BugReporter.cpp revision 86ff12c8a8a356ca284ca7687749216fbfd74519
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ParentMap.h"
20#include "clang/AST/StmtObjC.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/ProgramPoint.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
25#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/IntrusiveRefCntPtr.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/Support/raw_ostream.h"
33#include <queue>
34
35using namespace clang;
36using namespace ento;
37
38BugReporterVisitor::~BugReporterVisitor() {}
39
40void BugReporterContext::anchor() {}
41
42//===----------------------------------------------------------------------===//
43// Helper routines for walking the ExplodedGraph and fetching statements.
44//===----------------------------------------------------------------------===//
45
46static inline const Stmt *GetStmt(const ProgramPoint &P) {
47  if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48    return SP->getStmt();
49  else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50    return BE->getSrc()->getTerminator();
51  else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52    return CE->getCallExpr();
53  else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54    return CEE->getCalleeContext()->getCallSite();
55
56  return 0;
57}
58
59static inline const ExplodedNode*
60GetPredecessorNode(const ExplodedNode *N) {
61  return N->pred_empty() ? NULL : *(N->pred_begin());
62}
63
64static inline const ExplodedNode*
65GetSuccessorNode(const ExplodedNode *N) {
66  return N->succ_empty() ? NULL : *(N->succ_begin());
67}
68
69static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71    if (const Stmt *S = GetStmt(N->getLocation()))
72      return S;
73
74  return 0;
75}
76
77static const Stmt *GetNextStmt(const ExplodedNode *N) {
78  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79    if (const Stmt *S = GetStmt(N->getLocation())) {
80      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81      // not actual statement points.
82      switch (S->getStmtClass()) {
83        case Stmt::ChooseExprClass:
84        case Stmt::BinaryConditionalOperatorClass: continue;
85        case Stmt::ConditionalOperatorClass: continue;
86        case Stmt::BinaryOperatorClass: {
87          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88          if (Op == BO_LAnd || Op == BO_LOr)
89            continue;
90          break;
91        }
92        default:
93          break;
94      }
95      return S;
96    }
97
98  return 0;
99}
100
101static inline const Stmt*
102GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103  if (const Stmt *S = GetStmt(N->getLocation()))
104    return S;
105
106  return GetPreviousStmt(N);
107}
108
109static inline const Stmt*
110GetCurrentOrNextStmt(const ExplodedNode *N) {
111  if (const Stmt *S = GetStmt(N->getLocation()))
112    return S;
113
114  return GetNextStmt(N);
115}
116
117//===----------------------------------------------------------------------===//
118// Diagnostic cleanup.
119//===----------------------------------------------------------------------===//
120
121static PathDiagnosticEventPiece *
122eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
123                            PathDiagnosticEventPiece *Y) {
124  // Prefer diagnostics that come from ConditionBRVisitor over
125  // those that came from TrackConstraintBRVisitor.
126  const void *tagPreferred = ConditionBRVisitor::getTag();
127  const void *tagLesser = TrackConstraintBRVisitor::getTag();
128
129  if (X->getLocation() != Y->getLocation())
130    return 0;
131
132  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
133    return X;
134
135  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
136    return Y;
137
138  return 0;
139}
140
141/// An optimization pass over PathPieces that removes redundant diagnostics
142/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
143/// BugReporterVisitors use different methods to generate diagnostics, with
144/// one capable of emitting diagnostics in some cases but not in others.  This
145/// can lead to redundant diagnostic pieces at the same point in a path.
146static void removeRedundantMsgs(PathPieces &path) {
147  unsigned N = path.size();
148  if (N < 2)
149    return;
150  // NOTE: this loop intentionally is not using an iterator.  Instead, we
151  // are streaming the path and modifying it in place.  This is done by
152  // grabbing the front, processing it, and if we decide to keep it append
153  // it to the end of the path.  The entire path is processed in this way.
154  for (unsigned i = 0; i < N; ++i) {
155    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
156    path.pop_front();
157
158    switch (piece->getKind()) {
159      case clang::ento::PathDiagnosticPiece::Call:
160        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
161        break;
162      case clang::ento::PathDiagnosticPiece::Macro:
163        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
164        break;
165      case clang::ento::PathDiagnosticPiece::ControlFlow:
166        break;
167      case clang::ento::PathDiagnosticPiece::Event: {
168        if (i == N-1)
169          break;
170
171        if (PathDiagnosticEventPiece *nextEvent =
172            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
173          PathDiagnosticEventPiece *event =
174            cast<PathDiagnosticEventPiece>(piece);
175          // Check to see if we should keep one of the two pieces.  If we
176          // come up with a preference, record which piece to keep, and consume
177          // another piece from the path.
178          if (PathDiagnosticEventPiece *pieceToKeep =
179              eventsDescribeSameCondition(event, nextEvent)) {
180            piece = pieceToKeep;
181            path.pop_front();
182            ++i;
183          }
184        }
185        break;
186      }
187    }
188    path.push_back(piece);
189  }
190}
191
192/// Recursively scan through a path and prune out calls and macros pieces
193/// that aren't needed.  Return true if afterwards the path contains
194/// "interesting stuff" which means it shouldn't be pruned from the parent path.
195bool BugReporter::RemoveUnneededCalls(PathPieces &pieces, BugReport *R) {
196  bool containsSomethingInteresting = false;
197  const unsigned N = pieces.size();
198
199  for (unsigned i = 0 ; i < N ; ++i) {
200    // Remove the front piece from the path.  If it is still something we
201    // want to keep once we are done, we will push it back on the end.
202    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
203    pieces.pop_front();
204
205    // Throw away pieces with invalid locations. Note that we can't throw away
206    // calls just yet because they might have something interesting inside them.
207    // If so, their locations will be adjusted as necessary later.
208    if (piece->getKind() != PathDiagnosticPiece::Call &&
209        piece->getLocation().asLocation().isInvalid())
210      continue;
211
212    switch (piece->getKind()) {
213      case PathDiagnosticPiece::Call: {
214        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
215        // Check if the location context is interesting.
216        assert(LocationContextMap.count(call));
217        if (R->isInteresting(LocationContextMap[call])) {
218          containsSomethingInteresting = true;
219          break;
220        }
221
222        if (!RemoveUnneededCalls(call->path, R))
223          continue;
224
225        containsSomethingInteresting = true;
226        break;
227      }
228      case PathDiagnosticPiece::Macro: {
229        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
230        if (!RemoveUnneededCalls(macro->subPieces, R))
231          continue;
232        containsSomethingInteresting = true;
233        break;
234      }
235      case PathDiagnosticPiece::Event: {
236        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
237
238        // We never throw away an event, but we do throw it away wholesale
239        // as part of a path if we throw the entire path away.
240        containsSomethingInteresting |= !event->isPrunable();
241        break;
242      }
243      case PathDiagnosticPiece::ControlFlow:
244        break;
245    }
246
247    pieces.push_back(piece);
248  }
249
250  return containsSomethingInteresting;
251}
252
253/// Recursively scan through a path and make sure that all call pieces have
254/// valid locations. Note that all other pieces with invalid locations should
255/// have already been pruned out.
256static void adjustCallLocations(PathPieces &Pieces,
257                                PathDiagnosticLocation *LastCallLocation = 0) {
258  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
259    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
260
261    if (!Call) {
262      assert((*I)->getLocation().asLocation().isValid());
263      continue;
264    }
265
266    if (LastCallLocation) {
267      if (!Call->callEnter.asLocation().isValid() ||
268          Call->getCaller()->isImplicit())
269        Call->callEnter = *LastCallLocation;
270      if (!Call->callReturn.asLocation().isValid() ||
271          Call->getCaller()->isImplicit())
272        Call->callReturn = *LastCallLocation;
273    }
274
275    // Recursively clean out the subclass.  Keep this call around if
276    // it contains any informative diagnostics.
277    PathDiagnosticLocation *ThisCallLocation;
278    if (Call->callEnterWithin.asLocation().isValid() &&
279        !Call->getCallee()->isImplicit())
280      ThisCallLocation = &Call->callEnterWithin;
281    else
282      ThisCallLocation = &Call->callEnter;
283
284    assert(ThisCallLocation && "Outermost call has an invalid location");
285    adjustCallLocations(Call->path, ThisCallLocation);
286  }
287}
288
289//===----------------------------------------------------------------------===//
290// PathDiagnosticBuilder and its associated routines and helper objects.
291//===----------------------------------------------------------------------===//
292
293typedef llvm::DenseMap<const ExplodedNode*,
294const ExplodedNode*> NodeBackMap;
295
296namespace {
297class NodeMapClosure : public BugReport::NodeResolver {
298  NodeBackMap& M;
299public:
300  NodeMapClosure(NodeBackMap *m) : M(*m) {}
301  ~NodeMapClosure() {}
302
303  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
304    NodeBackMap::iterator I = M.find(N);
305    return I == M.end() ? 0 : I->second;
306  }
307};
308
309class PathDiagnosticBuilder : public BugReporterContext {
310  BugReport *R;
311  PathDiagnosticConsumer *PDC;
312  OwningPtr<ParentMap> PM;
313  NodeMapClosure NMC;
314public:
315  const LocationContext *LC;
316
317  PathDiagnosticBuilder(GRBugReporter &br,
318                        BugReport *r, NodeBackMap *Backmap,
319                        PathDiagnosticConsumer *pdc)
320    : BugReporterContext(br),
321      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
322  {}
323
324  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
325
326  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
327                                            const ExplodedNode *N);
328
329  BugReport *getBugReport() { return R; }
330
331  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
332
333  ParentMap& getParentMap() { return LC->getParentMap(); }
334
335  const Stmt *getParent(const Stmt *S) {
336    return getParentMap().getParent(S);
337  }
338
339  virtual NodeMapClosure& getNodeResolver() { return NMC; }
340
341  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
342
343  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
344    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
345  }
346
347  bool supportsLogicalOpControlFlow() const {
348    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
349  }
350};
351} // end anonymous namespace
352
353PathDiagnosticLocation
354PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
355  if (const Stmt *S = GetNextStmt(N))
356    return PathDiagnosticLocation(S, getSourceManager(), LC);
357
358  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
359                                               getSourceManager());
360}
361
362PathDiagnosticLocation
363PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
364                                          const ExplodedNode *N) {
365
366  // Slow, but probably doesn't matter.
367  if (os.str().empty())
368    os << ' ';
369
370  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
371
372  if (Loc.asStmt())
373    os << "Execution continues on line "
374       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
375       << '.';
376  else {
377    os << "Execution jumps to the end of the ";
378    const Decl *D = N->getLocationContext()->getDecl();
379    if (isa<ObjCMethodDecl>(D))
380      os << "method";
381    else if (isa<FunctionDecl>(D))
382      os << "function";
383    else {
384      assert(isa<BlockDecl>(D));
385      os << "anonymous block";
386    }
387    os << '.';
388  }
389
390  return Loc;
391}
392
393static bool IsNested(const Stmt *S, ParentMap &PM) {
394  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
395    return true;
396
397  const Stmt *Parent = PM.getParentIgnoreParens(S);
398
399  if (Parent)
400    switch (Parent->getStmtClass()) {
401      case Stmt::ForStmtClass:
402      case Stmt::DoStmtClass:
403      case Stmt::WhileStmtClass:
404        return true;
405      default:
406        break;
407    }
408
409  return false;
410}
411
412PathDiagnosticLocation
413PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
414  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
415  ParentMap &P = getParentMap();
416  SourceManager &SMgr = getSourceManager();
417
418  while (IsNested(S, P)) {
419    const Stmt *Parent = P.getParentIgnoreParens(S);
420
421    if (!Parent)
422      break;
423
424    switch (Parent->getStmtClass()) {
425      case Stmt::BinaryOperatorClass: {
426        const BinaryOperator *B = cast<BinaryOperator>(Parent);
427        if (B->isLogicalOp())
428          return PathDiagnosticLocation(S, SMgr, LC);
429        break;
430      }
431      case Stmt::CompoundStmtClass:
432      case Stmt::StmtExprClass:
433        return PathDiagnosticLocation(S, SMgr, LC);
434      case Stmt::ChooseExprClass:
435        // Similar to '?' if we are referring to condition, just have the edge
436        // point to the entire choose expression.
437        if (cast<ChooseExpr>(Parent)->getCond() == S)
438          return PathDiagnosticLocation(Parent, SMgr, LC);
439        else
440          return PathDiagnosticLocation(S, SMgr, LC);
441      case Stmt::BinaryConditionalOperatorClass:
442      case Stmt::ConditionalOperatorClass:
443        // For '?', if we are referring to condition, just have the edge point
444        // to the entire '?' expression.
445        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
446          return PathDiagnosticLocation(Parent, SMgr, LC);
447        else
448          return PathDiagnosticLocation(S, SMgr, LC);
449      case Stmt::DoStmtClass:
450          return PathDiagnosticLocation(S, SMgr, LC);
451      case Stmt::ForStmtClass:
452        if (cast<ForStmt>(Parent)->getBody() == S)
453          return PathDiagnosticLocation(S, SMgr, LC);
454        break;
455      case Stmt::IfStmtClass:
456        if (cast<IfStmt>(Parent)->getCond() != S)
457          return PathDiagnosticLocation(S, SMgr, LC);
458        break;
459      case Stmt::ObjCForCollectionStmtClass:
460        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
461          return PathDiagnosticLocation(S, SMgr, LC);
462        break;
463      case Stmt::WhileStmtClass:
464        if (cast<WhileStmt>(Parent)->getCond() != S)
465          return PathDiagnosticLocation(S, SMgr, LC);
466        break;
467      default:
468        break;
469    }
470
471    S = Parent;
472  }
473
474  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
475
476  // Special case: DeclStmts can appear in for statement declarations, in which
477  //  case the ForStmt is the context.
478  if (isa<DeclStmt>(S)) {
479    if (const Stmt *Parent = P.getParent(S)) {
480      switch (Parent->getStmtClass()) {
481        case Stmt::ForStmtClass:
482        case Stmt::ObjCForCollectionStmtClass:
483          return PathDiagnosticLocation(Parent, SMgr, LC);
484        default:
485          break;
486      }
487    }
488  }
489  else if (isa<BinaryOperator>(S)) {
490    // Special case: the binary operator represents the initialization
491    // code in a for statement (this can happen when the variable being
492    // initialized is an old variable.
493    if (const ForStmt *FS =
494          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
495      if (FS->getInit() == S)
496        return PathDiagnosticLocation(FS, SMgr, LC);
497    }
498  }
499
500  return PathDiagnosticLocation(S, SMgr, LC);
501}
502
503//===----------------------------------------------------------------------===//
504// "Visitors only" path diagnostic generation algorithm.
505//===----------------------------------------------------------------------===//
506static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
507                                               PathDiagnosticBuilder &PDB,
508                                               const ExplodedNode *N,
509                                      ArrayRef<BugReporterVisitor *> visitors) {
510  // All path generation skips the very first node (the error node).
511  // This is because there is special handling for the end-of-path note.
512  N = N->getFirstPred();
513  if (!N)
514    return true;
515
516  BugReport *R = PDB.getBugReport();
517  while (const ExplodedNode *Pred = N->getFirstPred()) {
518    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
519                                                  E = visitors.end();
520         I != E; ++I) {
521      // Visit all the node pairs, but throw the path pieces away.
522      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
523      delete Piece;
524    }
525
526    N = Pred;
527  }
528
529  return R->isValid();
530}
531
532//===----------------------------------------------------------------------===//
533// "Minimal" path diagnostic generation algorithm.
534//===----------------------------------------------------------------------===//
535typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
536typedef SmallVector<StackDiagPair, 6> StackDiagVector;
537
538static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
539                                         StackDiagVector &CallStack) {
540  // If the piece contains a special message, add it to all the call
541  // pieces on the active stack.
542  if (PathDiagnosticEventPiece *ep =
543        dyn_cast<PathDiagnosticEventPiece>(P)) {
544
545    if (ep->hasCallStackHint())
546      for (StackDiagVector::iterator I = CallStack.begin(),
547                                     E = CallStack.end(); I != E; ++I) {
548        PathDiagnosticCallPiece *CP = I->first;
549        const ExplodedNode *N = I->second;
550        std::string stackMsg = ep->getCallStackMessage(N);
551
552        // The last message on the path to final bug is the most important
553        // one. Since we traverse the path backwards, do not add the message
554        // if one has been previously added.
555        if  (!CP->hasCallStackMessage())
556          CP->setCallStackMessage(stackMsg);
557      }
558  }
559}
560
561static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
562
563static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
564                                          PathDiagnosticBuilder &PDB,
565                                          const ExplodedNode *N,
566                                      ArrayRef<BugReporterVisitor *> visitors) {
567
568  SourceManager& SMgr = PDB.getSourceManager();
569  const LocationContext *LC = PDB.LC;
570  const ExplodedNode *NextNode = N->pred_empty()
571                                        ? NULL : *(N->pred_begin());
572
573  StackDiagVector CallStack;
574
575  while (NextNode) {
576    N = NextNode;
577    PDB.LC = N->getLocationContext();
578    NextNode = GetPredecessorNode(N);
579
580    ProgramPoint P = N->getLocation();
581
582    do {
583      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
584        PathDiagnosticCallPiece *C =
585            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
586        GRBugReporter& BR = PDB.getBugReporter();
587        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
588        PD.getActivePath().push_front(C);
589        PD.pushActivePath(&C->path);
590        CallStack.push_back(StackDiagPair(C, N));
591        break;
592      }
593
594      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
595        // Flush all locations, and pop the active path.
596        bool VisitedEntireCall = PD.isWithinCall();
597        PD.popActivePath();
598
599        // Either we just added a bunch of stuff to the top-level path, or
600        // we have a previous CallExitEnd.  If the former, it means that the
601        // path terminated within a function call.  We must then take the
602        // current contents of the active path and place it within
603        // a new PathDiagnosticCallPiece.
604        PathDiagnosticCallPiece *C;
605        if (VisitedEntireCall) {
606          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
607        } else {
608          const Decl *Caller = CE->getLocationContext()->getDecl();
609          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
610          GRBugReporter& BR = PDB.getBugReporter();
611          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
612        }
613
614        C->setCallee(*CE, SMgr);
615        if (!CallStack.empty()) {
616          assert(CallStack.back().first == C);
617          CallStack.pop_back();
618        }
619        break;
620      }
621
622      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
623        const CFGBlock *Src = BE->getSrc();
624        const CFGBlock *Dst = BE->getDst();
625        const Stmt *T = Src->getTerminator();
626
627        if (!T)
628          break;
629
630        PathDiagnosticLocation Start =
631            PathDiagnosticLocation::createBegin(T, SMgr,
632                N->getLocationContext());
633
634        switch (T->getStmtClass()) {
635        default:
636          break;
637
638        case Stmt::GotoStmtClass:
639        case Stmt::IndirectGotoStmtClass: {
640          const Stmt *S = GetNextStmt(N);
641
642          if (!S)
643            break;
644
645          std::string sbuf;
646          llvm::raw_string_ostream os(sbuf);
647          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
648
649          os << "Control jumps to line "
650              << End.asLocation().getExpansionLineNumber();
651          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
652              Start, End, os.str()));
653          break;
654        }
655
656        case Stmt::SwitchStmtClass: {
657          // Figure out what case arm we took.
658          std::string sbuf;
659          llvm::raw_string_ostream os(sbuf);
660
661          if (const Stmt *S = Dst->getLabel()) {
662            PathDiagnosticLocation End(S, SMgr, LC);
663
664            switch (S->getStmtClass()) {
665            default:
666              os << "No cases match in the switch statement. "
667              "Control jumps to line "
668              << End.asLocation().getExpansionLineNumber();
669              break;
670            case Stmt::DefaultStmtClass:
671              os << "Control jumps to the 'default' case at line "
672              << End.asLocation().getExpansionLineNumber();
673              break;
674
675            case Stmt::CaseStmtClass: {
676              os << "Control jumps to 'case ";
677              const CaseStmt *Case = cast<CaseStmt>(S);
678              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
679
680              // Determine if it is an enum.
681              bool GetRawInt = true;
682
683              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
684                // FIXME: Maybe this should be an assertion.  Are there cases
685                // were it is not an EnumConstantDecl?
686                const EnumConstantDecl *D =
687                    dyn_cast<EnumConstantDecl>(DR->getDecl());
688
689                if (D) {
690                  GetRawInt = false;
691                  os << *D;
692                }
693              }
694
695              if (GetRawInt)
696                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
697
698              os << ":'  at line "
699                  << End.asLocation().getExpansionLineNumber();
700              break;
701            }
702            }
703            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
704                Start, End, os.str()));
705          }
706          else {
707            os << "'Default' branch taken. ";
708            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
709            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
710                Start, End, os.str()));
711          }
712
713          break;
714        }
715
716        case Stmt::BreakStmtClass:
717        case Stmt::ContinueStmtClass: {
718          std::string sbuf;
719          llvm::raw_string_ostream os(sbuf);
720          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
721          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
722              Start, End, os.str()));
723          break;
724        }
725
726        // Determine control-flow for ternary '?'.
727        case Stmt::BinaryConditionalOperatorClass:
728        case Stmt::ConditionalOperatorClass: {
729          std::string sbuf;
730          llvm::raw_string_ostream os(sbuf);
731          os << "'?' condition is ";
732
733          if (*(Src->succ_begin()+1) == Dst)
734            os << "false";
735          else
736            os << "true";
737
738          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
739
740          if (const Stmt *S = End.asStmt())
741            End = PDB.getEnclosingStmtLocation(S);
742
743          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
744              Start, End, os.str()));
745          break;
746        }
747
748        // Determine control-flow for short-circuited '&&' and '||'.
749        case Stmt::BinaryOperatorClass: {
750          if (!PDB.supportsLogicalOpControlFlow())
751            break;
752
753          const BinaryOperator *B = cast<BinaryOperator>(T);
754          std::string sbuf;
755          llvm::raw_string_ostream os(sbuf);
756          os << "Left side of '";
757
758          if (B->getOpcode() == BO_LAnd) {
759            os << "&&" << "' is ";
760
761            if (*(Src->succ_begin()+1) == Dst) {
762              os << "false";
763              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
764              PathDiagnosticLocation Start =
765                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
766              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
767                  Start, End, os.str()));
768            }
769            else {
770              os << "true";
771              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
772              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
773              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
774                  Start, End, os.str()));
775            }
776          }
777          else {
778            assert(B->getOpcode() == BO_LOr);
779            os << "||" << "' is ";
780
781            if (*(Src->succ_begin()+1) == Dst) {
782              os << "false";
783              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
784              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
785              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
786                  Start, End, os.str()));
787            }
788            else {
789              os << "true";
790              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
791              PathDiagnosticLocation Start =
792                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
793              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
794                  Start, End, os.str()));
795            }
796          }
797
798          break;
799        }
800
801        case Stmt::DoStmtClass:  {
802          if (*(Src->succ_begin()) == Dst) {
803            std::string sbuf;
804            llvm::raw_string_ostream os(sbuf);
805
806            os << "Loop condition is true. ";
807            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
808
809            if (const Stmt *S = End.asStmt())
810              End = PDB.getEnclosingStmtLocation(S);
811
812            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
813                Start, End, os.str()));
814          }
815          else {
816            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
817
818            if (const Stmt *S = End.asStmt())
819              End = PDB.getEnclosingStmtLocation(S);
820
821            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
822                Start, End, "Loop condition is false.  Exiting loop"));
823          }
824
825          break;
826        }
827
828        case Stmt::WhileStmtClass:
829        case Stmt::ForStmtClass: {
830          if (*(Src->succ_begin()+1) == Dst) {
831            std::string sbuf;
832            llvm::raw_string_ostream os(sbuf);
833
834            os << "Loop condition is false. ";
835            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
836            if (const Stmt *S = End.asStmt())
837              End = PDB.getEnclosingStmtLocation(S);
838
839            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
840                Start, End, os.str()));
841          }
842          else {
843            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
844            if (const Stmt *S = End.asStmt())
845              End = PDB.getEnclosingStmtLocation(S);
846
847            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
848                Start, End, "Loop condition is true.  Entering loop body"));
849          }
850
851          break;
852        }
853
854        case Stmt::IfStmtClass: {
855          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
856
857          if (const Stmt *S = End.asStmt())
858            End = PDB.getEnclosingStmtLocation(S);
859
860          if (*(Src->succ_begin()+1) == Dst)
861            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
862                Start, End, "Taking false branch"));
863          else
864            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
865                Start, End, "Taking true branch"));
866
867          break;
868        }
869        }
870      }
871    } while(0);
872
873    if (NextNode) {
874      // Add diagnostic pieces from custom visitors.
875      BugReport *R = PDB.getBugReport();
876      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
877                                                    E = visitors.end();
878           I != E; ++I) {
879        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
880          PD.getActivePath().push_front(p);
881          updateStackPiecesWithMessage(p, CallStack);
882        }
883      }
884    }
885  }
886
887  if (!PDB.getBugReport()->isValid())
888    return false;
889
890  // After constructing the full PathDiagnostic, do a pass over it to compact
891  // PathDiagnosticPieces that occur within a macro.
892  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
893  return true;
894}
895
896//===----------------------------------------------------------------------===//
897// "Extensive" PathDiagnostic generation.
898//===----------------------------------------------------------------------===//
899
900static bool IsControlFlowExpr(const Stmt *S) {
901  const Expr *E = dyn_cast<Expr>(S);
902
903  if (!E)
904    return false;
905
906  E = E->IgnoreParenCasts();
907
908  if (isa<AbstractConditionalOperator>(E))
909    return true;
910
911  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
912    if (B->isLogicalOp())
913      return true;
914
915  return false;
916}
917
918namespace {
919class ContextLocation : public PathDiagnosticLocation {
920  bool IsDead;
921public:
922  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
923    : PathDiagnosticLocation(L), IsDead(isdead) {}
924
925  void markDead() { IsDead = true; }
926  bool isDead() const { return IsDead; }
927};
928
929class EdgeBuilder {
930  std::vector<ContextLocation> CLocs;
931  typedef std::vector<ContextLocation>::iterator iterator;
932  PathDiagnostic &PD;
933  PathDiagnosticBuilder &PDB;
934  PathDiagnosticLocation PrevLoc;
935
936  bool IsConsumedExpr(const PathDiagnosticLocation &L);
937
938  bool containsLocation(const PathDiagnosticLocation &Container,
939                        const PathDiagnosticLocation &Containee);
940
941  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
942
943  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
944                                         bool firstCharOnly = false) {
945    if (const Stmt *S = L.asStmt()) {
946      const Stmt *Original = S;
947      while (1) {
948        // Adjust the location for some expressions that are best referenced
949        // by one of their subexpressions.
950        switch (S->getStmtClass()) {
951          default:
952            break;
953          case Stmt::ParenExprClass:
954          case Stmt::GenericSelectionExprClass:
955            S = cast<Expr>(S)->IgnoreParens();
956            firstCharOnly = true;
957            continue;
958          case Stmt::BinaryConditionalOperatorClass:
959          case Stmt::ConditionalOperatorClass:
960            S = cast<AbstractConditionalOperator>(S)->getCond();
961            firstCharOnly = true;
962            continue;
963          case Stmt::ChooseExprClass:
964            S = cast<ChooseExpr>(S)->getCond();
965            firstCharOnly = true;
966            continue;
967          case Stmt::BinaryOperatorClass:
968            S = cast<BinaryOperator>(S)->getLHS();
969            firstCharOnly = true;
970            continue;
971        }
972
973        break;
974      }
975
976      if (S != Original)
977        L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
978    }
979
980    if (firstCharOnly)
981      L  = PathDiagnosticLocation::createSingleLocation(L);
982
983    return L;
984  }
985
986  void popLocation() {
987    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
988      // For contexts, we only one the first character as the range.
989      rawAddEdge(cleanUpLocation(CLocs.back(), true));
990    }
991    CLocs.pop_back();
992  }
993
994public:
995  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
996    : PD(pd), PDB(pdb) {
997
998      // If the PathDiagnostic already has pieces, add the enclosing statement
999      // of the first piece as a context as well.
1000      if (!PD.path.empty()) {
1001        PrevLoc = (*PD.path.begin())->getLocation();
1002
1003        if (const Stmt *S = PrevLoc.asStmt())
1004          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1005      }
1006  }
1007
1008  ~EdgeBuilder() {
1009    while (!CLocs.empty()) popLocation();
1010
1011    // Finally, add an initial edge from the start location of the first
1012    // statement (if it doesn't already exist).
1013    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1014                                                       PDB.LC,
1015                                                       PDB.getSourceManager());
1016    if (L.isValid())
1017      rawAddEdge(L);
1018  }
1019
1020  void flushLocations() {
1021    while (!CLocs.empty())
1022      popLocation();
1023    PrevLoc = PathDiagnosticLocation();
1024  }
1025
1026  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
1027
1028  void rawAddEdge(PathDiagnosticLocation NewLoc);
1029
1030  void addContext(const Stmt *S);
1031  void addContext(const PathDiagnosticLocation &L);
1032  void addExtendedContext(const Stmt *S);
1033};
1034} // end anonymous namespace
1035
1036
1037PathDiagnosticLocation
1038EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1039  if (const Stmt *S = L.asStmt()) {
1040    if (IsControlFlowExpr(S))
1041      return L;
1042
1043    return PDB.getEnclosingStmtLocation(S);
1044  }
1045
1046  return L;
1047}
1048
1049bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1050                                   const PathDiagnosticLocation &Containee) {
1051
1052  if (Container == Containee)
1053    return true;
1054
1055  if (Container.asDecl())
1056    return true;
1057
1058  if (const Stmt *S = Containee.asStmt())
1059    if (const Stmt *ContainerS = Container.asStmt()) {
1060      while (S) {
1061        if (S == ContainerS)
1062          return true;
1063        S = PDB.getParent(S);
1064      }
1065      return false;
1066    }
1067
1068  // Less accurate: compare using source ranges.
1069  SourceRange ContainerR = Container.asRange();
1070  SourceRange ContaineeR = Containee.asRange();
1071
1072  SourceManager &SM = PDB.getSourceManager();
1073  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1074  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1075  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1076  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1077
1078  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1079  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1080  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1081  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1082
1083  assert(ContainerBegLine <= ContainerEndLine);
1084  assert(ContaineeBegLine <= ContaineeEndLine);
1085
1086  return (ContainerBegLine <= ContaineeBegLine &&
1087          ContainerEndLine >= ContaineeEndLine &&
1088          (ContainerBegLine != ContaineeBegLine ||
1089           SM.getExpansionColumnNumber(ContainerRBeg) <=
1090           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1091          (ContainerEndLine != ContaineeEndLine ||
1092           SM.getExpansionColumnNumber(ContainerREnd) >=
1093           SM.getExpansionColumnNumber(ContaineeREnd)));
1094}
1095
1096void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1097  if (!PrevLoc.isValid()) {
1098    PrevLoc = NewLoc;
1099    return;
1100  }
1101
1102  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1103  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1104
1105  if (PrevLocClean.asLocation().isInvalid()) {
1106    PrevLoc = NewLoc;
1107    return;
1108  }
1109
1110  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1111    return;
1112
1113  // FIXME: Ignore intra-macro edges for now.
1114  if (NewLocClean.asLocation().getExpansionLoc() ==
1115      PrevLocClean.asLocation().getExpansionLoc())
1116    return;
1117
1118  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1119  PrevLoc = NewLoc;
1120}
1121
1122void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1123
1124  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1125    return;
1126
1127  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1128
1129  while (!CLocs.empty()) {
1130    ContextLocation &TopContextLoc = CLocs.back();
1131
1132    // Is the top location context the same as the one for the new location?
1133    if (TopContextLoc == CLoc) {
1134      if (alwaysAdd) {
1135        if (IsConsumedExpr(TopContextLoc) &&
1136            !IsControlFlowExpr(TopContextLoc.asStmt()))
1137            TopContextLoc.markDead();
1138
1139        rawAddEdge(NewLoc);
1140      }
1141
1142      return;
1143    }
1144
1145    if (containsLocation(TopContextLoc, CLoc)) {
1146      if (alwaysAdd) {
1147        rawAddEdge(NewLoc);
1148
1149        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1150          CLocs.push_back(ContextLocation(CLoc, true));
1151          return;
1152        }
1153      }
1154
1155      CLocs.push_back(CLoc);
1156      return;
1157    }
1158
1159    // Context does not contain the location.  Flush it.
1160    popLocation();
1161  }
1162
1163  // If we reach here, there is no enclosing context.  Just add the edge.
1164  rawAddEdge(NewLoc);
1165}
1166
1167bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1168  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1169    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1170
1171  return false;
1172}
1173
1174void EdgeBuilder::addExtendedContext(const Stmt *S) {
1175  if (!S)
1176    return;
1177
1178  const Stmt *Parent = PDB.getParent(S);
1179  while (Parent) {
1180    if (isa<CompoundStmt>(Parent))
1181      Parent = PDB.getParent(Parent);
1182    else
1183      break;
1184  }
1185
1186  if (Parent) {
1187    switch (Parent->getStmtClass()) {
1188      case Stmt::DoStmtClass:
1189      case Stmt::ObjCAtSynchronizedStmtClass:
1190        addContext(Parent);
1191      default:
1192        break;
1193    }
1194  }
1195
1196  addContext(S);
1197}
1198
1199void EdgeBuilder::addContext(const Stmt *S) {
1200  if (!S)
1201    return;
1202
1203  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1204  addContext(L);
1205}
1206
1207void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1208  while (!CLocs.empty()) {
1209    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1210
1211    // Is the top location context the same as the one for the new location?
1212    if (TopContextLoc == L)
1213      return;
1214
1215    if (containsLocation(TopContextLoc, L)) {
1216      CLocs.push_back(L);
1217      return;
1218    }
1219
1220    // Context does not contain the location.  Flush it.
1221    popLocation();
1222  }
1223
1224  CLocs.push_back(L);
1225}
1226
1227// Cone-of-influence: support the reverse propagation of "interesting" symbols
1228// and values by tracing interesting calculations backwards through evaluated
1229// expressions along a path.  This is probably overly complicated, but the idea
1230// is that if an expression computed an "interesting" value, the child
1231// expressions are are also likely to be "interesting" as well (which then
1232// propagates to the values they in turn compute).  This reverse propagation
1233// is needed to track interesting correlations across function call boundaries,
1234// where formal arguments bind to actual arguments, etc.  This is also needed
1235// because the constraint solver sometimes simplifies certain symbolic values
1236// into constants when appropriate, and this complicates reasoning about
1237// interesting values.
1238typedef llvm::DenseSet<const Expr *> InterestingExprs;
1239
1240static void reversePropagateIntererstingSymbols(BugReport &R,
1241                                                InterestingExprs &IE,
1242                                                const ProgramState *State,
1243                                                const Expr *Ex,
1244                                                const LocationContext *LCtx) {
1245  SVal V = State->getSVal(Ex, LCtx);
1246  if (!(R.isInteresting(V) || IE.count(Ex)))
1247    return;
1248
1249  switch (Ex->getStmtClass()) {
1250    default:
1251      if (!isa<CastExpr>(Ex))
1252        break;
1253      // Fall through.
1254    case Stmt::BinaryOperatorClass:
1255    case Stmt::UnaryOperatorClass: {
1256      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1257            CE = Ex->child_end();
1258            CI != CE; ++CI) {
1259        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1260          IE.insert(child);
1261          SVal ChildV = State->getSVal(child, LCtx);
1262          R.markInteresting(ChildV);
1263        }
1264        break;
1265      }
1266    }
1267  }
1268
1269  R.markInteresting(V);
1270}
1271
1272static void reversePropagateInterestingSymbols(BugReport &R,
1273                                               InterestingExprs &IE,
1274                                               const ProgramState *State,
1275                                               const LocationContext *CalleeCtx,
1276                                               const LocationContext *CallerCtx)
1277{
1278  // FIXME: Handle non-CallExpr-based CallEvents.
1279  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1280  const Stmt *CallSite = Callee->getCallSite();
1281  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1282    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1283      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1284                                         PE = FD->param_end();
1285      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1286      for (; AI != AE && PI != PE; ++AI, ++PI) {
1287        if (const Expr *ArgE = *AI) {
1288          if (const ParmVarDecl *PD = *PI) {
1289            Loc LV = State->getLValue(PD, CalleeCtx);
1290            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1291              IE.insert(ArgE);
1292          }
1293        }
1294      }
1295    }
1296  }
1297}
1298
1299static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1300                                            PathDiagnosticBuilder &PDB,
1301                                            const ExplodedNode *N,
1302                                      ArrayRef<BugReporterVisitor *> visitors) {
1303  EdgeBuilder EB(PD, PDB);
1304  const SourceManager& SM = PDB.getSourceManager();
1305  StackDiagVector CallStack;
1306  InterestingExprs IE;
1307
1308  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1309  while (NextNode) {
1310    N = NextNode;
1311    NextNode = GetPredecessorNode(N);
1312    ProgramPoint P = N->getLocation();
1313
1314    do {
1315      if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1316        if (const Expr *Ex = PS->getStmtAs<Expr>())
1317          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1318                                              N->getState().getPtr(), Ex,
1319                                              N->getLocationContext());
1320      }
1321
1322      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1323        const Stmt *S = CE->getCalleeContext()->getCallSite();
1324        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1325            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1326                                                N->getState().getPtr(), Ex,
1327                                                N->getLocationContext());
1328        }
1329
1330        PathDiagnosticCallPiece *C =
1331          PathDiagnosticCallPiece::construct(N, *CE, SM);
1332        GRBugReporter& BR = PDB.getBugReporter();
1333        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1334
1335        EB.addEdge(C->callReturn, true);
1336        EB.flushLocations();
1337
1338        PD.getActivePath().push_front(C);
1339        PD.pushActivePath(&C->path);
1340        CallStack.push_back(StackDiagPair(C, N));
1341        break;
1342      }
1343
1344      // Pop the call hierarchy if we are done walking the contents
1345      // of a function call.
1346      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1347        // Add an edge to the start of the function.
1348        const Decl *D = CE->getCalleeContext()->getDecl();
1349        PathDiagnosticLocation pos =
1350          PathDiagnosticLocation::createBegin(D, SM);
1351        EB.addEdge(pos);
1352
1353        // Flush all locations, and pop the active path.
1354        bool VisitedEntireCall = PD.isWithinCall();
1355        EB.flushLocations();
1356        PD.popActivePath();
1357        PDB.LC = N->getLocationContext();
1358
1359        // Either we just added a bunch of stuff to the top-level path, or
1360        // we have a previous CallExitEnd.  If the former, it means that the
1361        // path terminated within a function call.  We must then take the
1362        // current contents of the active path and place it within
1363        // a new PathDiagnosticCallPiece.
1364        PathDiagnosticCallPiece *C;
1365        if (VisitedEntireCall) {
1366          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1367        } else {
1368          const Decl *Caller = CE->getLocationContext()->getDecl();
1369          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1370          GRBugReporter& BR = PDB.getBugReporter();
1371          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1372        }
1373
1374        C->setCallee(*CE, SM);
1375        EB.addContext(C->getLocation());
1376
1377        if (!CallStack.empty()) {
1378          assert(CallStack.back().first == C);
1379          CallStack.pop_back();
1380        }
1381        break;
1382      }
1383
1384      // Note that is important that we update the LocationContext
1385      // after looking at CallExits.  CallExit basically adds an
1386      // edge in the *caller*, so we don't want to update the LocationContext
1387      // too soon.
1388      PDB.LC = N->getLocationContext();
1389
1390      // Block edges.
1391      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1392        // Does this represent entering a call?  If so, look at propagating
1393        // interesting symbols across call boundaries.
1394        if (NextNode) {
1395          const LocationContext *CallerCtx = NextNode->getLocationContext();
1396          const LocationContext *CalleeCtx = PDB.LC;
1397          if (CallerCtx != CalleeCtx) {
1398            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1399                                               N->getState().getPtr(),
1400                                               CalleeCtx, CallerCtx);
1401          }
1402        }
1403
1404        // Are we jumping to the head of a loop?  Add a special diagnostic.
1405        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1406          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1407          const CompoundStmt *CS = NULL;
1408
1409          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1410            CS = dyn_cast<CompoundStmt>(FS->getBody());
1411          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1412            CS = dyn_cast<CompoundStmt>(WS->getBody());
1413
1414          PathDiagnosticEventPiece *p =
1415            new PathDiagnosticEventPiece(L,
1416                                        "Looping back to the head of the loop");
1417          p->setPrunable(true);
1418
1419          EB.addEdge(p->getLocation(), true);
1420          PD.getActivePath().push_front(p);
1421
1422          if (CS) {
1423            PathDiagnosticLocation BL =
1424              PathDiagnosticLocation::createEndBrace(CS, SM);
1425            EB.addEdge(BL);
1426          }
1427        }
1428
1429        if (const Stmt *Term = BE->getSrc()->getTerminator())
1430          EB.addContext(Term);
1431
1432        break;
1433      }
1434
1435      if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1436        CFGElement First = BE->getFirstElement();
1437        if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1438          const Stmt *stmt = S->getStmt();
1439          if (IsControlFlowExpr(stmt)) {
1440            // Add the proper context for '&&', '||', and '?'.
1441            EB.addContext(stmt);
1442          }
1443          else
1444            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1445        }
1446
1447        break;
1448      }
1449
1450
1451    } while (0);
1452
1453    if (!NextNode)
1454      continue;
1455
1456    // Add pieces from custom visitors.
1457    BugReport *R = PDB.getBugReport();
1458    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1459                                                  E = visitors.end();
1460         I != E; ++I) {
1461      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1462        const PathDiagnosticLocation &Loc = p->getLocation();
1463        EB.addEdge(Loc, true);
1464        PD.getActivePath().push_front(p);
1465        updateStackPiecesWithMessage(p, CallStack);
1466
1467        if (const Stmt *S = Loc.asStmt())
1468          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1469      }
1470    }
1471  }
1472
1473  return PDB.getBugReport()->isValid();
1474}
1475
1476//===----------------------------------------------------------------------===//
1477// Methods for BugType and subclasses.
1478//===----------------------------------------------------------------------===//
1479BugType::~BugType() { }
1480
1481void BugType::FlushReports(BugReporter &BR) {}
1482
1483void BuiltinBug::anchor() {}
1484
1485//===----------------------------------------------------------------------===//
1486// Methods for BugReport and subclasses.
1487//===----------------------------------------------------------------------===//
1488
1489void BugReport::NodeResolver::anchor() {}
1490
1491void BugReport::addVisitor(BugReporterVisitor* visitor) {
1492  if (!visitor)
1493    return;
1494
1495  llvm::FoldingSetNodeID ID;
1496  visitor->Profile(ID);
1497  void *InsertPos;
1498
1499  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1500    delete visitor;
1501    return;
1502  }
1503
1504  CallbacksSet.InsertNode(visitor, InsertPos);
1505  Callbacks.push_back(visitor);
1506  ++ConfigurationChangeToken;
1507}
1508
1509BugReport::~BugReport() {
1510  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1511    delete *I;
1512  }
1513  while (!interestingSymbols.empty()) {
1514    popInterestingSymbolsAndRegions();
1515  }
1516}
1517
1518const Decl *BugReport::getDeclWithIssue() const {
1519  if (DeclWithIssue)
1520    return DeclWithIssue;
1521
1522  const ExplodedNode *N = getErrorNode();
1523  if (!N)
1524    return 0;
1525
1526  const LocationContext *LC = N->getLocationContext();
1527  return LC->getCurrentStackFrame()->getDecl();
1528}
1529
1530void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1531  hash.AddPointer(&BT);
1532  hash.AddString(Description);
1533  PathDiagnosticLocation UL = getUniqueingLocation();
1534  if (UL.isValid()) {
1535    UL.Profile(hash);
1536  } else if (Location.isValid()) {
1537    Location.Profile(hash);
1538  } else {
1539    assert(ErrorNode);
1540    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1541  }
1542
1543  for (SmallVectorImpl<SourceRange>::const_iterator I =
1544      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1545    const SourceRange range = *I;
1546    if (!range.isValid())
1547      continue;
1548    hash.AddInteger(range.getBegin().getRawEncoding());
1549    hash.AddInteger(range.getEnd().getRawEncoding());
1550  }
1551}
1552
1553void BugReport::markInteresting(SymbolRef sym) {
1554  if (!sym)
1555    return;
1556
1557  // If the symbol wasn't already in our set, note a configuration change.
1558  if (getInterestingSymbols().insert(sym).second)
1559    ++ConfigurationChangeToken;
1560
1561  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1562    getInterestingRegions().insert(meta->getRegion());
1563}
1564
1565void BugReport::markInteresting(const MemRegion *R) {
1566  if (!R)
1567    return;
1568
1569  // If the base region wasn't already in our set, note a configuration change.
1570  R = R->getBaseRegion();
1571  if (getInterestingRegions().insert(R).second)
1572    ++ConfigurationChangeToken;
1573
1574  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1575    getInterestingSymbols().insert(SR->getSymbol());
1576}
1577
1578void BugReport::markInteresting(SVal V) {
1579  markInteresting(V.getAsRegion());
1580  markInteresting(V.getAsSymbol());
1581}
1582
1583void BugReport::markInteresting(const LocationContext *LC) {
1584  if (!LC)
1585    return;
1586  InterestingLocationContexts.insert(LC);
1587}
1588
1589bool BugReport::isInteresting(SVal V) {
1590  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1591}
1592
1593bool BugReport::isInteresting(SymbolRef sym) {
1594  if (!sym)
1595    return false;
1596  // We don't currently consider metadata symbols to be interesting
1597  // even if we know their region is interesting. Is that correct behavior?
1598  return getInterestingSymbols().count(sym);
1599}
1600
1601bool BugReport::isInteresting(const MemRegion *R) {
1602  if (!R)
1603    return false;
1604  R = R->getBaseRegion();
1605  bool b = getInterestingRegions().count(R);
1606  if (b)
1607    return true;
1608  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1609    return getInterestingSymbols().count(SR->getSymbol());
1610  return false;
1611}
1612
1613bool BugReport::isInteresting(const LocationContext *LC) {
1614  if (!LC)
1615    return false;
1616  return InterestingLocationContexts.count(LC);
1617}
1618
1619void BugReport::lazyInitializeInterestingSets() {
1620  if (interestingSymbols.empty()) {
1621    interestingSymbols.push_back(new Symbols());
1622    interestingRegions.push_back(new Regions());
1623  }
1624}
1625
1626BugReport::Symbols &BugReport::getInterestingSymbols() {
1627  lazyInitializeInterestingSets();
1628  return *interestingSymbols.back();
1629}
1630
1631BugReport::Regions &BugReport::getInterestingRegions() {
1632  lazyInitializeInterestingSets();
1633  return *interestingRegions.back();
1634}
1635
1636void BugReport::pushInterestingSymbolsAndRegions() {
1637  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1638  interestingRegions.push_back(new Regions(getInterestingRegions()));
1639}
1640
1641void BugReport::popInterestingSymbolsAndRegions() {
1642  delete interestingSymbols.back();
1643  interestingSymbols.pop_back();
1644  delete interestingRegions.back();
1645  interestingRegions.pop_back();
1646}
1647
1648const Stmt *BugReport::getStmt() const {
1649  if (!ErrorNode)
1650    return 0;
1651
1652  ProgramPoint ProgP = ErrorNode->getLocation();
1653  const Stmt *S = NULL;
1654
1655  if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1656    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1657    if (BE->getBlock() == &Exit)
1658      S = GetPreviousStmt(ErrorNode);
1659  }
1660  if (!S)
1661    S = GetStmt(ProgP);
1662
1663  return S;
1664}
1665
1666std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1667BugReport::getRanges() {
1668    // If no custom ranges, add the range of the statement corresponding to
1669    // the error node.
1670    if (Ranges.empty()) {
1671      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1672        addRange(E->getSourceRange());
1673      else
1674        return std::make_pair(ranges_iterator(), ranges_iterator());
1675    }
1676
1677    // User-specified absence of range info.
1678    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1679      return std::make_pair(ranges_iterator(), ranges_iterator());
1680
1681    return std::make_pair(Ranges.begin(), Ranges.end());
1682}
1683
1684PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1685  if (ErrorNode) {
1686    assert(!Location.isValid() &&
1687     "Either Location or ErrorNode should be specified but not both.");
1688
1689    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1690      const LocationContext *LC = ErrorNode->getLocationContext();
1691
1692      // For member expressions, return the location of the '.' or '->'.
1693      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1694        return PathDiagnosticLocation::createMemberLoc(ME, SM);
1695      // For binary operators, return the location of the operator.
1696      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1697        return PathDiagnosticLocation::createOperatorLoc(B, SM);
1698
1699      if (isa<PostStmtPurgeDeadSymbols>(ErrorNode->getLocation()))
1700        return PathDiagnosticLocation::createEnd(S, SM, LC);
1701
1702      return PathDiagnosticLocation::createBegin(S, SM, LC);
1703    }
1704  } else {
1705    assert(Location.isValid());
1706    return Location;
1707  }
1708
1709  return PathDiagnosticLocation();
1710}
1711
1712//===----------------------------------------------------------------------===//
1713// Methods for BugReporter and subclasses.
1714//===----------------------------------------------------------------------===//
1715
1716BugReportEquivClass::~BugReportEquivClass() { }
1717GRBugReporter::~GRBugReporter() { }
1718BugReporterData::~BugReporterData() {}
1719
1720ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1721
1722ProgramStateManager&
1723GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1724
1725BugReporter::~BugReporter() {
1726  FlushReports();
1727
1728  // Free the bug reports we are tracking.
1729  typedef std::vector<BugReportEquivClass *> ContTy;
1730  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1731       I != E; ++I) {
1732    delete *I;
1733  }
1734}
1735
1736void BugReporter::FlushReports() {
1737  if (BugTypes.isEmpty())
1738    return;
1739
1740  // First flush the warnings for each BugType.  This may end up creating new
1741  // warnings and new BugTypes.
1742  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1743  // Turn NSErrorChecker into a proper checker and remove this.
1744  SmallVector<const BugType*, 16> bugTypes;
1745  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1746    bugTypes.push_back(*I);
1747  for (SmallVector<const BugType*, 16>::iterator
1748         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1749    const_cast<BugType*>(*I)->FlushReports(*this);
1750
1751  // We need to flush reports in deterministic order to ensure the order
1752  // of the reports is consistent between runs.
1753  typedef std::vector<BugReportEquivClass *> ContVecTy;
1754  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1755       EI != EE; ++EI){
1756    BugReportEquivClass& EQ = **EI;
1757    FlushReport(EQ);
1758  }
1759
1760  // BugReporter owns and deletes only BugTypes created implicitly through
1761  // EmitBasicReport.
1762  // FIXME: There are leaks from checkers that assume that the BugTypes they
1763  // create will be destroyed by the BugReporter.
1764  for (llvm::StringMap<BugType*>::iterator
1765         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1766    delete I->second;
1767
1768  // Remove all references to the BugType objects.
1769  BugTypes = F.getEmptySet();
1770}
1771
1772//===----------------------------------------------------------------------===//
1773// PathDiagnostics generation.
1774//===----------------------------------------------------------------------===//
1775
1776static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1777                 std::pair<ExplodedNode*, unsigned> >
1778MakeReportGraph(const ExplodedGraph* G,
1779                SmallVectorImpl<const ExplodedNode*> &nodes) {
1780
1781  // Create the trimmed graph.  It will contain the shortest paths from the
1782  // error nodes to the root.  In the new graph we should only have one
1783  // error node unless there are two or more error nodes with the same minimum
1784  // path length.
1785  ExplodedGraph* GTrim;
1786  InterExplodedGraphMap* NMap;
1787
1788  llvm::DenseMap<const void*, const void*> InverseMap;
1789  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1790                                   &InverseMap);
1791
1792  // Create owning pointers for GTrim and NMap just to ensure that they are
1793  // released when this function exists.
1794  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1795  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1796
1797  // Find the (first) error node in the trimmed graph.  We just need to consult
1798  // the node map (NMap) which maps from nodes in the original graph to nodes
1799  // in the new graph.
1800
1801  std::queue<const ExplodedNode*> WS;
1802  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1803  IndexMapTy IndexMap;
1804
1805  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1806    const ExplodedNode *originalNode = nodes[nodeIndex];
1807    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1808      WS.push(N);
1809      IndexMap[originalNode] = nodeIndex;
1810    }
1811  }
1812
1813  assert(!WS.empty() && "No error node found in the trimmed graph.");
1814
1815  // Create a new (third!) graph with a single path.  This is the graph
1816  // that will be returned to the caller.
1817  ExplodedGraph *GNew = new ExplodedGraph();
1818
1819  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1820  // to the root node, and then construct a new graph that contains only
1821  // a single path.
1822  llvm::DenseMap<const void*,unsigned> Visited;
1823
1824  unsigned cnt = 0;
1825  const ExplodedNode *Root = 0;
1826
1827  while (!WS.empty()) {
1828    const ExplodedNode *Node = WS.front();
1829    WS.pop();
1830
1831    if (Visited.find(Node) != Visited.end())
1832      continue;
1833
1834    Visited[Node] = cnt++;
1835
1836    if (Node->pred_empty()) {
1837      Root = Node;
1838      break;
1839    }
1840
1841    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1842         E=Node->pred_end(); I!=E; ++I)
1843      WS.push(*I);
1844  }
1845
1846  assert(Root);
1847
1848  // Now walk from the root down the BFS path, always taking the successor
1849  // with the lowest number.
1850  ExplodedNode *Last = 0, *First = 0;
1851  NodeBackMap *BM = new NodeBackMap();
1852  unsigned NodeIndex = 0;
1853
1854  for ( const ExplodedNode *N = Root ;;) {
1855    // Lookup the number associated with the current node.
1856    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1857    assert(I != Visited.end());
1858
1859    // Create the equivalent node in the new graph with the same state
1860    // and location.
1861    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1862
1863    // Store the mapping to the original node.
1864    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1865    assert(IMitr != InverseMap.end() && "No mapping to original node.");
1866    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1867
1868    // Link up the new node with the previous node.
1869    if (Last)
1870      NewN->addPredecessor(Last, *GNew);
1871
1872    Last = NewN;
1873
1874    // Are we at the final node?
1875    IndexMapTy::iterator IMI =
1876      IndexMap.find((const ExplodedNode*)(IMitr->second));
1877    if (IMI != IndexMap.end()) {
1878      First = NewN;
1879      NodeIndex = IMI->second;
1880      break;
1881    }
1882
1883    // Find the next successor node.  We choose the node that is marked
1884    // with the lowest DFS number.
1885    ExplodedNode::const_succ_iterator SI = N->succ_begin();
1886    ExplodedNode::const_succ_iterator SE = N->succ_end();
1887    N = 0;
1888
1889    for (unsigned MinVal = 0; SI != SE; ++SI) {
1890
1891      I = Visited.find(*SI);
1892
1893      if (I == Visited.end())
1894        continue;
1895
1896      if (!N || I->second < MinVal) {
1897        N = *SI;
1898        MinVal = I->second;
1899      }
1900    }
1901
1902    assert(N);
1903  }
1904
1905  assert(First);
1906
1907  return std::make_pair(std::make_pair(GNew, BM),
1908                        std::make_pair(First, NodeIndex));
1909}
1910
1911/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1912///  and collapses PathDiagosticPieces that are expanded by macros.
1913static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1914  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1915                                SourceLocation> > MacroStackTy;
1916
1917  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1918          PiecesTy;
1919
1920  MacroStackTy MacroStack;
1921  PiecesTy Pieces;
1922
1923  for (PathPieces::const_iterator I = path.begin(), E = path.end();
1924       I!=E; ++I) {
1925
1926    PathDiagnosticPiece *piece = I->getPtr();
1927
1928    // Recursively compact calls.
1929    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1930      CompactPathDiagnostic(call->path, SM);
1931    }
1932
1933    // Get the location of the PathDiagnosticPiece.
1934    const FullSourceLoc Loc = piece->getLocation().asLocation();
1935
1936    // Determine the instantiation location, which is the location we group
1937    // related PathDiagnosticPieces.
1938    SourceLocation InstantiationLoc = Loc.isMacroID() ?
1939                                      SM.getExpansionLoc(Loc) :
1940                                      SourceLocation();
1941
1942    if (Loc.isFileID()) {
1943      MacroStack.clear();
1944      Pieces.push_back(piece);
1945      continue;
1946    }
1947
1948    assert(Loc.isMacroID());
1949
1950    // Is the PathDiagnosticPiece within the same macro group?
1951    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1952      MacroStack.back().first->subPieces.push_back(piece);
1953      continue;
1954    }
1955
1956    // We aren't in the same group.  Are we descending into a new macro
1957    // or are part of an old one?
1958    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1959
1960    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1961                                          SM.getExpansionLoc(Loc) :
1962                                          SourceLocation();
1963
1964    // Walk the entire macro stack.
1965    while (!MacroStack.empty()) {
1966      if (InstantiationLoc == MacroStack.back().second) {
1967        MacroGroup = MacroStack.back().first;
1968        break;
1969      }
1970
1971      if (ParentInstantiationLoc == MacroStack.back().second) {
1972        MacroGroup = MacroStack.back().first;
1973        break;
1974      }
1975
1976      MacroStack.pop_back();
1977    }
1978
1979    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1980      // Create a new macro group and add it to the stack.
1981      PathDiagnosticMacroPiece *NewGroup =
1982        new PathDiagnosticMacroPiece(
1983          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1984
1985      if (MacroGroup)
1986        MacroGroup->subPieces.push_back(NewGroup);
1987      else {
1988        assert(InstantiationLoc.isFileID());
1989        Pieces.push_back(NewGroup);
1990      }
1991
1992      MacroGroup = NewGroup;
1993      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1994    }
1995
1996    // Finally, add the PathDiagnosticPiece to the group.
1997    MacroGroup->subPieces.push_back(piece);
1998  }
1999
2000  // Now take the pieces and construct a new PathDiagnostic.
2001  path.clear();
2002
2003  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
2004    path.push_back(*I);
2005}
2006
2007bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
2008                                           PathDiagnosticConsumer &PC,
2009                                           ArrayRef<BugReport *> &bugReports) {
2010  assert(!bugReports.empty());
2011
2012  bool HasValid = false;
2013  SmallVector<const ExplodedNode *, 10> errorNodes;
2014  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
2015                                      E = bugReports.end(); I != E; ++I) {
2016    if ((*I)->isValid()) {
2017      HasValid = true;
2018      errorNodes.push_back((*I)->getErrorNode());
2019    } else {
2020      errorNodes.push_back(0);
2021    }
2022  }
2023
2024  // If all the reports have been marked invalid, we're done.
2025  if (!HasValid)
2026    return false;
2027
2028  // Construct a new graph that contains only a single path from the error
2029  // node to a root.
2030  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
2031  std::pair<ExplodedNode*, unsigned> >&
2032    GPair = MakeReportGraph(&getGraph(), errorNodes);
2033
2034  // Find the BugReport with the original location.
2035  assert(GPair.second.second < bugReports.size());
2036  BugReport *R = bugReports[GPair.second.second];
2037  assert(R && "No original report found for sliced graph.");
2038  assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
2039
2040  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
2041  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
2042  const ExplodedNode *N = GPair.second.first;
2043
2044  // Start building the path diagnostic...
2045  PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
2046
2047  // Register additional node visitors.
2048  R->addVisitor(new NilReceiverBRVisitor());
2049  R->addVisitor(new ConditionBRVisitor());
2050  R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
2051
2052  BugReport::VisitorList visitors;
2053  unsigned originalReportConfigToken, finalReportConfigToken;
2054
2055  // While generating diagnostics, it's possible the visitors will decide
2056  // new symbols and regions are interesting, or add other visitors based on
2057  // the information they find. If they do, we need to regenerate the path
2058  // based on our new report configuration.
2059  do {
2060    // Get a clean copy of all the visitors.
2061    for (BugReport::visitor_iterator I = R->visitor_begin(),
2062                                     E = R->visitor_end(); I != E; ++I)
2063       visitors.push_back((*I)->clone());
2064
2065    // Clear out the active path from any previous work.
2066    PD.resetPath();
2067    originalReportConfigToken = R->getConfigurationChangeToken();
2068
2069    // Generate the very last diagnostic piece - the piece is visible before
2070    // the trace is expanded.
2071    PathDiagnosticPiece *LastPiece = 0;
2072    for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2073        I != E; ++I) {
2074      if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2075        assert (!LastPiece &&
2076            "There can only be one final piece in a diagnostic.");
2077        LastPiece = Piece;
2078      }
2079    }
2080
2081    if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
2082      if (!LastPiece)
2083        LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2084      if (LastPiece)
2085        PD.setEndOfPath(LastPiece);
2086      else
2087        return false;
2088    }
2089
2090    switch (PDB.getGenerationScheme()) {
2091    case PathDiagnosticConsumer::Extensive:
2092      if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
2093        assert(!R->isValid() && "Failed on valid report");
2094        // Try again. We'll filter out the bad report when we trim the graph.
2095        // FIXME: It would be more efficient to use the same intermediate
2096        // trimmed graph, and just repeat the shortest-path search.
2097        return generatePathDiagnostic(PD, PC, bugReports);
2098      }
2099      break;
2100    case PathDiagnosticConsumer::Minimal:
2101      if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
2102        assert(!R->isValid() && "Failed on valid report");
2103        // Try again. We'll filter out the bad report when we trim the graph.
2104        return generatePathDiagnostic(PD, PC, bugReports);
2105      }
2106      break;
2107    case PathDiagnosticConsumer::None:
2108      if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
2109        assert(!R->isValid() && "Failed on valid report");
2110        // Try again. We'll filter out the bad report when we trim the graph.
2111        return generatePathDiagnostic(PD, PC, bugReports);
2112      }
2113      break;
2114    }
2115
2116    // Clean up the visitors we used.
2117    llvm::DeleteContainerPointers(visitors);
2118
2119    // Did anything change while generating this path?
2120    finalReportConfigToken = R->getConfigurationChangeToken();
2121  } while(finalReportConfigToken != originalReportConfigToken);
2122
2123  // Finally, prune the diagnostic path of uninteresting stuff.
2124  if (!PD.path.empty()) {
2125    // Remove messages that are basically the same.
2126    removeRedundantMsgs(PD.getMutablePieces());
2127
2128    if (R->shouldPrunePath() &&
2129        getEngine().getAnalysisManager().options.shouldPrunePaths()) {
2130      bool hasSomethingInteresting = RemoveUnneededCalls(PD.getMutablePieces(),
2131                                                         R);
2132      assert(hasSomethingInteresting);
2133      (void) hasSomethingInteresting;
2134    }
2135
2136    adjustCallLocations(PD.getMutablePieces());
2137  }
2138
2139  return true;
2140}
2141
2142void BugReporter::Register(BugType *BT) {
2143  BugTypes = F.add(BugTypes, BT);
2144}
2145
2146void BugReporter::emitReport(BugReport* R) {
2147  // Compute the bug report's hash to determine its equivalence class.
2148  llvm::FoldingSetNodeID ID;
2149  R->Profile(ID);
2150
2151  // Lookup the equivance class.  If there isn't one, create it.
2152  BugType& BT = R->getBugType();
2153  Register(&BT);
2154  void *InsertPos;
2155  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2156
2157  if (!EQ) {
2158    EQ = new BugReportEquivClass(R);
2159    EQClasses.InsertNode(EQ, InsertPos);
2160    EQClassesVector.push_back(EQ);
2161  }
2162  else
2163    EQ->AddReport(R);
2164}
2165
2166
2167//===----------------------------------------------------------------------===//
2168// Emitting reports in equivalence classes.
2169//===----------------------------------------------------------------------===//
2170
2171namespace {
2172struct FRIEC_WLItem {
2173  const ExplodedNode *N;
2174  ExplodedNode::const_succ_iterator I, E;
2175
2176  FRIEC_WLItem(const ExplodedNode *n)
2177  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2178};
2179}
2180
2181static BugReport *
2182FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2183                             SmallVectorImpl<BugReport*> &bugReports) {
2184
2185  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2186  assert(I != E);
2187  BugType& BT = I->getBugType();
2188
2189  // If we don't need to suppress any of the nodes because they are
2190  // post-dominated by a sink, simply add all the nodes in the equivalence class
2191  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2192  if (!BT.isSuppressOnSink()) {
2193    BugReport *R = I;
2194    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2195      const ExplodedNode *N = I->getErrorNode();
2196      if (N) {
2197        R = I;
2198        bugReports.push_back(R);
2199      }
2200    }
2201    return R;
2202  }
2203
2204  // For bug reports that should be suppressed when all paths are post-dominated
2205  // by a sink node, iterate through the reports in the equivalence class
2206  // until we find one that isn't post-dominated (if one exists).  We use a
2207  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2208  // this as a recursive function, but we don't want to risk blowing out the
2209  // stack for very long paths.
2210  BugReport *exampleReport = 0;
2211
2212  for (; I != E; ++I) {
2213    const ExplodedNode *errorNode = I->getErrorNode();
2214
2215    if (!errorNode)
2216      continue;
2217    if (errorNode->isSink()) {
2218      llvm_unreachable(
2219           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2220    }
2221    // No successors?  By definition this nodes isn't post-dominated by a sink.
2222    if (errorNode->succ_empty()) {
2223      bugReports.push_back(I);
2224      if (!exampleReport)
2225        exampleReport = I;
2226      continue;
2227    }
2228
2229    // At this point we know that 'N' is not a sink and it has at least one
2230    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2231    typedef FRIEC_WLItem WLItem;
2232    typedef SmallVector<WLItem, 10> DFSWorkList;
2233    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2234
2235    DFSWorkList WL;
2236    WL.push_back(errorNode);
2237    Visited[errorNode] = 1;
2238
2239    while (!WL.empty()) {
2240      WLItem &WI = WL.back();
2241      assert(!WI.N->succ_empty());
2242
2243      for (; WI.I != WI.E; ++WI.I) {
2244        const ExplodedNode *Succ = *WI.I;
2245        // End-of-path node?
2246        if (Succ->succ_empty()) {
2247          // If we found an end-of-path node that is not a sink.
2248          if (!Succ->isSink()) {
2249            bugReports.push_back(I);
2250            if (!exampleReport)
2251              exampleReport = I;
2252            WL.clear();
2253            break;
2254          }
2255          // Found a sink?  Continue on to the next successor.
2256          continue;
2257        }
2258        // Mark the successor as visited.  If it hasn't been explored,
2259        // enqueue it to the DFS worklist.
2260        unsigned &mark = Visited[Succ];
2261        if (!mark) {
2262          mark = 1;
2263          WL.push_back(Succ);
2264          break;
2265        }
2266      }
2267
2268      // The worklist may have been cleared at this point.  First
2269      // check if it is empty before checking the last item.
2270      if (!WL.empty() && &WL.back() == &WI)
2271        WL.pop_back();
2272    }
2273  }
2274
2275  // ExampleReport will be NULL if all the nodes in the equivalence class
2276  // were post-dominated by sinks.
2277  return exampleReport;
2278}
2279
2280void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2281  SmallVector<BugReport*, 10> bugReports;
2282  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2283  if (exampleReport) {
2284    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2285    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2286                                                 E=C.end(); I != E; ++I) {
2287      FlushReport(exampleReport, **I, bugReports);
2288    }
2289  }
2290}
2291
2292void BugReporter::FlushReport(BugReport *exampleReport,
2293                              PathDiagnosticConsumer &PD,
2294                              ArrayRef<BugReport*> bugReports) {
2295
2296  // FIXME: Make sure we use the 'R' for the path that was actually used.
2297  // Probably doesn't make a difference in practice.
2298  BugType& BT = exampleReport->getBugType();
2299
2300  OwningPtr<PathDiagnostic>
2301    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2302                         exampleReport->getBugType().getName(),
2303                         exampleReport->getDescription(),
2304                         exampleReport->getShortDescription(/*Fallback=*/false),
2305                         BT.getCategory(),
2306                         exampleReport->getUniqueingLocation(),
2307                         exampleReport->getUniqueingDecl()));
2308
2309  // Generate the full path diagnostic, using the generation scheme
2310  // specified by the PathDiagnosticConsumer. Note that we have to generate
2311  // path diagnostics even for consumers which do not support paths, because
2312  // the BugReporterVisitors may mark this bug as a false positive.
2313  if (!bugReports.empty())
2314    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2315      return;
2316
2317  // If the path is empty, generate a single step path with the location
2318  // of the issue.
2319  if (D->path.empty()) {
2320    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2321    PathDiagnosticPiece *piece =
2322      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2323    BugReport::ranges_iterator Beg, End;
2324    llvm::tie(Beg, End) = exampleReport->getRanges();
2325    for ( ; Beg != End; ++Beg)
2326      piece->addRange(*Beg);
2327    D->setEndOfPath(piece);
2328  }
2329
2330  // Get the meta data.
2331  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2332  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2333                                                e = Meta.end(); i != e; ++i) {
2334    D->addMeta(*i);
2335  }
2336
2337  PD.HandlePathDiagnostic(D.take());
2338}
2339
2340void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2341                                  StringRef name,
2342                                  StringRef category,
2343                                  StringRef str, PathDiagnosticLocation Loc,
2344                                  SourceRange* RBeg, unsigned NumRanges) {
2345
2346  // 'BT' is owned by BugReporter.
2347  BugType *BT = getBugTypeForName(name, category);
2348  BugReport *R = new BugReport(*BT, str, Loc);
2349  R->setDeclWithIssue(DeclWithIssue);
2350  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2351  emitReport(R);
2352}
2353
2354BugType *BugReporter::getBugTypeForName(StringRef name,
2355                                        StringRef category) {
2356  SmallString<136> fullDesc;
2357  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2358  llvm::StringMapEntry<BugType *> &
2359      entry = StrBugTypes.GetOrCreateValue(fullDesc);
2360  BugType *BT = entry.getValue();
2361  if (!BT) {
2362    BT = new BugType(name, category);
2363    entry.setValue(BT);
2364  }
2365  return BT;
2366}
2367