ContainerS = Container.asStmt()) {
1039      while (S) {
1040        if (S == ContainerS)
1041          return true;
1042        S = PDB.getParent(S);
1043      }
1044      return false;
1045    }
1046
1047  // Less accurate: compare using source ranges.
1048  SourceRange ContainerR = Container.asRange();
1049  SourceRange ContaineeR = Containee.asRange();
1050
1051  SourceManager &SM = PDB.getSourceManager();
1052  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1053  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1054  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1055  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1056
1057  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1058  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1059  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1060  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1061
1062  assert(ContainerBegLine <= ContainerEndLine);
1063  assert(ContaineeBegLine <= ContaineeEndLine);
1064
1065  return (ContainerBegLine <= ContaineeBegLine &&
1066          ContainerEndLine >= ContaineeEndLine &&
1067          (ContainerBegLine != ContaineeBegLine ||
1068           SM.getExpansionColumnNumber(ContainerRBeg) <=
1069           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1070          (ContainerEndLine != ContaineeEndLine ||
1071           SM.getExpansionColumnNumber(ContainerREnd) >=
1072           SM.getExpansionColumnNumber(ContaineeREnd)));
1073}
1074
1075void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1076  if (!PrevLoc.isValid()) {
1077    PrevLoc = NewLoc;
1078    return;
1079  }
1080
1081  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1082  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1083
1084  if (PrevLocClean.asLocation().isInvalid()) {
1085    PrevLoc = NewLoc;
1086    return;
1087  }
1088
1089  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1090    return;
1091
1092  // FIXME: Ignore intra-macro edges for now.
1093  if (NewLocClean.asLocation().getExpansionLoc() ==
1094      PrevLocClean.asLocation().getExpansionLoc())
1095    return;
1096
1097  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1098  PrevLoc = NewLoc;
1099}
1100
1101void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1102
1103  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1104    return;
1105
1106  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1107
1108  while (!CLocs.empty()) {
1109    ContextLocation &TopContextLoc = CLocs.back();
1110
1111    // Is the top location context the same as the one for the new location?
1112    if (TopContextLoc == CLoc) {
1113      if (alwaysAdd) {
1114        if (IsConsumedExpr(TopContextLoc) &&
1115            !IsControlFlowExpr(TopContextLoc.asStmt()))
1116            TopContextLoc.markDead();
1117
1118        rawAddEdge(NewLoc);
1119      }
1120
1121      return;
1122    }
1123
1124    if (containsLocation(TopContextLoc, CLoc)) {
1125      if (alwaysAdd) {
1126        rawAddEdge(NewLoc);
1127
1128        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1129          CLocs.push_back(ContextLocation(CLoc, true));
1130          return;
1131        }
1132      }
1133
1134      CLocs.push_back(CLoc);
1135      return;
1136    }
1137
1138    // Context does not contain the location.  Flush it.
1139    popLocation();
1140  }
1141
1142  // If we reach here, there is no enclosing context.  Just add the edge.
1143  rawAddEdge(NewLoc);
1144}
1145
1146bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1147  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1148    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1149
1150  return false;
1151}
1152
1153void EdgeBuilder::addExtendedContext(const Stmt *S) {
1154  if (!S)
1155    return;
1156
1157  const Stmt *Parent = PDB.getParent(S);
1158  while (Parent) {
1159    if (isa<CompoundStmt>(Parent))
1160      Parent = PDB.getParent(Parent);
1161    else
1162      break;
1163  }
1164
1165  if (Parent) {
1166    switch (Parent->getStmtClass()) {
1167      case Stmt::DoStmtClass:
1168      case Stmt::ObjCAtSynchronizedStmtClass:
1169        addContext(Parent);
1170      default:
1171        break;
1172    }
1173  }
1174
1175  addContext(S);
1176}
1177
1178void EdgeBuilder::addContext(const Stmt *S) {
1179  if (!S)
1180    return;
1181
1182  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1183  addContext(L);
1184}
1185
1186void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1187  while (!CLocs.empty()) {
1188    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1189
1190    // Is the top location context the same as the one for the new location?
1191    if (TopContextLoc == L)
1192      return;
1193
1194    if (containsLocation(TopContextLoc, L)) {
1195      CLocs.push_back(L);
1196      return;
1197    }
1198
1199    // Context does not contain the location.  Flush it.
1200    popLocation();
1201  }
1202
1203  CLocs.push_back(L);
1204}
1205
1206// Cone-of-influence: support the reverse propagation of "interesting" symbols
1207// and values by tracing interesting calculations backwards through evaluated
1208// expressions along a path.  This is probably overly complicated, but the idea
1209// is that if an expression computed an "interesting" value, the child
1210// expressions are are also likely to be "interesting" as well (which then
1211// propagates to the values they in turn compute).  This reverse propagation
1212// is needed to track interesting correlations across function call boundaries,
1213// where formal arguments bind to actual arguments, etc.  This is also needed
1214// because the constraint solver sometimes simplifies certain symbolic values
1215// into constants when appropriate, and this complicates reasoning about
1216// interesting values.
1217typedef llvm::DenseSet<const Expr *> InterestingExprs;
1218
1219static void reversePropagateIntererstingSymbols(BugReport &R,
1220                                                InterestingExprs &IE,
1221                                                const ProgramState *State,
1222                                                const Expr *Ex,
1223                                                const LocationContext *LCtx) {
1224  SVal V = State->getSVal(Ex, LCtx);
1225  if (!(R.isInteresting(V) || IE.count(Ex)))
1226    return;
1227
1228  switch (Ex->getStmtClass()) {
1229    default:
1230      if (!isa<CastExpr>(Ex))
1231        break;
1232      // Fall through.
1233    case Stmt::BinaryOperatorClass:
1234    case Stmt::UnaryOperatorClass: {
1235      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1236            CE = Ex->child_end();
1237            CI != CE; ++CI) {
1238        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1239          IE.insert(child);
1240          SVal ChildV = State->getSVal(child, LCtx);
1241          R.markInteresting(ChildV);
1242        }
1243        break;
1244      }
1245    }
1246  }
1247
1248  R.markInteresting(V);
1249}
1250
1251static void reversePropagateInterestingSymbols(BugReport &R,
1252                                               InterestingExprs &IE,
1253                                               const ProgramState *State,
1254                                               const LocationContext *CalleeCtx,
1255                                               const LocationContext *CallerCtx)
1256{
1257  // FIXME: Handle non-CallExpr-based CallEvents.
1258  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1259  const Stmt *CallSite = Callee->getCallSite();
1260  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1261    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1262      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1263                                         PE = FD->param_end();
1264      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1265      for (; AI != AE && PI != PE; ++AI, ++PI) {
1266        if (const Expr *ArgE = *AI) {
1267          if (const ParmVarDecl *PD = *PI) {
1268            Loc LV = State->getLValue(PD, CalleeCtx);
1269            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1270              IE.insert(ArgE);
1271          }
1272        }
1273      }
1274    }
1275  }
1276}
1277
1278static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1279                                            PathDiagnosticBuilder &PDB,
1280                                            const ExplodedNode *N,
1281                                      ArrayRef<BugReporterVisitor *> visitors) {
1282  EdgeBuilder EB(PD, PDB);
1283  const SourceManager& SM = PDB.getSourceManager();
1284  StackDiagVector CallStack;
1285  InterestingExprs IE;
1286
1287  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1288  while (NextNode) {
1289    N = NextNode;
1290    NextNode = GetPredecessorNode(N);
1291    ProgramPoint P = N->getLocation();
1292
1293    do {
1294      if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1295        if (const Expr *Ex = PS->getStmtAs<Expr>())
1296          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1297                                              N->getState().getPtr(), Ex,
1298                                              N->getLocationContext());
1299      }
1300
1301      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1302        const Stmt *S = CE->getCalleeContext()->getCallSite();
1303        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1304            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1305                                                N->getState().getPtr(), Ex,
1306                                                N->getLocationContext());
1307        }
1308
1309        PathDiagnosticCallPiece *C =
1310          PathDiagnosticCallPiece::construct(N, *CE, SM);
1311        GRBugReporter& BR = PDB.getBugReporter();
1312        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1313
1314        EB.addEdge(C->callReturn, true);
1315        EB.flushLocations();
1316
1317        PD.getActivePath().push_front(C);
1318        PD.pushActivePath(&C->path);
1319        CallStack.push_back(StackDiagPair(C, N));
1320        break;
1321      }
1322
1323      // Pop the call hierarchy if we are done walking the contents
1324      // of a function call.
1325      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1326        // Add an edge to the start of the function.
1327        const Decl *D = CE->getCalleeContext()->getDecl();
1328        PathDiagnosticLocation pos =
1329          PathDiagnosticLocation::createBegin(D, SM);
1330        EB.addEdge(pos);
1331
1332        // Flush all locations, and pop the active path.
1333        bool VisitedEntireCall = PD.isWithinCall();
1334        EB.flushLocations();
1335        PD.popActivePath();
1336        PDB.LC = N->getLocationContext();
1337
1338        // Either we just added a bunch of stuff to the top-level path, or
1339        // we have a previous CallExitEnd.  If the former, it means that the
1340        // path terminated within a function call.  We must then take the
1341        // current contents of the active path and place it within
1342        // a new PathDiagnosticCallPiece.
1343        PathDiagnosticCallPiece *C;
1344        if (VisitedEntireCall) {
1345          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1346        } else {
1347          const Decl *Caller = CE->getLocationContext()->getDecl();
1348          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1349          GRBugReporter& BR = PDB.getBugReporter();
1350          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1351        }
1352
1353        C->setCallee(*CE, SM);
1354        EB.addContext(C->getLocation());
1355
1356        if (!CallStack.empty()) {
1357          assert(CallStack.back().first == C);
1358          CallStack.pop_back();
1359        }
1360        break;
1361      }
1362
1363      // Note that is important that we update the LocationContext
1364      // after looking at CallExits.  CallExit basically adds an
1365      // edge in the *caller*, so we don't want to update the LocationContext
1366      // too soon.
1367      PDB.LC = N->getLocationContext();
1368
1369      // Block edges.
1370      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1371        // Does this represent entering a call?  If so, look at propagating
1372        // interesting symbols across call boundaries.
1373        if (NextNode) {
1374          const LocationContext *CallerCtx = NextNode->getLocationContext();
1375          const LocationContext *CalleeCtx = PDB.LC;
1376          if (CallerCtx != CalleeCtx) {
1377            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1378                                               N->getState().getPtr(),
1379                                               CalleeCtx, CallerCtx);
1380          }
1381        }
1382
1383        // Are we jumping to the head of a loop?  Add a special diagnostic.
1384        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1385          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1386          const CompoundStmt *CS = NULL;
1387
1388          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1389            CS = dyn_cast<CompoundStmt>(FS->getBody());
1390          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1391            CS = dyn_cast<CompoundStmt>(WS->getBody());
1392
1393          PathDiagnosticEventPiece *p =
1394            new PathDiagnosticEventPiece(L,
1395                                        "Looping back to the head of the loop");
1396          p->setPrunable(true);
1397
1398          EB.addEdge(p->getLocation(), true);
1399          PD.getActivePath().push_front(p);
1400
1401          if (CS) {
1402            PathDiagnosticLocation BL =
1403              PathDiagnosticLocation::createEndBrace(CS, SM);
1404            EB.addEdge(BL);
1405          }
1406        }
1407
1408        if (const Stmt *Term = BE->getSrc()->getTerminator())
1409          EB.addContext(Term);
1410
1411        break;
1412      }
1413
1414      if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1415        CFGElement First = BE->getFirstElement();
1416        if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1417          const Stmt *stmt = S->getStmt();
1418          if (IsControlFlowExpr(stmt)) {
1419            // Add the proper context for '&&', '||', and '?'.
1420            EB.addContext(stmt);
1421          }
1422          else
1423            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1424        }
1425
1426        break;
1427      }
1428
1429
1430    } while (0);
1431
1432    if (!NextNode)
1433      continue;
1434
1435    // Add pieces from custom visitors.
1436    BugReport *R = PDB.getBugReport();
1437    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1438                                                  E = visitors.end();
1439         I != E; ++I) {
1440      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1441        const PathDiagnosticLocation &Loc = p->getLocation();
1442        EB.addEdge(Loc, true);
1443        PD.getActivePath().push_front(p);
1444        updateStackPiecesWithMessage(p, CallStack);
1445
1446        if (const Stmt *S = Loc.asStmt())
1447          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1448      }
1449    }
1450  }
1451
1452  return PDB.getBugReport()->isValid();
1453}
1454
1455//===----------------------------------------------------------------------===//
1456// Methods for BugType and subclasses.
1457//===----------------------------------------------------------------------===//
1458BugType::~BugType() { }
1459
1460void BugType::FlushReports(BugReporter &BR) {}
1461
1462void BuiltinBug::anchor() {}
1463
1464//===----------------------------------------------------------------------===//
1465// Methods for BugReport and subclasses.
1466//===----------------------------------------------------------------------===//
1467
1468void BugReport::NodeResolver::anchor() {}
1469
1470void BugReport::addVisitor(BugReporterVisitor* visitor) {
1471  if (!visitor)
1472    return;
1473
1474  llvm::FoldingSetNodeID ID;
1475  visitor->Profile(ID);
1476  void *InsertPos;
1477
1478  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1479    delete visitor;
1480    return;
1481  }
1482
1483  CallbacksSet.InsertNode(visitor, InsertPos);
1484  Callbacks.push_back(visitor);
1485  ++ConfigurationChangeToken;
1486}
1487
1488BugReport::~BugReport() {
1489  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1490    delete *I;
1491  }
1492  while (!interestingSymbols.empty()) {
1493    popInterestingSymbolsAndRegions();
1494  }
1495}
1496
1497const Decl *BugReport::getDeclWithIssue() const {
1498  if (DeclWithIssue)
1499    return DeclWithIssue;
1500
1501  const ExplodedNode *N = getErrorNode();
1502  if (!N)
1503    return 0;
1504
1505  const LocationContext *LC = N->getLocationContext();
1506  return LC->getCurrentStackFrame()->getDecl();
1507}
1508
1509void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1510  hash.AddPointer(&BT);
1511  hash.AddString(Description);
1512  if (UniqueingLocation.isValid()) {
1513    UniqueingLocation.Profile(hash);
1514  } else if (Location.isValid()) {
1515    Location.Profile(hash);
1516  } else {
1517    assert(ErrorNode);
1518    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1519  }
1520
1521  for (SmallVectorImpl<SourceRange>::const_iterator I =
1522      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1523    const SourceRange range = *I;
1524    if (!range.isValid())
1525      continue;
1526    hash.AddInteger(range.getBegin().getRawEncoding());
1527    hash.AddInteger(range.getEnd().getRawEncoding());
1528  }
1529}
1530
1531void BugReport::markInteresting(SymbolRef sym) {
1532  if (!sym)
1533    return;
1534
1535  // If the symbol wasn't already in our set, note a configuration change.
1536  if (getInterestingSymbols().insert(sym).second)
1537    ++ConfigurationChangeToken;
1538
1539  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1540    getInterestingRegions().insert(meta->getRegion());
1541}
1542
1543void BugReport::markInteresting(const MemRegion *R) {
1544  if (!R)
1545    return;
1546
1547  // If the base region wasn't already in our set, note a configuration change.
1548  R = R->getBaseRegion();
1549  if (getInterestingRegions().insert(R).second)
1550    ++ConfigurationChangeToken;
1551
1552  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1553    getInterestingSymbols().insert(SR->getSymbol());
1554}
1555
1556void BugReport::markInteresting(SVal V) {
1557  markInteresting(V.getAsRegion());
1558  markInteresting(V.getAsSymbol());
1559}
1560
1561void BugReport::markInteresting(const LocationContext *LC) {
1562  if (!LC)
1563    return;
1564  InterestingLocationContexts.insert(LC);
1565}
1566
1567bool BugReport::isInteresting(SVal V) {
1568  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1569}
1570
1571bool BugReport::isInteresting(SymbolRef sym) {
1572  if (!sym)
1573    return false;
1574  // We don't currently consider metadata symbols to be interesting
1575  // even if we know their region is interesting. Is that correct behavior?
1576  return getInterestingSymbols().count(sym);
1577}
1578
1579bool BugReport::isInteresting(const MemRegion *R) {
1580  if (!R)
1581    return false;
1582  R = R->getBaseRegion();
1583  bool b = getInterestingRegions().count(R);
1584  if (b)
1585    return true;
1586  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1587    return getInterestingSymbols().count(SR->getSymbol());
1588  return false;
1589}
1590
1591bool BugReport::isInteresting(const LocationContext *LC) {
1592  if (!LC)
1593    return false;
1594  return InterestingLocationContexts.count(LC);
1595}
1596
1597void BugReport::lazyInitializeInterestingSets() {
1598  if (interestingSymbols.empty()) {
1599    interestingSymbols.push_back(new Symbols());
1600    interestingRegions.push_back(new Regions());
1601  }
1602}
1603
1604BugReport::Symbols &BugReport::getInterestingSymbols() {
1605  lazyInitializeInterestingSets();
1606  return *interestingSymbols.back();
1607}
1608
1609BugReport::Regions &BugReport::getInterestingRegions() {
1610  lazyInitializeInterestingSets();
1611  return *interestingRegions.back();
1612}
1613
1614void BugReport::pushInterestingSymbolsAndRegions() {
1615  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1616  interestingRegions.push_back(new Regions(getInterestingRegions()));
1617}
1618
1619void BugReport::popInterestingSymbolsAndRegions() {
1620  delete interestingSymbols.back();
1621  interestingSymbols.pop_back();
1622  delete interestingRegions.back();
1623  interestingRegions.pop_back();
1624}
1625
1626const Stmt *BugReport::getStmt() const {
1627  if (!ErrorNode)
1628    return 0;
1629
1630  ProgramPoint ProgP = ErrorNode->getLocation();
1631  const Stmt *S = NULL;
1632
1633  if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1634    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1635    if (BE->getBlock() == &Exit)
1636      S = GetPreviousStmt(ErrorNode);
1637  }
1638  if (!S)
1639    S = GetStmt(ProgP);
1640
1641  return S;
1642}
1643
1644std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1645BugReport::getRanges() {
1646    // If no custom ranges, add the range of the statement corresponding to
1647    // the error node.
1648    if (Ranges.empty()) {
1649      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1650        addRange(E->getSourceRange());
1651      else
1652        return std::make_pair(ranges_iterator(), ranges_iterator());
1653    }
1654
1655    // User-specified absence of range info.
1656    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1657      return std::make_pair(ranges_iterator(), ranges_iterator());
1658
1659    return std::make_pair(Ranges.begin(), Ranges.end());
1660}
1661
1662PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1663  if (ErrorNode) {
1664    assert(!Location.isValid() &&
1665     "Either Location or ErrorNode should be specified but not both.");
1666
1667    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1668      const LocationContext *LC = ErrorNode->getLocationContext();
1669
1670      // For member expressions, return the location of the '.' or '->'.
1671      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1672        return PathDiagnosticLocation::createMemberLoc(ME, SM);
1673      // For binary operators, return the location of the operator.
1674      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1675        return PathDiagnosticLocation::createOperatorLoc(B, SM);
1676
1677      if (isa<PostStmtPurgeDeadSymbols>(ErrorNode->getLocation()))
1678        return PathDiagnosticLocation::createEnd(S, SM, LC);
1679
1680      return PathDiagnosticLocation::createBegin(S, SM, LC);
1681    }
1682  } else {
1683    assert(Location.isValid());
1684    return Location;
1685  }
1686
1687  return PathDiagnosticLocation();
1688}
1689
1690//===----------------------------------------------------------------------===//
1691// Methods for BugReporter and subclasses.
1692//===----------------------------------------------------------------------===//
1693
1694BugReportEquivClass::~BugReportEquivClass() { }
1695GRBugReporter::~GRBugReporter() { }
1696BugReporterData::~BugReporterData() {}
1697
1698ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1699
1700ProgramStateManager&
1701GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1702
1703BugReporter::~BugReporter() {
1704  FlushReports();
1705
1706  // Free the bug reports we are tracking.
1707  typedef std::vector<BugReportEquivClass *> ContTy;
1708  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1709       I != E; ++I) {
1710    delete *I;
1711  }
1712}
1713
1714void BugReporter::FlushReports() {
1715  if (BugTypes.isEmpty())
1716    return;
1717
1718  // First flush the warnings for each BugType.  This may end up creating new
1719  // warnings and new BugTypes.
1720  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1721  // Turn NSErrorChecker into a proper checker and remove this.
1722  SmallVector<const BugType*, 16> bugTypes;
1723  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1724    bugTypes.push_back(*I);
1725  for (SmallVector<const BugType*, 16>::iterator
1726         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1727    const_cast<BugType*>(*I)->FlushReports(*this);
1728
1729  // We need to flush reports in deterministic order to ensure the order
1730  // of the reports is consistent between runs.
1731  typedef std::vector<BugReportEquivClass *> ContVecTy;
1732  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1733       EI != EE; ++EI){
1734    BugReportEquivClass& EQ = **EI;
1735    FlushReport(EQ);
1736  }
1737
1738  // BugReporter owns and deletes only BugTypes created implicitly through
1739  // EmitBasicReport.
1740  // FIXME: There are leaks from checkers that assume that the BugTypes they
1741  // create will be destroyed by the BugReporter.
1742  for (llvm::StringMap<BugType*>::iterator
1743         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1744    delete I->second;
1745
1746  // Remove all references to the BugType objects.
1747  BugTypes = F.getEmptySet();
1748}
1749
1750//===----------------------------------------------------------------------===//
1751// PathDiagnostics generation.
1752//===----------------------------------------------------------------------===//
1753
1754static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1755                 std::pair<ExplodedNode*, unsigned> >
1756MakeReportGraph(const ExplodedGraph* G,
1757                SmallVectorImpl<const ExplodedNode*> &nodes) {
1758
1759  // Create the trimmed graph.  It will contain the shortest paths from the
1760  // error nodes to the root.  In the new graph we should only have one
1761  // error node unless there are two or more error nodes with the same minimum
1762  // path length.
1763  ExplodedGraph* GTrim;
1764  InterExplodedGraphMap* NMap;
1765
1766  llvm::DenseMap<const void*, const void*> InverseMap;
1767  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1768                                   &InverseMap);
1769
1770  // Create owning pointers for GTrim and NMap just to ensure that they are
1771  // released when this function exists.
1772  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1773  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1774
1775  // Find the (first) error node in the trimmed graph.  We just need to consult
1776  // the node map (NMap) which maps from nodes in the original graph to nodes
1777  // in the new graph.
1778
1779  std::queue<const ExplodedNode*> WS;
1780  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1781  IndexMapTy IndexMap;
1782
1783  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1784    const ExplodedNode *originalNode = nodes[nodeIndex];
1785    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1786      WS.push(N);
1787      IndexMap[originalNode] = nodeIndex;
1788    }
1789  }
1790
1791  assert(!WS.empty() && "No error node found in the trimmed graph.");
1792
1793  // Create a new (third!) graph with a single path.  This is the graph
1794  // that will be returned to the caller.
1795  ExplodedGraph *GNew = new ExplodedGraph();
1796
1797  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1798  // to the root node, and then construct a new graph that contains only
1799  // a single path.
1800  llvm::DenseMap<const void*,unsigned> Visited;
1801
1802  unsigned cnt = 0;
1803  const ExplodedNode *Root = 0;
1804
1805  while (!WS.empty()) {
1806    const ExplodedNode *Node = WS.front();
1807    WS.pop();
1808
1809    if (Visited.find(Node) != Visited.end())
1810      continue;
1811
1812    Visited[Node] = cnt++;
1813
1814    if (Node->pred_empty()) {
1815      Root = Node;
1816      break;
1817    }
1818
1819    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1820         E=Node->pred_end(); I!=E; ++I)
1821      WS.push(*I);
1822  }
1823
1824  assert(Root);
1825
1826  // Now walk from the root down the BFS path, always taking the successor
1827  // with the lowest number.
1828  ExplodedNode *Last = 0, *First = 0;
1829  NodeBackMap *BM = new NodeBackMap();
1830  unsigned NodeIndex = 0;
1831
1832  for ( const ExplodedNode *N = Root ;;) {
1833    // Lookup the number associated with the current node.
1834    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1835    assert(I != Visited.end());
1836
1837    // Create the equivalent node in the new graph with the same state
1838    // and location.
1839    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1840
1841    // Store the mapping to the original node.
1842    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1843    assert(IMitr != InverseMap.end() && "No mapping to original node.");
1844    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1845
1846    // Link up the new node with the previous node.
1847    if (Last)
1848      NewN->addPredecessor(Last, *GNew);
1849
1850    Last = NewN;
1851
1852    // Are we at the final node?
1853    IndexMapTy::iterator IMI =
1854      IndexMap.find((const ExplodedNode*)(IMitr->second));
1855    if (IMI != IndexMap.end()) {
1856      First = NewN;
1857      NodeIndex = IMI->second;
1858      break;
1859    }
1860
1861    // Find the next successor node.  We choose the node that is marked
1862    // with the lowest DFS number.
1863    ExplodedNode::const_succ_iterator SI = N->succ_begin();
1864    ExplodedNode::const_succ_iterator SE = N->succ_end();
1865    N = 0;
1866
1867    for (unsigned MinVal = 0; SI != SE; ++SI) {
1868
1869      I = Visited.find(*SI);
1870
1871      if (I == Visited.end())
1872        continue;
1873
1874      if (!N || I->second < MinVal) {
1875        N = *SI;
1876        MinVal = I->second;
1877      }
1878    }
1879
1880    assert(N);
1881  }
1882
1883  assert(First);
1884
1885  return std::make_pair(std::make_pair(GNew, BM),
1886                        std::make_pair(First, NodeIndex));
1887}
1888
1889/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1890///  and collapses PathDiagosticPieces that are expanded by macros.
1891static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1892  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1893                                SourceLocation> > MacroStackTy;
1894
1895  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1896          PiecesTy;
1897
1898  MacroStackTy MacroStack;
1899  PiecesTy Pieces;
1900
1901  for (PathPieces::const_iterator I = path.begin(), E = path.end();
1902       I!=E; ++I) {
1903
1904    PathDiagnosticPiece *piece = I->getPtr();
1905
1906    // Recursively compact calls.
1907    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1908      CompactPathDiagnostic(call->path, SM);
1909    }
1910
1911    // Get the location of the PathDiagnosticPiece.
1912    const FullSourceLoc Loc = piece->getLocation().asLocation();
1913
1914    // Determine the instantiation location, which is the location we group
1915    // related PathDiagnosticPieces.
1916    SourceLocation InstantiationLoc = Loc.isMacroID() ?
1917                                      SM.getExpansionLoc(Loc) :
1918                                      SourceLocation();
1919
1920    if (Loc.isFileID()) {
1921      MacroStack.clear();
1922      Pieces.push_back(piece);
1923      continue;
1924    }
1925
1926    assert(Loc.isMacroID());
1927
1928    // Is the PathDiagnosticPiece within the same macro group?
1929    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1930      MacroStack.back().first->subPieces.push_back(piece);
1931      continue;
1932    }
1933
1934    // We aren't in the same group.  Are we descending into a new macro
1935    // or are part of an old one?
1936    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1937
1938    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1939                                          SM.getExpansionLoc(Loc) :
1940                                          SourceLocation();
1941
1942    // Walk the entire macro stack.
1943    while (!MacroStack.empty()) {
1944      if (InstantiationLoc == MacroStack.back().second) {
1945        MacroGroup = MacroStack.back().first;
1946        break;
1947      }
1948
1949      if (ParentInstantiationLoc == MacroStack.back().second) {
1950        MacroGroup = MacroStack.back().first;
1951        break;
1952      }
1953
1954      MacroStack.pop_back();
1955    }
1956
1957    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1958      // Create a new macro group and add it to the stack.
1959      PathDiagnosticMacroPiece *NewGroup =
1960        new PathDiagnosticMacroPiece(
1961          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1962
1963      if (MacroGroup)
1964        MacroGroup->subPieces.push_back(NewGroup);
1965      else {
1966        assert(InstantiationLoc.isFileID());
1967        Pieces.push_back(NewGroup);
1968      }
1969
1970      MacroGroup = NewGroup;
1971      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1972    }
1973
1974    // Finally, add the PathDiagnosticPiece to the group.
1975    MacroGroup->subPieces.push_back(piece);
1976  }
1977
1978  // Now take the pieces and construct a new PathDiagnostic.
1979  path.clear();
1980
1981  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1982    path.push_back(*I);
1983}
1984
1985bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
1986                                           PathDiagnosticConsumer &PC,
1987                                           ArrayRef<BugReport *> &bugReports) {
1988  assert(!bugReports.empty());
1989
1990  bool HasValid = false;
1991  SmallVector<const ExplodedNode *, 10> errorNodes;
1992  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1993                                      E = bugReports.end(); I != E; ++I) {
1994    if ((*I)->isValid()) {
1995      HasValid = true;
1996      errorNodes.push_back((*I)->getErrorNode());
1997    } else {
1998      errorNodes.push_back(0);
1999    }
2000  }
2001
2002  // If all the reports have been marked invalid, we're done.
2003  if (!HasValid)
2004    return false;
2005
2006  // Construct a new graph that contains only a single path from the error
2007  // node to a root.
2008  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
2009  std::pair<ExplodedNode*, unsigned> >&
2010    GPair = MakeReportGraph(&getGraph(), errorNodes);
2011
2012  // Find the BugReport with the original location.
2013  assert(GPair.second.second < bugReports.size());
2014  BugReport *R = bugReports[GPair.second.second];
2015  assert(R && "No original report found for sliced graph.");
2016  assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
2017
2018  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
2019  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
2020  const ExplodedNode *N = GPair.second.first;
2021
2022  // Start building the path diagnostic...
2023  PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
2024
2025  // Register additional node visitors.
2026  R->addVisitor(new NilReceiverBRVisitor());
2027  R->addVisitor(new ConditionBRVisitor());
2028
2029  BugReport::VisitorList visitors;
2030  unsigned originalReportConfigToken, finalReportConfigToken;
2031
2032  // While generating diagnostics, it's possible the visitors will decide
2033  // new symbols and regions are interesting, or add other visitors based on
2034  // the information they find. If they do, we need to regenerate the path
2035  // based on our new report configuration.
2036  do {
2037    // Get a clean copy of all the visitors.
2038    for (BugReport::visitor_iterator I = R->visitor_begin(),
2039                                     E = R->visitor_end(); I != E; ++I)
2040       visitors.push_back((*I)->clone());
2041
2042    // Clear out the active path from any previous work.
2043    PD.resetPath();
2044    originalReportConfigToken = R->getConfigurationChangeToken();
2045
2046    // Generate the very last diagnostic piece - the piece is visible before
2047    // the trace is expanded.
2048    if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
2049      PathDiagnosticPiece *LastPiece = 0;
2050      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2051           I != E; ++I) {
2052        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2053          assert (!LastPiece &&
2054                  "There can only be one final piece in a diagnostic.");
2055          LastPiece = Piece;
2056        }
2057      }
2058      if (!LastPiece)
2059        LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2060      if (LastPiece)
2061        PD.setEndOfPath(LastPiece);
2062      else
2063        return false;
2064    }
2065
2066    switch (PDB.getGenerationScheme()) {
2067    case PathDiagnosticConsumer::Extensive:
2068      if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
2069        assert(!R->isValid() && "Failed on valid report");
2070        // Try again. We'll filter out the bad report when we trim the graph.
2071        // FIXME: It would be more efficient to use the same intermediate
2072        // trimmed graph, and just repeat the shortest-path search.
2073        return generatePathDiagnostic(PD, PC, bugReports);
2074      }
2075      break;
2076    case PathDiagnosticConsumer::Minimal:
2077      if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
2078        assert(!R->isValid() && "Failed on valid report");
2079        // Try again. We'll filter out the bad report when we trim the graph.
2080        return generatePathDiagnostic(PD, PC, bugReports);
2081      }
2082      break;
2083    case PathDiagnosticConsumer::None:
2084      if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
2085        assert(!R->isValid() && "Failed on valid report");
2086        // Try again. We'll filter out the bad report when we trim the graph.
2087        return generatePathDiagnostic(PD, PC, bugReports);
2088      }
2089      break;
2090    }
2091
2092    // Clean up the visitors we used.
2093    llvm::DeleteContainerPointers(visitors);
2094
2095    // Did anything change while generating this path?
2096    finalReportConfigToken = R->getConfigurationChangeToken();
2097  } while(finalReportConfigToken != originalReportConfigToken);
2098
2099  // Finally, prune the diagnostic path of uninteresting stuff.
2100  if (!PD.path.empty()) {
2101    // Remove messages that are basically the same.
2102    removeRedundantMsgs(PD.getMutablePieces());
2103
2104    if (R->shouldPrunePath()) {
2105      bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(),
2106                                                        R);
2107      assert(hasSomethingInteresting);
2108      (void) hasSomethingInteresting;
2109    }
2110  }
2111
2112  return true;
2113}
2114
2115void BugReporter::Register(BugType *BT) {
2116  BugTypes = F.add(BugTypes, BT);
2117}
2118
2119void BugReporter::emitReport(BugReport* R) {
2120  // Compute the bug report's hash to determine its equivalence class.
2121  llvm::FoldingSetNodeID ID;
2122  R->Profile(ID);
2123
2124  // Lookup the equivance class.  If there isn't one, create it.
2125  BugType& BT = R->getBugType();
2126  Register(&BT);
2127  void *InsertPos;
2128  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2129
2130  if (!EQ) {
2131    EQ = new BugReportEquivClass(R);
2132    EQClasses.InsertNode(EQ, InsertPos);
2133    EQClassesVector.push_back(EQ);
2134  }
2135  else
2136    EQ->AddReport(R);
2137}
2138
2139
2140//===----------------------------------------------------------------------===//
2141// Emitting reports in equivalence classes.
2142//===----------------------------------------------------------------------===//
2143
2144namespace {
2145struct FRIEC_WLItem {
2146  const ExplodedNode *N;
2147  ExplodedNode::const_succ_iterator I, E;
2148
2149  FRIEC_WLItem(const ExplodedNode *n)
2150  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2151};
2152}
2153
2154static BugReport *
2155FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2156                             SmallVectorImpl<BugReport*> &bugReports) {
2157
2158  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2159  assert(I != E);
2160  BugType& BT = I->getBugType();
2161
2162  // If we don't need to suppress any of the nodes because they are
2163  // post-dominated by a sink, simply add all the nodes in the equivalence class
2164  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2165  if (!BT.isSuppressOnSink()) {
2166    BugReport *R = I;
2167    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2168      const ExplodedNode *N = I->getErrorNode();
2169      if (N) {
2170        R = I;
2171        bugReports.push_back(R);
2172      }
2173    }
2174    return R;
2175  }
2176
2177  // For bug reports that should be suppressed when all paths are post-dominated
2178  // by a sink node, iterate through the reports in the equivalence class
2179  // until we find one that isn't post-dominated (if one exists).  We use a
2180  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2181  // this as a recursive function, but we don't want to risk blowing out the
2182  // stack for very long paths.
2183  BugReport *exampleReport = 0;
2184
2185  for (; I != E; ++I) {
2186    const ExplodedNode *errorNode = I->getErrorNode();
2187
2188    if (!errorNode)
2189      continue;
2190    if (errorNode->isSink()) {
2191      llvm_unreachable(
2192           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2193    }
2194    // No successors?  By definition this nodes isn't post-dominated by a sink.
2195    if (errorNode->succ_empty()) {
2196      bugReports.push_back(I);
2197      if (!exampleReport)
2198        exampleReport = I;
2199      continue;
2200    }
2201
2202    // At this point we know that 'N' is not a sink and it has at least one
2203    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2204    typedef FRIEC_WLItem WLItem;
2205    typedef SmallVector<WLItem, 10> DFSWorkList;
2206    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2207
2208    DFSWorkList WL;
2209    WL.push_back(errorNode);
2210    Visited[errorNode] = 1;
2211
2212    while (!WL.empty()) {
2213      WLItem &WI = WL.back();
2214      assert(!WI.N->succ_empty());
2215
2216      for (; WI.I != WI.E; ++WI.I) {
2217        const ExplodedNode *Succ = *WI.I;
2218        // End-of-path node?
2219        if (Succ->succ_empty()) {
2220          // If we found an end-of-path node that is not a sink.
2221          if (!Succ->isSink()) {
2222            bugReports.push_back(I);
2223            if (!exampleReport)
2224              exampleReport = I;
2225            WL.clear();
2226            break;
2227          }
2228          // Found a sink?  Continue on to the next successor.
2229          continue;
2230        }
2231        // Mark the successor as visited.  If it hasn't been explored,
2232        // enqueue it to the DFS worklist.
2233        unsigned &mark = Visited[Succ];
2234        if (!mark) {
2235          mark = 1;
2236          WL.push_back(Succ);
2237          break;
2238        }
2239      }
2240
2241      // The worklist may have been cleared at this point.  First
2242      // check if it is empty before checking the last item.
2243      if (!WL.empty() && &WL.back() == &WI)
2244        WL.pop_back();
2245    }
2246  }
2247
2248  // ExampleReport will be NULL if all the nodes in the equivalence class
2249  // were post-dominated by sinks.
2250  return exampleReport;
2251}
2252
2253void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2254  SmallVector<BugReport*, 10> bugReports;
2255  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2256  if (exampleReport) {
2257    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2258    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2259                                                 E=C.end(); I != E; ++I) {
2260      FlushReport(exampleReport, **I, bugReports);
2261    }
2262  }
2263}
2264
2265void BugReporter::FlushReport(BugReport *exampleReport,
2266                              PathDiagnosticConsumer &PD,
2267                              ArrayRef<BugReport*> bugReports) {
2268
2269  // FIXME: Make sure we use the 'R' for the path that was actually used.
2270  // Probably doesn't make a difference in practice.
2271  BugType& BT = exampleReport->getBugType();
2272
2273  OwningPtr<PathDiagnostic>
2274    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2275                         exampleReport->getBugType().getName(),
2276                         exampleReport->getDescription(),
2277                         exampleReport->getShortDescription(/*Fallback=*/false),
2278                         BT.getCategory()));
2279
2280  // Generate the full path diagnostic, using the generation scheme
2281  // specified by the PathDiagnosticConsumer. Note that we have to generate
2282  // path diagnostics even for consumers which do not support paths, because
2283  // the BugReporterVisitors may mark this bug as a false positive.
2284  if (!bugReports.empty())
2285    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2286      return;
2287
2288  // If the path is empty, generate a single step path with the location
2289  // of the issue.
2290  if (D->path.empty()) {
2291    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2292    PathDiagnosticPiece *piece =
2293      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2294    BugReport::ranges_iterator Beg, End;
2295    llvm::tie(Beg, End) = exampleReport->getRanges();
2296    for ( ; Beg != End; ++Beg)
2297      piece->addRange(*Beg);
2298    D->setEndOfPath(piece);
2299  }
2300
2301  // Get the meta data.
2302  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2303  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2304                                                e = Meta.end(); i != e; ++i) {
2305    D->addMeta(*i);
2306  }
2307
2308  PD.HandlePathDiagnostic(D.take());
2309}
2310
2311void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2312                                  StringRef name,
2313                                  StringRef category,
2314                                  StringRef str, PathDiagnosticLocation Loc,
2315                                  SourceRange* RBeg, unsigned NumRanges) {
2316
2317  // 'BT' is owned by BugReporter.
2318  BugType *BT = getBugTypeForName(name, category);
2319  BugReport *R = new BugReport(*BT, str, Loc);
2320  R->setDeclWithIssue(DeclWithIssue);
2321  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2322  emitReport(R);
2323}
2324
2325BugType *BugReporter::getBugTypeForName(StringRef name,
2326                                        StringRef category) {
2327  SmallString<136> fullDesc;
2328  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2329  llvm::StringMapEntry<BugType *> &
2330      entry = StrBugTypes.GetOrCreateValue(fullDesc);
2331  BugType *BT = entry.getValue();
2332  if (!BT) {
2333    BT = new BugType(name, category);
2334    entry.setValue(BT);
2335  }
2336  return BT;
2337}
2338