BugReporter.cpp revision 904fd08edbedeb18b16875dd54b3f1edb049e9b9
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "BugReporter"
16
17#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ParentMap.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Analysis/ProgramPoint.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/IntrusiveRefCntPtr.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/raw_ostream.h"
36#include <queue>
37
38using namespace clang;
39using namespace ento;
40
41STATISTIC(MaxBugClassSize,
42          "The maximum number of bug reports in the same equivalence class");
43STATISTIC(MaxValidBugClassSize,
44          "The maximum number of bug reports in the same equivalence class "
45          "where at least one report is valid (not suppressed)");
46
47BugReporterVisitor::~BugReporterVisitor() {}
48
49void BugReporterContext::anchor() {}
50
51//===----------------------------------------------------------------------===//
52// Helper routines for walking the ExplodedGraph and fetching statements.
53//===----------------------------------------------------------------------===//
54
55static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
56  for (N = N->getFirstPred(); N; N = N->getFirstPred())
57    if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
58      return S;
59
60  return 0;
61}
62
63static inline const Stmt*
64GetCurrentOrPreviousStmt(const ExplodedNode *N) {
65  if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
66    return S;
67
68  return GetPreviousStmt(N);
69}
70
71//===----------------------------------------------------------------------===//
72// Diagnostic cleanup.
73//===----------------------------------------------------------------------===//
74
75static PathDiagnosticEventPiece *
76eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
77                            PathDiagnosticEventPiece *Y) {
78  // Prefer diagnostics that come from ConditionBRVisitor over
79  // those that came from TrackConstraintBRVisitor.
80  const void *tagPreferred = ConditionBRVisitor::getTag();
81  const void *tagLesser = TrackConstraintBRVisitor::getTag();
82
83  if (X->getLocation() != Y->getLocation())
84    return 0;
85
86  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
87    return X;
88
89  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
90    return Y;
91
92  return 0;
93}
94
95/// An optimization pass over PathPieces that removes redundant diagnostics
96/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
97/// BugReporterVisitors use different methods to generate diagnostics, with
98/// one capable of emitting diagnostics in some cases but not in others.  This
99/// can lead to redundant diagnostic pieces at the same point in a path.
100static void removeRedundantMsgs(PathPieces &path) {
101  unsigned N = path.size();
102  if (N < 2)
103    return;
104  // NOTE: this loop intentionally is not using an iterator.  Instead, we
105  // are streaming the path and modifying it in place.  This is done by
106  // grabbing the front, processing it, and if we decide to keep it append
107  // it to the end of the path.  The entire path is processed in this way.
108  for (unsigned i = 0; i < N; ++i) {
109    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
110    path.pop_front();
111
112    switch (piece->getKind()) {
113      case clang::ento::PathDiagnosticPiece::Call:
114        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
115        break;
116      case clang::ento::PathDiagnosticPiece::Macro:
117        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
118        break;
119      case clang::ento::PathDiagnosticPiece::ControlFlow:
120        break;
121      case clang::ento::PathDiagnosticPiece::Event: {
122        if (i == N-1)
123          break;
124
125        if (PathDiagnosticEventPiece *nextEvent =
126            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
127          PathDiagnosticEventPiece *event =
128            cast<PathDiagnosticEventPiece>(piece);
129          // Check to see if we should keep one of the two pieces.  If we
130          // come up with a preference, record which piece to keep, and consume
131          // another piece from the path.
132          if (PathDiagnosticEventPiece *pieceToKeep =
133              eventsDescribeSameCondition(event, nextEvent)) {
134            piece = pieceToKeep;
135            path.pop_front();
136            ++i;
137          }
138        }
139        break;
140      }
141    }
142    path.push_back(piece);
143  }
144}
145
146/// A map from PathDiagnosticPiece to the LocationContext of the inlined
147/// function call it represents.
148typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
149        LocationContextMap;
150
151/// Recursively scan through a path and prune out calls and macros pieces
152/// that aren't needed.  Return true if afterwards the path contains
153/// "interesting stuff" which means it shouldn't be pruned from the parent path.
154static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
155                                LocationContextMap &LCM) {
156  bool containsSomethingInteresting = false;
157  const unsigned N = pieces.size();
158
159  for (unsigned i = 0 ; i < N ; ++i) {
160    // Remove the front piece from the path.  If it is still something we
161    // want to keep once we are done, we will push it back on the end.
162    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
163    pieces.pop_front();
164
165    // Throw away pieces with invalid locations. Note that we can't throw away
166    // calls just yet because they might have something interesting inside them.
167    // If so, their locations will be adjusted as necessary later.
168    if (piece->getKind() != PathDiagnosticPiece::Call &&
169        piece->getLocation().asLocation().isInvalid())
170      continue;
171
172    switch (piece->getKind()) {
173      case PathDiagnosticPiece::Call: {
174        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
175        // Check if the location context is interesting.
176        assert(LCM.count(&call->path));
177        if (R->isInteresting(LCM[&call->path])) {
178          containsSomethingInteresting = true;
179          break;
180        }
181
182        if (!removeUnneededCalls(call->path, R, LCM))
183          continue;
184
185        containsSomethingInteresting = true;
186        break;
187      }
188      case PathDiagnosticPiece::Macro: {
189        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
190        if (!removeUnneededCalls(macro->subPieces, R, LCM))
191          continue;
192        containsSomethingInteresting = true;
193        break;
194      }
195      case PathDiagnosticPiece::Event: {
196        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
197
198        // We never throw away an event, but we do throw it away wholesale
199        // as part of a path if we throw the entire path away.
200        containsSomethingInteresting |= !event->isPrunable();
201        break;
202      }
203      case PathDiagnosticPiece::ControlFlow:
204        break;
205    }
206
207    pieces.push_back(piece);
208  }
209
210  return containsSomethingInteresting;
211}
212
213/// Returns true if the given decl has been implicitly given a body, either by
214/// the analyzer or by the compiler proper.
215static bool hasImplicitBody(const Decl *D) {
216  assert(D);
217  return D->isImplicit() || !D->hasBody();
218}
219
220/// Recursively scan through a path and make sure that all call pieces have
221/// valid locations. Note that all other pieces with invalid locations should
222/// have already been pruned out.
223static void adjustCallLocations(PathPieces &Pieces,
224                                PathDiagnosticLocation *LastCallLocation = 0) {
225  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
226    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
227
228    if (!Call) {
229      assert((*I)->getLocation().asLocation().isValid());
230      continue;
231    }
232
233    if (LastCallLocation) {
234      bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
235      if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
236        Call->callEnter = *LastCallLocation;
237      if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
238        Call->callReturn = *LastCallLocation;
239    }
240
241    // Recursively clean out the subclass.  Keep this call around if
242    // it contains any informative diagnostics.
243    PathDiagnosticLocation *ThisCallLocation;
244    if (Call->callEnterWithin.asLocation().isValid() &&
245        !hasImplicitBody(Call->getCallee()))
246      ThisCallLocation = &Call->callEnterWithin;
247    else
248      ThisCallLocation = &Call->callEnter;
249
250    assert(ThisCallLocation && "Outermost call has an invalid location");
251    adjustCallLocations(Call->path, ThisCallLocation);
252  }
253}
254
255//===----------------------------------------------------------------------===//
256// PathDiagnosticBuilder and its associated routines and helper objects.
257//===----------------------------------------------------------------------===//
258
259namespace {
260class NodeMapClosure : public BugReport::NodeResolver {
261  InterExplodedGraphMap &M;
262public:
263  NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
264
265  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
266    return M.lookup(N);
267  }
268};
269
270class PathDiagnosticBuilder : public BugReporterContext {
271  BugReport *R;
272  PathDiagnosticConsumer *PDC;
273  NodeMapClosure NMC;
274public:
275  const LocationContext *LC;
276
277  PathDiagnosticBuilder(GRBugReporter &br,
278                        BugReport *r, InterExplodedGraphMap &Backmap,
279                        PathDiagnosticConsumer *pdc)
280    : BugReporterContext(br),
281      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
282  {}
283
284  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
285
286  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
287                                            const ExplodedNode *N);
288
289  BugReport *getBugReport() { return R; }
290
291  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
292
293  ParentMap& getParentMap() { return LC->getParentMap(); }
294
295  const Stmt *getParent(const Stmt *S) {
296    return getParentMap().getParent(S);
297  }
298
299  virtual NodeMapClosure& getNodeResolver() { return NMC; }
300
301  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
302
303  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
304    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
305  }
306
307  bool supportsLogicalOpControlFlow() const {
308    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
309  }
310};
311} // end anonymous namespace
312
313PathDiagnosticLocation
314PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
315  if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
316    return PathDiagnosticLocation(S, getSourceManager(), LC);
317
318  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
319                                               getSourceManager());
320}
321
322PathDiagnosticLocation
323PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
324                                          const ExplodedNode *N) {
325
326  // Slow, but probably doesn't matter.
327  if (os.str().empty())
328    os << ' ';
329
330  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
331
332  if (Loc.asStmt())
333    os << "Execution continues on line "
334       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
335       << '.';
336  else {
337    os << "Execution jumps to the end of the ";
338    const Decl *D = N->getLocationContext()->getDecl();
339    if (isa<ObjCMethodDecl>(D))
340      os << "method";
341    else if (isa<FunctionDecl>(D))
342      os << "function";
343    else {
344      assert(isa<BlockDecl>(D));
345      os << "anonymous block";
346    }
347    os << '.';
348  }
349
350  return Loc;
351}
352
353static bool IsNested(const Stmt *S, ParentMap &PM) {
354  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
355    return true;
356
357  const Stmt *Parent = PM.getParentIgnoreParens(S);
358
359  if (Parent)
360    switch (Parent->getStmtClass()) {
361      case Stmt::ForStmtClass:
362      case Stmt::DoStmtClass:
363      case Stmt::WhileStmtClass:
364        return true;
365      default:
366        break;
367    }
368
369  return false;
370}
371
372PathDiagnosticLocation
373PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
374  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
375  ParentMap &P = getParentMap();
376  SourceManager &SMgr = getSourceManager();
377
378  while (IsNested(S, P)) {
379    const Stmt *Parent = P.getParentIgnoreParens(S);
380
381    if (!Parent)
382      break;
383
384    switch (Parent->getStmtClass()) {
385      case Stmt::BinaryOperatorClass: {
386        const BinaryOperator *B = cast<BinaryOperator>(Parent);
387        if (B->isLogicalOp())
388          return PathDiagnosticLocation(S, SMgr, LC);
389        break;
390      }
391      case Stmt::CompoundStmtClass:
392      case Stmt::StmtExprClass:
393        return PathDiagnosticLocation(S, SMgr, LC);
394      case Stmt::ChooseExprClass:
395        // Similar to '?' if we are referring to condition, just have the edge
396        // point to the entire choose expression.
397        if (cast<ChooseExpr>(Parent)->getCond() == S)
398          return PathDiagnosticLocation(Parent, SMgr, LC);
399        else
400          return PathDiagnosticLocation(S, SMgr, LC);
401      case Stmt::BinaryConditionalOperatorClass:
402      case Stmt::ConditionalOperatorClass:
403        // For '?', if we are referring to condition, just have the edge point
404        // to the entire '?' expression.
405        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
406          return PathDiagnosticLocation(Parent, SMgr, LC);
407        else
408          return PathDiagnosticLocation(S, SMgr, LC);
409      case Stmt::DoStmtClass:
410          return PathDiagnosticLocation(S, SMgr, LC);
411      case Stmt::ForStmtClass:
412        if (cast<ForStmt>(Parent)->getBody() == S)
413          return PathDiagnosticLocation(S, SMgr, LC);
414        break;
415      case Stmt::IfStmtClass:
416        if (cast<IfStmt>(Parent)->getCond() != S)
417          return PathDiagnosticLocation(S, SMgr, LC);
418        break;
419      case Stmt::ObjCForCollectionStmtClass:
420        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
421          return PathDiagnosticLocation(S, SMgr, LC);
422        break;
423      case Stmt::WhileStmtClass:
424        if (cast<WhileStmt>(Parent)->getCond() != S)
425          return PathDiagnosticLocation(S, SMgr, LC);
426        break;
427      default:
428        break;
429    }
430
431    S = Parent;
432  }
433
434  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
435
436  // Special case: DeclStmts can appear in for statement declarations, in which
437  //  case the ForStmt is the context.
438  if (isa<DeclStmt>(S)) {
439    if (const Stmt *Parent = P.getParent(S)) {
440      switch (Parent->getStmtClass()) {
441        case Stmt::ForStmtClass:
442        case Stmt::ObjCForCollectionStmtClass:
443          return PathDiagnosticLocation(Parent, SMgr, LC);
444        default:
445          break;
446      }
447    }
448  }
449  else if (isa<BinaryOperator>(S)) {
450    // Special case: the binary operator represents the initialization
451    // code in a for statement (this can happen when the variable being
452    // initialized is an old variable.
453    if (const ForStmt *FS =
454          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
455      if (FS->getInit() == S)
456        return PathDiagnosticLocation(FS, SMgr, LC);
457    }
458  }
459
460  return PathDiagnosticLocation(S, SMgr, LC);
461}
462
463//===----------------------------------------------------------------------===//
464// "Visitors only" path diagnostic generation algorithm.
465//===----------------------------------------------------------------------===//
466static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
467                                               PathDiagnosticBuilder &PDB,
468                                               const ExplodedNode *N,
469                                      ArrayRef<BugReporterVisitor *> visitors) {
470  // All path generation skips the very first node (the error node).
471  // This is because there is special handling for the end-of-path note.
472  N = N->getFirstPred();
473  if (!N)
474    return true;
475
476  BugReport *R = PDB.getBugReport();
477  while (const ExplodedNode *Pred = N->getFirstPred()) {
478    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
479                                                  E = visitors.end();
480         I != E; ++I) {
481      // Visit all the node pairs, but throw the path pieces away.
482      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
483      delete Piece;
484    }
485
486    N = Pred;
487  }
488
489  return R->isValid();
490}
491
492//===----------------------------------------------------------------------===//
493// "Minimal" path diagnostic generation algorithm.
494//===----------------------------------------------------------------------===//
495typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
496typedef SmallVector<StackDiagPair, 6> StackDiagVector;
497
498static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
499                                         StackDiagVector &CallStack) {
500  // If the piece contains a special message, add it to all the call
501  // pieces on the active stack.
502  if (PathDiagnosticEventPiece *ep =
503        dyn_cast<PathDiagnosticEventPiece>(P)) {
504
505    if (ep->hasCallStackHint())
506      for (StackDiagVector::iterator I = CallStack.begin(),
507                                     E = CallStack.end(); I != E; ++I) {
508        PathDiagnosticCallPiece *CP = I->first;
509        const ExplodedNode *N = I->second;
510        std::string stackMsg = ep->getCallStackMessage(N);
511
512        // The last message on the path to final bug is the most important
513        // one. Since we traverse the path backwards, do not add the message
514        // if one has been previously added.
515        if  (!CP->hasCallStackMessage())
516          CP->setCallStackMessage(stackMsg);
517      }
518  }
519}
520
521static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
522
523static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
524                                          PathDiagnosticBuilder &PDB,
525                                          const ExplodedNode *N,
526                                          LocationContextMap &LCM,
527                                      ArrayRef<BugReporterVisitor *> visitors) {
528
529  SourceManager& SMgr = PDB.getSourceManager();
530  const LocationContext *LC = PDB.LC;
531  const ExplodedNode *NextNode = N->pred_empty()
532                                        ? NULL : *(N->pred_begin());
533
534  StackDiagVector CallStack;
535
536  while (NextNode) {
537    N = NextNode;
538    PDB.LC = N->getLocationContext();
539    NextNode = N->getFirstPred();
540
541    ProgramPoint P = N->getLocation();
542
543    do {
544      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
545        PathDiagnosticCallPiece *C =
546            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
547        // Record the mapping from call piece to LocationContext.
548        LCM[&C->path] = CE->getCalleeContext();
549        PD.getActivePath().push_front(C);
550        PD.pushActivePath(&C->path);
551        CallStack.push_back(StackDiagPair(C, N));
552        break;
553      }
554
555      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
556        // Flush all locations, and pop the active path.
557        bool VisitedEntireCall = PD.isWithinCall();
558        PD.popActivePath();
559
560        // Either we just added a bunch of stuff to the top-level path, or
561        // we have a previous CallExitEnd.  If the former, it means that the
562        // path terminated within a function call.  We must then take the
563        // current contents of the active path and place it within
564        // a new PathDiagnosticCallPiece.
565        PathDiagnosticCallPiece *C;
566        if (VisitedEntireCall) {
567          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
568        } else {
569          const Decl *Caller = CE->getLocationContext()->getDecl();
570          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
571          // Record the mapping from call piece to LocationContext.
572          LCM[&C->path] = CE->getCalleeContext();
573        }
574
575        C->setCallee(*CE, SMgr);
576        if (!CallStack.empty()) {
577          assert(CallStack.back().first == C);
578          CallStack.pop_back();
579        }
580        break;
581      }
582
583      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
584        const CFGBlock *Src = BE->getSrc();
585        const CFGBlock *Dst = BE->getDst();
586        const Stmt *T = Src->getTerminator();
587
588        if (!T)
589          break;
590
591        PathDiagnosticLocation Start =
592            PathDiagnosticLocation::createBegin(T, SMgr,
593                N->getLocationContext());
594
595        switch (T->getStmtClass()) {
596        default:
597          break;
598
599        case Stmt::GotoStmtClass:
600        case Stmt::IndirectGotoStmtClass: {
601          const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
602
603          if (!S)
604            break;
605
606          std::string sbuf;
607          llvm::raw_string_ostream os(sbuf);
608          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
609
610          os << "Control jumps to line "
611              << End.asLocation().getExpansionLineNumber();
612          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
613              Start, End, os.str()));
614          break;
615        }
616
617        case Stmt::SwitchStmtClass: {
618          // Figure out what case arm we took.
619          std::string sbuf;
620          llvm::raw_string_ostream os(sbuf);
621
622          if (const Stmt *S = Dst->getLabel()) {
623            PathDiagnosticLocation End(S, SMgr, LC);
624
625            switch (S->getStmtClass()) {
626            default:
627              os << "No cases match in the switch statement. "
628              "Control jumps to line "
629              << End.asLocation().getExpansionLineNumber();
630              break;
631            case Stmt::DefaultStmtClass:
632              os << "Control jumps to the 'default' case at line "
633              << End.asLocation().getExpansionLineNumber();
634              break;
635
636            case Stmt::CaseStmtClass: {
637              os << "Control jumps to 'case ";
638              const CaseStmt *Case = cast<CaseStmt>(S);
639              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
640
641              // Determine if it is an enum.
642              bool GetRawInt = true;
643
644              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
645                // FIXME: Maybe this should be an assertion.  Are there cases
646                // were it is not an EnumConstantDecl?
647                const EnumConstantDecl *D =
648                    dyn_cast<EnumConstantDecl>(DR->getDecl());
649
650                if (D) {
651                  GetRawInt = false;
652                  os << *D;
653                }
654              }
655
656              if (GetRawInt)
657                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
658
659              os << ":'  at line "
660                  << End.asLocation().getExpansionLineNumber();
661              break;
662            }
663            }
664            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
665                Start, End, os.str()));
666          }
667          else {
668            os << "'Default' branch taken. ";
669            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
670            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
671                Start, End, os.str()));
672          }
673
674          break;
675        }
676
677        case Stmt::BreakStmtClass:
678        case Stmt::ContinueStmtClass: {
679          std::string sbuf;
680          llvm::raw_string_ostream os(sbuf);
681          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
682          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
683              Start, End, os.str()));
684          break;
685        }
686
687        // Determine control-flow for ternary '?'.
688        case Stmt::BinaryConditionalOperatorClass:
689        case Stmt::ConditionalOperatorClass: {
690          std::string sbuf;
691          llvm::raw_string_ostream os(sbuf);
692          os << "'?' condition is ";
693
694          if (*(Src->succ_begin()+1) == Dst)
695            os << "false";
696          else
697            os << "true";
698
699          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
700
701          if (const Stmt *S = End.asStmt())
702            End = PDB.getEnclosingStmtLocation(S);
703
704          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
705              Start, End, os.str()));
706          break;
707        }
708
709        // Determine control-flow for short-circuited '&&' and '||'.
710        case Stmt::BinaryOperatorClass: {
711          if (!PDB.supportsLogicalOpControlFlow())
712            break;
713
714          const BinaryOperator *B = cast<BinaryOperator>(T);
715          std::string sbuf;
716          llvm::raw_string_ostream os(sbuf);
717          os << "Left side of '";
718
719          if (B->getOpcode() == BO_LAnd) {
720            os << "&&" << "' is ";
721
722            if (*(Src->succ_begin()+1) == Dst) {
723              os << "false";
724              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
725              PathDiagnosticLocation Start =
726                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
727              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
728                  Start, End, os.str()));
729            }
730            else {
731              os << "true";
732              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
733              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
734              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
735                  Start, End, os.str()));
736            }
737          }
738          else {
739            assert(B->getOpcode() == BO_LOr);
740            os << "||" << "' is ";
741
742            if (*(Src->succ_begin()+1) == Dst) {
743              os << "false";
744              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
745              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
746              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
747                  Start, End, os.str()));
748            }
749            else {
750              os << "true";
751              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
752              PathDiagnosticLocation Start =
753                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
754              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
755                  Start, End, os.str()));
756            }
757          }
758
759          break;
760        }
761
762        case Stmt::DoStmtClass:  {
763          if (*(Src->succ_begin()) == Dst) {
764            std::string sbuf;
765            llvm::raw_string_ostream os(sbuf);
766
767            os << "Loop condition is true. ";
768            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
769
770            if (const Stmt *S = End.asStmt())
771              End = PDB.getEnclosingStmtLocation(S);
772
773            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
774                Start, End, os.str()));
775          }
776          else {
777            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
778
779            if (const Stmt *S = End.asStmt())
780              End = PDB.getEnclosingStmtLocation(S);
781
782            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
783                Start, End, "Loop condition is false.  Exiting loop"));
784          }
785
786          break;
787        }
788
789        case Stmt::WhileStmtClass:
790        case Stmt::ForStmtClass: {
791          if (*(Src->succ_begin()+1) == Dst) {
792            std::string sbuf;
793            llvm::raw_string_ostream os(sbuf);
794
795            os << "Loop condition is false. ";
796            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
797            if (const Stmt *S = End.asStmt())
798              End = PDB.getEnclosingStmtLocation(S);
799
800            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
801                Start, End, os.str()));
802          }
803          else {
804            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
805            if (const Stmt *S = End.asStmt())
806              End = PDB.getEnclosingStmtLocation(S);
807
808            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
809                Start, End, "Loop condition is true.  Entering loop body"));
810          }
811
812          break;
813        }
814
815        case Stmt::IfStmtClass: {
816          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
817
818          if (const Stmt *S = End.asStmt())
819            End = PDB.getEnclosingStmtLocation(S);
820
821          if (*(Src->succ_begin()+1) == Dst)
822            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
823                Start, End, "Taking false branch"));
824          else
825            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
826                Start, End, "Taking true branch"));
827
828          break;
829        }
830        }
831      }
832    } while(0);
833
834    if (NextNode) {
835      // Add diagnostic pieces from custom visitors.
836      BugReport *R = PDB.getBugReport();
837      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
838                                                    E = visitors.end();
839           I != E; ++I) {
840        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
841          PD.getActivePath().push_front(p);
842          updateStackPiecesWithMessage(p, CallStack);
843        }
844      }
845    }
846  }
847
848  if (!PDB.getBugReport()->isValid())
849    return false;
850
851  // After constructing the full PathDiagnostic, do a pass over it to compact
852  // PathDiagnosticPieces that occur within a macro.
853  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
854  return true;
855}
856
857//===----------------------------------------------------------------------===//
858// "Extensive" PathDiagnostic generation.
859//===----------------------------------------------------------------------===//
860
861static bool IsControlFlowExpr(const Stmt *S) {
862  const Expr *E = dyn_cast<Expr>(S);
863
864  if (!E)
865    return false;
866
867  E = E->IgnoreParenCasts();
868
869  if (isa<AbstractConditionalOperator>(E))
870    return true;
871
872  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
873    if (B->isLogicalOp())
874      return true;
875
876  return false;
877}
878
879namespace {
880class ContextLocation : public PathDiagnosticLocation {
881  bool IsDead;
882public:
883  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
884    : PathDiagnosticLocation(L), IsDead(isdead) {}
885
886  void markDead() { IsDead = true; }
887  bool isDead() const { return IsDead; }
888};
889
890static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
891                                              const LocationContext *LC,
892                                              bool firstCharOnly = false) {
893  if (const Stmt *S = L.asStmt()) {
894    const Stmt *Original = S;
895    while (1) {
896      // Adjust the location for some expressions that are best referenced
897      // by one of their subexpressions.
898      switch (S->getStmtClass()) {
899        default:
900          break;
901        case Stmt::ParenExprClass:
902        case Stmt::GenericSelectionExprClass:
903          S = cast<Expr>(S)->IgnoreParens();
904          firstCharOnly = true;
905          continue;
906        case Stmt::BinaryConditionalOperatorClass:
907        case Stmt::ConditionalOperatorClass:
908          S = cast<AbstractConditionalOperator>(S)->getCond();
909          firstCharOnly = true;
910          continue;
911        case Stmt::ChooseExprClass:
912          S = cast<ChooseExpr>(S)->getCond();
913          firstCharOnly = true;
914          continue;
915        case Stmt::BinaryOperatorClass:
916          S = cast<BinaryOperator>(S)->getLHS();
917          firstCharOnly = true;
918          continue;
919      }
920
921      break;
922    }
923
924    if (S != Original)
925      L = PathDiagnosticLocation(S, L.getManager(), LC);
926  }
927
928  if (firstCharOnly)
929    L  = PathDiagnosticLocation::createSingleLocation(L);
930
931  return L;
932}
933
934class EdgeBuilder {
935  std::vector<ContextLocation> CLocs;
936  typedef std::vector<ContextLocation>::iterator iterator;
937  PathDiagnostic &PD;
938  PathDiagnosticBuilder &PDB;
939  PathDiagnosticLocation PrevLoc;
940
941  bool IsConsumedExpr(const PathDiagnosticLocation &L);
942
943  bool containsLocation(const PathDiagnosticLocation &Container,
944                        const PathDiagnosticLocation &Containee);
945
946  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
947
948
949
950  void popLocation() {
951    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
952      // For contexts, we only one the first character as the range.
953      rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
954    }
955    CLocs.pop_back();
956  }
957
958public:
959  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
960    : PD(pd), PDB(pdb) {
961
962      // If the PathDiagnostic already has pieces, add the enclosing statement
963      // of the first piece as a context as well.
964      if (!PD.path.empty()) {
965        PrevLoc = (*PD.path.begin())->getLocation();
966
967        if (const Stmt *S = PrevLoc.asStmt())
968          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
969      }
970  }
971
972  ~EdgeBuilder() {
973    while (!CLocs.empty()) popLocation();
974
975    // Finally, add an initial edge from the start location of the first
976    // statement (if it doesn't already exist).
977    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
978                                                       PDB.LC,
979                                                       PDB.getSourceManager());
980    if (L.isValid())
981      rawAddEdge(L);
982  }
983
984  void flushLocations() {
985    while (!CLocs.empty())
986      popLocation();
987    PrevLoc = PathDiagnosticLocation();
988  }
989
990  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
991               bool IsPostJump = false);
992
993  void rawAddEdge(PathDiagnosticLocation NewLoc);
994
995  void addContext(const Stmt *S);
996  void addContext(const PathDiagnosticLocation &L);
997  void addExtendedContext(const Stmt *S);
998};
999} // end anonymous namespace
1000
1001
1002PathDiagnosticLocation
1003EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1004  if (const Stmt *S = L.asStmt()) {
1005    if (IsControlFlowExpr(S))
1006      return L;
1007
1008    return PDB.getEnclosingStmtLocation(S);
1009  }
1010
1011  return L;
1012}
1013
1014bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1015                                   const PathDiagnosticLocation &Containee) {
1016
1017  if (Container == Containee)
1018    return true;
1019
1020  if (Container.asDecl())
1021    return true;
1022
1023  if (const Stmt *S = Containee.asStmt())
1024    if (const Stmt *ContainerS = Container.asStmt()) {
1025      while (S) {
1026        if (S == ContainerS)
1027          return true;
1028        S = PDB.getParent(S);
1029      }
1030      return false;
1031    }
1032
1033  // Less accurate: compare using source ranges.
1034  SourceRange ContainerR = Container.asRange();
1035  SourceRange ContaineeR = Containee.asRange();
1036
1037  SourceManager &SM = PDB.getSourceManager();
1038  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1039  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1040  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1041  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1042
1043  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1044  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1045  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1046  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1047
1048  assert(ContainerBegLine <= ContainerEndLine);
1049  assert(ContaineeBegLine <= ContaineeEndLine);
1050
1051  return (ContainerBegLine <= ContaineeBegLine &&
1052          ContainerEndLine >= ContaineeEndLine &&
1053          (ContainerBegLine != ContaineeBegLine ||
1054           SM.getExpansionColumnNumber(ContainerRBeg) <=
1055           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1056          (ContainerEndLine != ContaineeEndLine ||
1057           SM.getExpansionColumnNumber(ContainerREnd) >=
1058           SM.getExpansionColumnNumber(ContaineeREnd)));
1059}
1060
1061void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1062  if (!PrevLoc.isValid()) {
1063    PrevLoc = NewLoc;
1064    return;
1065  }
1066
1067  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1068  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1069
1070  if (PrevLocClean.asLocation().isInvalid()) {
1071    PrevLoc = NewLoc;
1072    return;
1073  }
1074
1075  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1076    return;
1077
1078  // FIXME: Ignore intra-macro edges for now.
1079  if (NewLocClean.asLocation().getExpansionLoc() ==
1080      PrevLocClean.asLocation().getExpansionLoc())
1081    return;
1082
1083  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1084  PrevLoc = NewLoc;
1085}
1086
1087void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1088                          bool IsPostJump) {
1089
1090  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1091    return;
1092
1093  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1094
1095  while (!CLocs.empty()) {
1096    ContextLocation &TopContextLoc = CLocs.back();
1097
1098    // Is the top location context the same as the one for the new location?
1099    if (TopContextLoc == CLoc) {
1100      if (alwaysAdd) {
1101        if (IsConsumedExpr(TopContextLoc))
1102          TopContextLoc.markDead();
1103
1104        rawAddEdge(NewLoc);
1105      }
1106
1107      if (IsPostJump)
1108        TopContextLoc.markDead();
1109      return;
1110    }
1111
1112    if (containsLocation(TopContextLoc, CLoc)) {
1113      if (alwaysAdd) {
1114        rawAddEdge(NewLoc);
1115
1116        if (IsConsumedExpr(CLoc)) {
1117          CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1118          return;
1119        }
1120      }
1121
1122      CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1123      return;
1124    }
1125
1126    // Context does not contain the location.  Flush it.
1127    popLocation();
1128  }
1129
1130  // If we reach here, there is no enclosing context.  Just add the edge.
1131  rawAddEdge(NewLoc);
1132}
1133
1134bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1135  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1136    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1137
1138  return false;
1139}
1140
1141void EdgeBuilder::addExtendedContext(const Stmt *S) {
1142  if (!S)
1143    return;
1144
1145  const Stmt *Parent = PDB.getParent(S);
1146  while (Parent) {
1147    if (isa<CompoundStmt>(Parent))
1148      Parent = PDB.getParent(Parent);
1149    else
1150      break;
1151  }
1152
1153  if (Parent) {
1154    switch (Parent->getStmtClass()) {
1155      case Stmt::DoStmtClass:
1156      case Stmt::ObjCAtSynchronizedStmtClass:
1157        addContext(Parent);
1158      default:
1159        break;
1160    }
1161  }
1162
1163  addContext(S);
1164}
1165
1166void EdgeBuilder::addContext(const Stmt *S) {
1167  if (!S)
1168    return;
1169
1170  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1171  addContext(L);
1172}
1173
1174void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1175  while (!CLocs.empty()) {
1176    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1177
1178    // Is the top location context the same as the one for the new location?
1179    if (TopContextLoc == L)
1180      return;
1181
1182    if (containsLocation(TopContextLoc, L)) {
1183      CLocs.push_back(L);
1184      return;
1185    }
1186
1187    // Context does not contain the location.  Flush it.
1188    popLocation();
1189  }
1190
1191  CLocs.push_back(L);
1192}
1193
1194// Cone-of-influence: support the reverse propagation of "interesting" symbols
1195// and values by tracing interesting calculations backwards through evaluated
1196// expressions along a path.  This is probably overly complicated, but the idea
1197// is that if an expression computed an "interesting" value, the child
1198// expressions are are also likely to be "interesting" as well (which then
1199// propagates to the values they in turn compute).  This reverse propagation
1200// is needed to track interesting correlations across function call boundaries,
1201// where formal arguments bind to actual arguments, etc.  This is also needed
1202// because the constraint solver sometimes simplifies certain symbolic values
1203// into constants when appropriate, and this complicates reasoning about
1204// interesting values.
1205typedef llvm::DenseSet<const Expr *> InterestingExprs;
1206
1207static void reversePropagateIntererstingSymbols(BugReport &R,
1208                                                InterestingExprs &IE,
1209                                                const ProgramState *State,
1210                                                const Expr *Ex,
1211                                                const LocationContext *LCtx) {
1212  SVal V = State->getSVal(Ex, LCtx);
1213  if (!(R.isInteresting(V) || IE.count(Ex)))
1214    return;
1215
1216  switch (Ex->getStmtClass()) {
1217    default:
1218      if (!isa<CastExpr>(Ex))
1219        break;
1220      // Fall through.
1221    case Stmt::BinaryOperatorClass:
1222    case Stmt::UnaryOperatorClass: {
1223      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1224            CE = Ex->child_end();
1225            CI != CE; ++CI) {
1226        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1227          IE.insert(child);
1228          SVal ChildV = State->getSVal(child, LCtx);
1229          R.markInteresting(ChildV);
1230        }
1231        break;
1232      }
1233    }
1234  }
1235
1236  R.markInteresting(V);
1237}
1238
1239static void reversePropagateInterestingSymbols(BugReport &R,
1240                                               InterestingExprs &IE,
1241                                               const ProgramState *State,
1242                                               const LocationContext *CalleeCtx,
1243                                               const LocationContext *CallerCtx)
1244{
1245  // FIXME: Handle non-CallExpr-based CallEvents.
1246  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1247  const Stmt *CallSite = Callee->getCallSite();
1248  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1249    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1250      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1251                                         PE = FD->param_end();
1252      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1253      for (; AI != AE && PI != PE; ++AI, ++PI) {
1254        if (const Expr *ArgE = *AI) {
1255          if (const ParmVarDecl *PD = *PI) {
1256            Loc LV = State->getLValue(PD, CalleeCtx);
1257            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1258              IE.insert(ArgE);
1259          }
1260        }
1261      }
1262    }
1263  }
1264}
1265
1266//===----------------------------------------------------------------------===//
1267// Functions for determining if a loop was executed 0 times.
1268//===----------------------------------------------------------------------===//
1269
1270static bool isLoop(const Stmt *Term) {
1271  switch (Term->getStmtClass()) {
1272    case Stmt::ForStmtClass:
1273    case Stmt::WhileStmtClass:
1274    case Stmt::ObjCForCollectionStmtClass:
1275      return true;
1276    default:
1277      // Note that we intentionally do not include do..while here.
1278      return false;
1279  }
1280}
1281
1282static bool isJumpToFalseBranch(const BlockEdge *BE) {
1283  const CFGBlock *Src = BE->getSrc();
1284  assert(Src->succ_size() == 2);
1285  return (*(Src->succ_begin()+1) == BE->getDst());
1286}
1287
1288/// Return true if the terminator is a loop and the destination is the
1289/// false branch.
1290static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1291  if (!isLoop(Term))
1292    return false;
1293
1294  // Did we take the false branch?
1295  return isJumpToFalseBranch(BE);
1296}
1297
1298static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1299  while (SubS) {
1300    if (SubS == S)
1301      return true;
1302    SubS = PM.getParent(SubS);
1303  }
1304  return false;
1305}
1306
1307static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1308                                     const ExplodedNode *N) {
1309  while (N) {
1310    Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1311    if (SP) {
1312      const Stmt *S = SP->getStmt();
1313      if (!isContainedByStmt(PM, Term, S))
1314        return S;
1315    }
1316    N = N->getFirstPred();
1317  }
1318  return 0;
1319}
1320
1321static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1322  const Stmt *LoopBody = 0;
1323  switch (Term->getStmtClass()) {
1324    case Stmt::ForStmtClass: {
1325      const ForStmt *FS = cast<ForStmt>(Term);
1326      if (isContainedByStmt(PM, FS->getInc(), S))
1327        return true;
1328      LoopBody = FS->getBody();
1329      break;
1330    }
1331    case Stmt::ObjCForCollectionStmtClass: {
1332      const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1333      LoopBody = FC->getBody();
1334      break;
1335    }
1336    case Stmt::WhileStmtClass:
1337      LoopBody = cast<WhileStmt>(Term)->getBody();
1338      break;
1339    default:
1340      return false;
1341  }
1342  return isContainedByStmt(PM, LoopBody, S);
1343}
1344
1345//===----------------------------------------------------------------------===//
1346// Top-level logic for generating extensive path diagnostics.
1347//===----------------------------------------------------------------------===//
1348
1349static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1350                                            PathDiagnosticBuilder &PDB,
1351                                            const ExplodedNode *N,
1352                                            LocationContextMap &LCM,
1353                                      ArrayRef<BugReporterVisitor *> visitors) {
1354  EdgeBuilder EB(PD, PDB);
1355  const SourceManager& SM = PDB.getSourceManager();
1356  StackDiagVector CallStack;
1357  InterestingExprs IE;
1358
1359  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1360  while (NextNode) {
1361    N = NextNode;
1362    NextNode = N->getFirstPred();
1363    ProgramPoint P = N->getLocation();
1364
1365    do {
1366      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1367        if (const Expr *Ex = PS->getStmtAs<Expr>())
1368          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1369                                              N->getState().getPtr(), Ex,
1370                                              N->getLocationContext());
1371      }
1372
1373      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1374        const Stmt *S = CE->getCalleeContext()->getCallSite();
1375        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1376            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1377                                                N->getState().getPtr(), Ex,
1378                                                N->getLocationContext());
1379        }
1380
1381        PathDiagnosticCallPiece *C =
1382          PathDiagnosticCallPiece::construct(N, *CE, SM);
1383        LCM[&C->path] = CE->getCalleeContext();
1384
1385        EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1386        EB.flushLocations();
1387
1388        PD.getActivePath().push_front(C);
1389        PD.pushActivePath(&C->path);
1390        CallStack.push_back(StackDiagPair(C, N));
1391        break;
1392      }
1393
1394      // Pop the call hierarchy if we are done walking the contents
1395      // of a function call.
1396      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1397        // Add an edge to the start of the function.
1398        const Decl *D = CE->getCalleeContext()->getDecl();
1399        PathDiagnosticLocation pos =
1400          PathDiagnosticLocation::createBegin(D, SM);
1401        EB.addEdge(pos);
1402
1403        // Flush all locations, and pop the active path.
1404        bool VisitedEntireCall = PD.isWithinCall();
1405        EB.flushLocations();
1406        PD.popActivePath();
1407        PDB.LC = N->getLocationContext();
1408
1409        // Either we just added a bunch of stuff to the top-level path, or
1410        // we have a previous CallExitEnd.  If the former, it means that the
1411        // path terminated within a function call.  We must then take the
1412        // current contents of the active path and place it within
1413        // a new PathDiagnosticCallPiece.
1414        PathDiagnosticCallPiece *C;
1415        if (VisitedEntireCall) {
1416          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1417        } else {
1418          const Decl *Caller = CE->getLocationContext()->getDecl();
1419          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1420          LCM[&C->path] = CE->getCalleeContext();
1421        }
1422
1423        C->setCallee(*CE, SM);
1424        EB.addContext(C->getLocation());
1425
1426        if (!CallStack.empty()) {
1427          assert(CallStack.back().first == C);
1428          CallStack.pop_back();
1429        }
1430        break;
1431      }
1432
1433      // Note that is important that we update the LocationContext
1434      // after looking at CallExits.  CallExit basically adds an
1435      // edge in the *caller*, so we don't want to update the LocationContext
1436      // too soon.
1437      PDB.LC = N->getLocationContext();
1438
1439      // Block edges.
1440      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1441        // Does this represent entering a call?  If so, look at propagating
1442        // interesting symbols across call boundaries.
1443        if (NextNode) {
1444          const LocationContext *CallerCtx = NextNode->getLocationContext();
1445          const LocationContext *CalleeCtx = PDB.LC;
1446          if (CallerCtx != CalleeCtx) {
1447            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1448                                               N->getState().getPtr(),
1449                                               CalleeCtx, CallerCtx);
1450          }
1451        }
1452
1453        // Are we jumping to the head of a loop?  Add a special diagnostic.
1454        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1455          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1456          const CompoundStmt *CS = NULL;
1457
1458          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1459            CS = dyn_cast<CompoundStmt>(FS->getBody());
1460          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1461            CS = dyn_cast<CompoundStmt>(WS->getBody());
1462
1463          PathDiagnosticEventPiece *p =
1464            new PathDiagnosticEventPiece(L,
1465                                        "Looping back to the head of the loop");
1466          p->setPrunable(true);
1467
1468          EB.addEdge(p->getLocation(), true);
1469          PD.getActivePath().push_front(p);
1470
1471          if (CS) {
1472            PathDiagnosticLocation BL =
1473              PathDiagnosticLocation::createEndBrace(CS, SM);
1474            EB.addEdge(BL);
1475          }
1476        }
1477
1478        const CFGBlock *BSrc = BE->getSrc();
1479        ParentMap &PM = PDB.getParentMap();
1480
1481        if (const Stmt *Term = BSrc->getTerminator()) {
1482          // Are we jumping past the loop body without ever executing the
1483          // loop (because the condition was false)?
1484          if (isLoopJumpPastBody(Term, &*BE) &&
1485              !isInLoopBody(PM,
1486                            getStmtBeforeCond(PM,
1487                                              BSrc->getTerminatorCondition(),
1488                                              N),
1489                            Term)) {
1490            PathDiagnosticLocation L(Term, SM, PDB.LC);
1491            PathDiagnosticEventPiece *PE =
1492                new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1493            PE->setPrunable(true);
1494
1495            EB.addEdge(PE->getLocation(), true);
1496            PD.getActivePath().push_front(PE);
1497          }
1498
1499          // In any case, add the terminator as the current statement
1500          // context for control edges.
1501          EB.addContext(Term);
1502        }
1503
1504        break;
1505      }
1506
1507      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1508        Optional<CFGElement> First = BE->getFirstElement();
1509        if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1510          const Stmt *stmt = S->getStmt();
1511          if (IsControlFlowExpr(stmt)) {
1512            // Add the proper context for '&&', '||', and '?'.
1513            EB.addContext(stmt);
1514          }
1515          else
1516            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1517        }
1518
1519        break;
1520      }
1521
1522
1523    } while (0);
1524
1525    if (!NextNode)
1526      continue;
1527
1528    // Add pieces from custom visitors.
1529    BugReport *R = PDB.getBugReport();
1530    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1531                                                  E = visitors.end();
1532         I != E; ++I) {
1533      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1534        const PathDiagnosticLocation &Loc = p->getLocation();
1535        EB.addEdge(Loc, true);
1536        PD.getActivePath().push_front(p);
1537        updateStackPiecesWithMessage(p, CallStack);
1538
1539        if (const Stmt *S = Loc.asStmt())
1540          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1541      }
1542    }
1543  }
1544
1545  return PDB.getBugReport()->isValid();
1546}
1547
1548/// \brief Adds a sanitized control-flow diagnostic edge to a path.
1549static void addEdgeToPath(PathPieces &path,
1550                          PathDiagnosticLocation &PrevLoc,
1551                          PathDiagnosticLocation NewLoc,
1552                          const LocationContext *LC) {
1553  if (!NewLoc.isValid())
1554    return;
1555
1556  SourceLocation NewLocL = NewLoc.asLocation();
1557  if (NewLocL.isInvalid() || NewLocL.isMacroID())
1558    return;
1559
1560  if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1561    PrevLoc = NewLoc;
1562    return;
1563  }
1564
1565  // FIXME: ignore intra-macro edges for now.
1566  if (NewLoc.asLocation().getExpansionLoc() ==
1567      PrevLoc.asLocation().getExpansionLoc())
1568    return;
1569
1570  path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1571                                                     PrevLoc));
1572  PrevLoc = NewLoc;
1573}
1574
1575/// A customized wrapper for CFGBlock::getTerminatorCondition()
1576/// which returns the element for ObjCForCollectionStmts.
1577static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1578  const Stmt *S = B->getTerminatorCondition();
1579  if (const ObjCForCollectionStmt *FS =
1580      dyn_cast_or_null<ObjCForCollectionStmt>(S))
1581    return FS->getElement();
1582  return S;
1583}
1584
1585static bool
1586GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
1587                                         PathDiagnosticBuilder &PDB,
1588                                         const ExplodedNode *N,
1589                                         LocationContextMap &LCM,
1590                                      ArrayRef<BugReporterVisitor *> visitors) {
1591
1592  BugReport *report = PDB.getBugReport();
1593  const SourceManager& SM = PDB.getSourceManager();
1594  StackDiagVector CallStack;
1595  InterestingExprs IE;
1596
1597  PathDiagnosticLocation PrevLoc = PD.getLocation();
1598
1599  const ExplodedNode *NextNode = N->getFirstPred();
1600  while (NextNode) {
1601    N = NextNode;
1602    NextNode = N->getFirstPred();
1603    ProgramPoint P = N->getLocation();
1604
1605    do {
1606      // Have we encountered an entrance to a call?  It may be
1607      // the case that we have not encountered a matching
1608      // call exit before this point.  This means that the path
1609      // terminated within the call itself.
1610      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1611        // Add an edge to the start of the function.
1612        const StackFrameContext *CalleeLC = CE->getCalleeContext();
1613        const Decl *D = CalleeLC->getDecl();
1614        addEdgeToPath(PD.getActivePath(), PrevLoc,
1615                      PathDiagnosticLocation::createBegin(D, SM),
1616                      CalleeLC);
1617
1618        // Did we visit an entire call?
1619        bool VisitedEntireCall = PD.isWithinCall();
1620        PD.popActivePath();
1621
1622        PathDiagnosticCallPiece *C;
1623        if (VisitedEntireCall) {
1624          PathDiagnosticPiece *P = PD.getActivePath().front().getPtr();
1625          C = cast<PathDiagnosticCallPiece>(P);
1626        } else {
1627          const Decl *Caller = CE->getLocationContext()->getDecl();
1628          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1629
1630          // Since we just transferred the path over to the call piece,
1631          // reset the mapping from active to location context.
1632          assert(PD.getActivePath().size() == 1 &&
1633                 PD.getActivePath().front() == C);
1634          LCM[&PD.getActivePath()] = 0;
1635
1636          // Record the location context mapping for the path within
1637          // the call.
1638          assert(LCM[&C->path] == 0 ||
1639                 LCM[&C->path] == CE->getCalleeContext());
1640          LCM[&C->path] = CE->getCalleeContext();
1641
1642          // If this is the first item in the active path, record
1643          // the new mapping from active path to location context.
1644          const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1645          if (!NewLC)
1646            NewLC = N->getLocationContext();
1647
1648          PDB.LC = NewLC;
1649        }
1650        C->setCallee(*CE, SM);
1651
1652        // Update the previous location in the active path.
1653        PrevLoc = C->getLocation();
1654
1655        if (!CallStack.empty()) {
1656          assert(CallStack.back().first == C);
1657          CallStack.pop_back();
1658        }
1659        break;
1660      }
1661
1662      // Query the location context here and the previous location
1663      // as processing CallEnter may change the active path.
1664      PDB.LC = N->getLocationContext();
1665
1666      // Record the mapping from the active path to the location
1667      // context.
1668      assert(!LCM[&PD.getActivePath()] ||
1669             LCM[&PD.getActivePath()] == PDB.LC);
1670      LCM[&PD.getActivePath()] = PDB.LC;
1671
1672      // Have we encountered an exit from a function call?
1673      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1674        const Stmt *S = CE->getCalleeContext()->getCallSite();
1675        // Propagate the interesting symbols accordingly.
1676        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1677          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1678                                              N->getState().getPtr(), Ex,
1679                                              N->getLocationContext());
1680        }
1681
1682        // We are descending into a call (backwards).  Construct
1683        // a new call piece to contain the path pieces for that call.
1684        PathDiagnosticCallPiece *C =
1685          PathDiagnosticCallPiece::construct(N, *CE, SM);
1686
1687        // Record the location context for this call piece.
1688        LCM[&C->path] = CE->getCalleeContext();
1689
1690        // Add the edge to the return site.
1691        addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1692        PD.getActivePath().push_front(C);
1693        PrevLoc.invalidate();
1694
1695        // Make the contents of the call the active path for now.
1696        PD.pushActivePath(&C->path);
1697        CallStack.push_back(StackDiagPair(C, N));
1698        break;
1699      }
1700
1701      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1702        // For expressions, make sure we propagate the
1703        // interesting symbols correctly.
1704        if (const Expr *Ex = PS->getStmtAs<Expr>())
1705          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1706                                              N->getState().getPtr(), Ex,
1707                                              N->getLocationContext());
1708
1709        // Add an edge.  If this is an ObjCForCollectionStmt do
1710        // not add an edge here as it appears in the CFG both
1711        // as a terminator and as a terminator condition.
1712        if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1713          PathDiagnosticLocation L =
1714            PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1715          addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1716        }
1717        break;
1718      }
1719
1720      // Block edges.
1721      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1722        // Does this represent entering a call?  If so, look at propagating
1723        // interesting symbols across call boundaries.
1724        if (NextNode) {
1725          const LocationContext *CallerCtx = NextNode->getLocationContext();
1726          const LocationContext *CalleeCtx = PDB.LC;
1727          if (CallerCtx != CalleeCtx) {
1728            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1729                                               N->getState().getPtr(),
1730                                               CalleeCtx, CallerCtx);
1731          }
1732        }
1733
1734        // Are we jumping to the head of a loop?  Add a special diagnostic.
1735        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1736          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1737          const CompoundStmt *CS = NULL;
1738
1739          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1740            CS = dyn_cast<CompoundStmt>(FS->getBody());
1741          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1742            CS = dyn_cast<CompoundStmt>(WS->getBody());
1743          else if (const ObjCForCollectionStmt *OFS =
1744                   dyn_cast<ObjCForCollectionStmt>(Loop)) {
1745            CS = dyn_cast<CompoundStmt>(OFS->getBody());
1746          }
1747
1748          PathDiagnosticEventPiece *p =
1749            new PathDiagnosticEventPiece(L, "Looping back to the head "
1750                                            "of the loop");
1751          p->setPrunable(true);
1752
1753          addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1754          PD.getActivePath().push_front(p);
1755
1756          if (CS) {
1757            addEdgeToPath(PD.getActivePath(), PrevLoc,
1758                          PathDiagnosticLocation::createEndBrace(CS, SM),
1759                          PDB.LC);
1760          }
1761        }
1762
1763        const CFGBlock *BSrc = BE->getSrc();
1764        ParentMap &PM = PDB.getParentMap();
1765
1766        if (const Stmt *Term = BSrc->getTerminator()) {
1767          // Are we jumping past the loop body without ever executing the
1768          // loop (because the condition was false)?
1769          if (isLoop(Term)) {
1770            const Stmt *TermCond = getTerminatorCondition(BSrc);
1771            bool IsInLoopBody =
1772              isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1773
1774            const char *str = 0;
1775
1776            if (isJumpToFalseBranch(&*BE)) {
1777              if (!IsInLoopBody) {
1778                str = "Loop body executed 0 times";
1779              }
1780            }
1781            else {
1782              str = "Entering loop body";
1783            }
1784
1785            if (str) {
1786              PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1787              PathDiagnosticEventPiece *PE =
1788                new PathDiagnosticEventPiece(L, str);
1789              PE->setPrunable(true);
1790              addEdgeToPath(PD.getActivePath(), PrevLoc,
1791                            PE->getLocation(), PDB.LC);
1792              PD.getActivePath().push_front(PE);
1793            }
1794          }
1795          else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1796                   isa<GotoStmt>(Term)) {
1797            PathDiagnosticLocation L(Term, SM, PDB.LC);
1798            addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1799          }
1800        }
1801        break;
1802      }
1803    } while (0);
1804
1805    if (!NextNode)
1806      continue;
1807
1808    // Add pieces from custom visitors.
1809    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1810         E = visitors.end();
1811         I != E; ++I) {
1812      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
1813        addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1814        PD.getActivePath().push_front(p);
1815        updateStackPiecesWithMessage(p, CallStack);
1816      }
1817    }
1818  }
1819
1820  return report->isValid();
1821}
1822
1823static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1824  if (!L.isValid())
1825    return 0;
1826  return L.asStmt();
1827}
1828
1829static const Stmt *getStmtParent(const Stmt *S, ParentMap &PM) {
1830  if (!S)
1831    return 0;
1832
1833  while (true) {
1834    S = PM.getParentIgnoreParens(S);
1835
1836    if (!S)
1837      break;
1838
1839    if (isa<ExprWithCleanups>(S) ||
1840        isa<CXXBindTemporaryExpr>(S) ||
1841        isa<SubstNonTypeTemplateParmExpr>(S))
1842      continue;
1843
1844    break;
1845  }
1846
1847  return S;
1848}
1849
1850static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1851  switch (S->getStmtClass()) {
1852    case Stmt::BinaryOperatorClass: {
1853      const BinaryOperator *BO = cast<BinaryOperator>(S);
1854      if (!BO->isLogicalOp())
1855        return false;
1856      return BO->getLHS() == Cond || BO->getRHS() == Cond;
1857    }
1858    case Stmt::IfStmtClass:
1859      return cast<IfStmt>(S)->getCond() == Cond;
1860    case Stmt::ForStmtClass:
1861      return cast<ForStmt>(S)->getCond() == Cond;
1862    case Stmt::WhileStmtClass:
1863      return cast<WhileStmt>(S)->getCond() == Cond;
1864    case Stmt::DoStmtClass:
1865      return cast<DoStmt>(S)->getCond() == Cond;
1866    case Stmt::ChooseExprClass:
1867      return cast<ChooseExpr>(S)->getCond() == Cond;
1868    case Stmt::IndirectGotoStmtClass:
1869      return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1870    case Stmt::SwitchStmtClass:
1871      return cast<SwitchStmt>(S)->getCond() == Cond;
1872    case Stmt::BinaryConditionalOperatorClass:
1873      return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1874    case Stmt::ConditionalOperatorClass: {
1875      const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1876      return CO->getCond() == Cond ||
1877             CO->getLHS() == Cond ||
1878             CO->getRHS() == Cond;
1879    }
1880    case Stmt::ObjCForCollectionStmtClass:
1881      return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1882    default:
1883      return false;
1884  }
1885}
1886
1887static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1888  const ForStmt *FS = dyn_cast<ForStmt>(FL);
1889  if (!FS)
1890    return false;
1891  return FS->getInc() == S || FS->getInit() == S;
1892}
1893
1894typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1895        OptimizedCallsSet;
1896
1897void PathPieces::dump() const {
1898  unsigned index = 0;
1899  for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I ) {
1900    llvm::errs() << "[" << index++ << "]";
1901
1902    switch ((*I)->getKind()) {
1903    case PathDiagnosticPiece::Call:
1904      llvm::errs() << "  CALL\n--------------\n";
1905
1906      if (const Stmt *SLoc = getLocStmt((*I)->getLocation())) {
1907        SLoc->dump();
1908      } else {
1909        const PathDiagnosticCallPiece *Call = cast<PathDiagnosticCallPiece>(*I);
1910        if (const NamedDecl *ND = dyn_cast<NamedDecl>(Call->getCallee()))
1911          llvm::errs() << *ND << "\n";
1912      }
1913      break;
1914    case PathDiagnosticPiece::Event:
1915      llvm::errs() << "  EVENT\n--------------\n";
1916      llvm::errs() << (*I)->getString() << "\n";
1917      if (const Stmt *SLoc = getLocStmt((*I)->getLocation())) {
1918        llvm::errs() << " ---- at ----\n";
1919        SLoc->dump();
1920      }
1921      break;
1922    case PathDiagnosticPiece::Macro:
1923      llvm::errs() << "  MACRO\n--------------\n";
1924      // FIXME: print which macro is being invoked.
1925      break;
1926    case PathDiagnosticPiece::ControlFlow: {
1927      const PathDiagnosticControlFlowPiece *CP =
1928        cast<PathDiagnosticControlFlowPiece>(*I);
1929      llvm::errs() << "  CONTROL\n--------------\n";
1930
1931      if (const Stmt *s1Start = getLocStmt(CP->getStartLocation()))
1932        s1Start->dump();
1933      else
1934        llvm::errs() << "NULL\n";
1935
1936      llvm::errs() << " ---- to ----\n";
1937
1938      if (const Stmt *s1End = getLocStmt(CP->getEndLocation()))
1939        s1End->dump();
1940      else
1941        llvm::errs() << "NULL\n";
1942
1943      break;
1944    }
1945    }
1946
1947    llvm::errs() << "\n";
1948  }
1949}
1950
1951/// \brief Return true if X is contained by Y.
1952static bool lexicalContains(ParentMap &PM,
1953                            const Stmt *X,
1954                            const Stmt *Y) {
1955  while (X) {
1956    if (X == Y)
1957      return true;
1958    X = PM.getParent(X);
1959  }
1960  return false;
1961}
1962
1963// Remove short edges on the same line less than 3 columns in difference.
1964static void removePunyEdges(PathPieces &path,
1965                            SourceManager &SM,
1966                            ParentMap &PM) {
1967
1968  bool erased = false;
1969
1970  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1971       erased ? I : ++I) {
1972
1973    erased = false;
1974
1975    PathDiagnosticControlFlowPiece *PieceI =
1976      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1977
1978    if (!PieceI)
1979      continue;
1980
1981    const Stmt *start = getLocStmt(PieceI->getStartLocation());
1982    const Stmt *end   = getLocStmt(PieceI->getEndLocation());
1983
1984    if (!start || !end)
1985      continue;
1986
1987    const Stmt *endParent = PM.getParent(end);
1988    if (!endParent)
1989      continue;
1990
1991    if (isConditionForTerminator(end, endParent))
1992      continue;
1993
1994    bool Invalid = false;
1995    FullSourceLoc StartL(start->getLocStart(), SM);
1996    FullSourceLoc EndL(end->getLocStart(), SM);
1997
1998    unsigned startLine = StartL.getSpellingLineNumber(&Invalid);
1999    if (Invalid)
2000      continue;
2001
2002    unsigned endLine = EndL.getSpellingLineNumber(&Invalid);
2003    if (Invalid)
2004      continue;
2005
2006    if (startLine != endLine)
2007      continue;
2008
2009    unsigned startCol = StartL.getSpellingColumnNumber(&Invalid);
2010    if (Invalid)
2011      continue;
2012
2013    unsigned endCol = EndL.getSpellingColumnNumber(&Invalid);
2014    if (Invalid)
2015      continue;
2016
2017    if (abs((int)startCol - (int)endCol) <= 2) {
2018      I = path.erase(I);
2019      erased = true;
2020      continue;
2021    }
2022  }
2023}
2024
2025static void removeIdenticalEvents(PathPieces &path) {
2026  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2027    PathDiagnosticEventPiece *PieceI =
2028      dyn_cast<PathDiagnosticEventPiece>(*I);
2029
2030    if (!PieceI)
2031      continue;
2032
2033    PathPieces::iterator NextI = I; ++NextI;
2034    if (NextI == E)
2035      return;
2036
2037    PathDiagnosticEventPiece *PieceNextI =
2038      dyn_cast<PathDiagnosticEventPiece>(*NextI);
2039
2040    if (!PieceNextI)
2041      continue;
2042
2043    // Erase the second piece if it has the same exact message text.
2044    if (PieceI->getString() == PieceNextI->getString()) {
2045      path.erase(NextI);
2046    }
2047  }
2048}
2049
2050static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2051                          OptimizedCallsSet &OCS,
2052                          LocationContextMap &LCM) {
2053  bool hasChanges = false;
2054  const LocationContext *LC = LCM[&path];
2055  assert(LC);
2056  ParentMap &PM = LC->getParentMap();
2057  bool isFirst = true;
2058
2059  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2060    bool wasFirst = isFirst;
2061    isFirst = false;
2062
2063    // Optimize subpaths.
2064    if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
2065      // Record the fact that a call has been optimized so we only do the
2066      // effort once.
2067      if (!OCS.count(CallI)) {
2068        while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2069        OCS.insert(CallI);
2070      }
2071      ++I;
2072      continue;
2073    }
2074
2075    // Pattern match the current piece and its successor.
2076    PathDiagnosticControlFlowPiece *PieceI =
2077      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2078
2079    if (!PieceI) {
2080      ++I;
2081      continue;
2082    }
2083
2084    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2085    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2086    const Stmt *level1 = getStmtParent(s1Start, PM);
2087    const Stmt *level2 = getStmtParent(s1End, PM);
2088
2089    if (wasFirst) {
2090      // If the first edge (in isolation) is just a transition from
2091      // an expression to a parent expression then eliminate that edge.
2092      if (level1 && level2 && level2 == PM.getParent(level1)) {
2093        path.erase(I);
2094        // Since we are erasing the current edge at the start of the
2095        // path, just return now so we start analyzing the start of the path
2096        // again.
2097        return true;
2098      }
2099
2100      // If the first edge (in isolation) is a transition from the
2101      // initialization or increment in a for loop then remove it.
2102      if (level1 && isIncrementOrInitInForLoop(s1Start, level1)) {
2103        path.erase(I);
2104        return true;
2105      }
2106    }
2107
2108    PathPieces::iterator NextI = I; ++NextI;
2109    if (NextI == E)
2110      break;
2111
2112    PathDiagnosticControlFlowPiece *PieceNextI =
2113      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2114
2115    if (!PieceNextI) {
2116      ++I;
2117      continue;
2118    }
2119
2120    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2121    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2122    const Stmt *level3 = getStmtParent(s2Start, PM);
2123    const Stmt *level4 = getStmtParent(s2End, PM);
2124
2125    // Rule I.
2126    //
2127    // If we have two consecutive control edges whose end/begin locations
2128    // are at the same level (e.g. statements or top-level expressions within
2129    // a compound statement, or siblings share a single ancestor expression),
2130    // then merge them if they have no interesting intermediate event.
2131    //
2132    // For example:
2133    //
2134    // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2135    // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2136    //
2137    // NOTE: this will be limited later in cases where we add barriers
2138    // to prevent this optimization.
2139    //
2140    if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2141      PieceI->setEndLocation(PieceNextI->getEndLocation());
2142      path.erase(NextI);
2143      hasChanges = true;
2144      continue;
2145    }
2146
2147    // Rule II.
2148    //
2149    // Eliminate edges between subexpressions and parent expressions
2150    // when the subexpression is consumed.
2151    //
2152    // NOTE: this will be limited later in cases where we add barriers
2153    // to prevent this optimization.
2154    //
2155    if (s1End && s1End == s2Start && level2) {
2156      bool removeEdge = false;
2157      // Remove edges into the increment or initialization of a
2158      // loop that have no interleaving event.  This means that
2159      // they aren't interesting.
2160      if (isIncrementOrInitInForLoop(s1End, level2))
2161        removeEdge = true;
2162      // Next only consider edges that are not anchored on
2163      // the condition of a terminator.  This are intermediate edges
2164      // that we might want to trim.
2165      else if (!isConditionForTerminator(level2, s1End)) {
2166        // Trim edges on expressions that are consumed by
2167        // the parent expression.
2168        if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2169          removeEdge = true;
2170        }
2171        // Trim edges where a lexical containment doesn't exist.
2172        // For example:
2173        //
2174        //  X -> Y -> Z
2175        //
2176        // If 'Z' lexically contains Y (it is an ancestor) and
2177        // 'X' does not lexically contain Y (it is a descendant OR
2178        // it has no lexical relationship at all) then trim.
2179        //
2180        // This can eliminate edges where we dive into a subexpression
2181        // and then pop back out, etc.
2182        else if (s1Start && s2End &&
2183                 lexicalContains(PM, s2Start, s2End) &&
2184                 !lexicalContains(PM, s1End, s1Start)) {
2185          removeEdge = true;
2186        }
2187      }
2188
2189      if (removeEdge) {
2190        PieceI->setEndLocation(PieceNextI->getEndLocation());
2191        path.erase(NextI);
2192        hasChanges = true;
2193        continue;
2194      }
2195    }
2196
2197    // Optimize edges for ObjC fast-enumeration loops.
2198    //
2199    // (X -> collection) -> (collection -> element)
2200    //
2201    // becomes:
2202    //
2203    // (X -> element)
2204    if (s1End == s2Start) {
2205      const ObjCForCollectionStmt *FS =
2206        dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2207      if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2208          s2End == FS->getElement()) {
2209        PieceI->setEndLocation(PieceNextI->getEndLocation());
2210        path.erase(NextI);
2211        hasChanges = true;
2212        continue;
2213      }
2214    }
2215
2216    // No changes at this index?  Move to the next one.
2217    ++I;
2218  }
2219
2220  if (!hasChanges) {
2221    // Remove any puny edges left over after primary optimization pass.
2222    removePunyEdges(path, SM, PM);
2223    // Remove identical events.
2224    removeIdenticalEvents(path);
2225  }
2226
2227  return hasChanges;
2228}
2229
2230static void adjustBranchEdges(PathPieces &pieces, LocationContextMap &LCM,
2231                            SourceManager &SM) {
2232  // Retrieve the parent map for this path.
2233  const LocationContext *LC = LCM[&pieces];
2234  ParentMap &PM = LC->getParentMap();
2235  PathPieces::iterator Prev = pieces.end();
2236  for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E;
2237       Prev = I, ++I) {
2238    // Adjust edges in subpaths.
2239    if (PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I)) {
2240      adjustBranchEdges(Call->path, LCM, SM);
2241      continue;
2242    }
2243
2244    PathDiagnosticControlFlowPiece *PieceI =
2245      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2246
2247    if (!PieceI)
2248      continue;
2249
2250    // We are looking at two edges.  Is the second one incident
2251    // on an expression (or subexpression) of a branch condition.
2252    const Stmt *Dst = getLocStmt(PieceI->getEndLocation());
2253    const Stmt *Src = getLocStmt(PieceI->getStartLocation());
2254
2255    if (!Dst || !Src)
2256      continue;
2257
2258    const Stmt *Branch = 0;
2259    const Stmt *S = Dst;
2260    while (const Stmt *Parent = getStmtParent(S, PM)) {
2261      if (const ForStmt *FS = dyn_cast<ForStmt>(Parent)) {
2262        const Stmt *Cond = FS->getCond();
2263        if (!Cond)
2264          Cond = FS;
2265        if (Cond == S)
2266          Branch = FS;
2267        break;
2268      }
2269      if (const WhileStmt *WS = dyn_cast<WhileStmt>(Parent)) {
2270        if (WS->getCond()->IgnoreParens() == S)
2271          Branch = WS;
2272        break;
2273      }
2274      if (const IfStmt *IS = dyn_cast<IfStmt>(Parent)) {
2275        if (IS->getCond()->IgnoreParens() == S)
2276          Branch = IS;
2277        break;
2278      }
2279      if (const ObjCForCollectionStmt *OFS =
2280            dyn_cast<ObjCForCollectionStmt>(Parent)) {
2281        if (OFS->getElement() == S)
2282          Branch = OFS;
2283        break;
2284      }
2285
2286      S = Parent;
2287    }
2288
2289    // If 'Branch' is non-null we have found a match where we have an edge
2290    // incident on the condition of a if/for/while statement.
2291    if (!Branch)
2292      continue;
2293
2294    // If the current source of the edge is the if/for/while, then there is
2295    // nothing left to be done.
2296    if (Src == Branch)
2297      continue;
2298
2299    // Now look at the previous edge.  We want to know if this was in the same
2300    // "level" as the for statement.
2301    const Stmt *SrcParent = getStmtParent(Src, PM);
2302    const Stmt *BranchParent = getStmtParent(Branch, PM);
2303    if (SrcParent && SrcParent == BranchParent) {
2304      PathDiagnosticLocation L(Branch, SM, LC);
2305      bool needsEdge = true;
2306
2307      if (Prev != E) {
2308        if (PathDiagnosticControlFlowPiece *P =
2309            dyn_cast<PathDiagnosticControlFlowPiece>(*Prev)) {
2310          const Stmt *PrevSrc = getLocStmt(P->getStartLocation());
2311          if (PrevSrc) {
2312            const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2313            if (PrevSrcParent == BranchParent) {
2314              P->setEndLocation(L);
2315              needsEdge = false;
2316            }
2317          }
2318        }
2319      }
2320
2321      if (needsEdge) {
2322        PathDiagnosticControlFlowPiece *P =
2323          new PathDiagnosticControlFlowPiece(PieceI->getStartLocation(), L);
2324        pieces.insert(I, P);
2325      }
2326
2327      PieceI->setStartLocation(L);
2328    }
2329  }
2330}
2331
2332//===----------------------------------------------------------------------===//
2333// Methods for BugType and subclasses.
2334//===----------------------------------------------------------------------===//
2335BugType::~BugType() { }
2336
2337void BugType::FlushReports(BugReporter &BR) {}
2338
2339void BuiltinBug::anchor() {}
2340
2341//===----------------------------------------------------------------------===//
2342// Methods for BugReport and subclasses.
2343//===----------------------------------------------------------------------===//
2344
2345void BugReport::NodeResolver::anchor() {}
2346
2347void BugReport::addVisitor(BugReporterVisitor* visitor) {
2348  if (!visitor)
2349    return;
2350
2351  llvm::FoldingSetNodeID ID;
2352  visitor->Profile(ID);
2353  void *InsertPos;
2354
2355  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2356    delete visitor;
2357    return;
2358  }
2359
2360  CallbacksSet.InsertNode(visitor, InsertPos);
2361  Callbacks.push_back(visitor);
2362  ++ConfigurationChangeToken;
2363}
2364
2365BugReport::~BugReport() {
2366  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
2367    delete *I;
2368  }
2369  while (!interestingSymbols.empty()) {
2370    popInterestingSymbolsAndRegions();
2371  }
2372}
2373
2374const Decl *BugReport::getDeclWithIssue() const {
2375  if (DeclWithIssue)
2376    return DeclWithIssue;
2377
2378  const ExplodedNode *N = getErrorNode();
2379  if (!N)
2380    return 0;
2381
2382  const LocationContext *LC = N->getLocationContext();
2383  return LC->getCurrentStackFrame()->getDecl();
2384}
2385
2386void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2387  hash.AddPointer(&BT);
2388  hash.AddString(Description);
2389  PathDiagnosticLocation UL = getUniqueingLocation();
2390  if (UL.isValid()) {
2391    UL.Profile(hash);
2392  } else if (Location.isValid()) {
2393    Location.Profile(hash);
2394  } else {
2395    assert(ErrorNode);
2396    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2397  }
2398
2399  for (SmallVectorImpl<SourceRange>::const_iterator I =
2400      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2401    const SourceRange range = *I;
2402    if (!range.isValid())
2403      continue;
2404    hash.AddInteger(range.getBegin().getRawEncoding());
2405    hash.AddInteger(range.getEnd().getRawEncoding());
2406  }
2407}
2408
2409void BugReport::markInteresting(SymbolRef sym) {
2410  if (!sym)
2411    return;
2412
2413  // If the symbol wasn't already in our set, note a configuration change.
2414  if (getInterestingSymbols().insert(sym).second)
2415    ++ConfigurationChangeToken;
2416
2417  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2418    getInterestingRegions().insert(meta->getRegion());
2419}
2420
2421void BugReport::markInteresting(const MemRegion *R) {
2422  if (!R)
2423    return;
2424
2425  // If the base region wasn't already in our set, note a configuration change.
2426  R = R->getBaseRegion();
2427  if (getInterestingRegions().insert(R).second)
2428    ++ConfigurationChangeToken;
2429
2430  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2431    getInterestingSymbols().insert(SR->getSymbol());
2432}
2433
2434void BugReport::markInteresting(SVal V) {
2435  markInteresting(V.getAsRegion());
2436  markInteresting(V.getAsSymbol());
2437}
2438
2439void BugReport::markInteresting(const LocationContext *LC) {
2440  if (!LC)
2441    return;
2442  InterestingLocationContexts.insert(LC);
2443}
2444
2445bool BugReport::isInteresting(SVal V) {
2446  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2447}
2448
2449bool BugReport::isInteresting(SymbolRef sym) {
2450  if (!sym)
2451    return false;
2452  // We don't currently consider metadata symbols to be interesting
2453  // even if we know their region is interesting. Is that correct behavior?
2454  return getInterestingSymbols().count(sym);
2455}
2456
2457bool BugReport::isInteresting(const MemRegion *R) {
2458  if (!R)
2459    return false;
2460  R = R->getBaseRegion();
2461  bool b = getInterestingRegions().count(R);
2462  if (b)
2463    return true;
2464  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2465    return getInterestingSymbols().count(SR->getSymbol());
2466  return false;
2467}
2468
2469bool BugReport::isInteresting(const LocationContext *LC) {
2470  if (!LC)
2471    return false;
2472  return InterestingLocationContexts.count(LC);
2473}
2474
2475void BugReport::lazyInitializeInterestingSets() {
2476  if (interestingSymbols.empty()) {
2477    interestingSymbols.push_back(new Symbols());
2478    interestingRegions.push_back(new Regions());
2479  }
2480}
2481
2482BugReport::Symbols &BugReport::getInterestingSymbols() {
2483  lazyInitializeInterestingSets();
2484  return *interestingSymbols.back();
2485}
2486
2487BugReport::Regions &BugReport::getInterestingRegions() {
2488  lazyInitializeInterestingSets();
2489  return *interestingRegions.back();
2490}
2491
2492void BugReport::pushInterestingSymbolsAndRegions() {
2493  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2494  interestingRegions.push_back(new Regions(getInterestingRegions()));
2495}
2496
2497void BugReport::popInterestingSymbolsAndRegions() {
2498  delete interestingSymbols.back();
2499  interestingSymbols.pop_back();
2500  delete interestingRegions.back();
2501  interestingRegions.pop_back();
2502}
2503
2504const Stmt *BugReport::getStmt() const {
2505  if (!ErrorNode)
2506    return 0;
2507
2508  ProgramPoint ProgP = ErrorNode->getLocation();
2509  const Stmt *S = NULL;
2510
2511  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2512    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2513    if (BE->getBlock() == &Exit)
2514      S = GetPreviousStmt(ErrorNode);
2515  }
2516  if (!S)
2517    S = PathDiagnosticLocation::getStmt(ErrorNode);
2518
2519  return S;
2520}
2521
2522std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
2523BugReport::getRanges() {
2524    // If no custom ranges, add the range of the statement corresponding to
2525    // the error node.
2526    if (Ranges.empty()) {
2527      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2528        addRange(E->getSourceRange());
2529      else
2530        return std::make_pair(ranges_iterator(), ranges_iterator());
2531    }
2532
2533    // User-specified absence of range info.
2534    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2535      return std::make_pair(ranges_iterator(), ranges_iterator());
2536
2537    return std::make_pair(Ranges.begin(), Ranges.end());
2538}
2539
2540PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2541  if (ErrorNode) {
2542    assert(!Location.isValid() &&
2543     "Either Location or ErrorNode should be specified but not both.");
2544    return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2545  } else {
2546    assert(Location.isValid());
2547    return Location;
2548  }
2549
2550  return PathDiagnosticLocation();
2551}
2552
2553//===----------------------------------------------------------------------===//
2554// Methods for BugReporter and subclasses.
2555//===----------------------------------------------------------------------===//
2556
2557BugReportEquivClass::~BugReportEquivClass() { }
2558GRBugReporter::~GRBugReporter() { }
2559BugReporterData::~BugReporterData() {}
2560
2561ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2562
2563ProgramStateManager&
2564GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2565
2566BugReporter::~BugReporter() {
2567  FlushReports();
2568
2569  // Free the bug reports we are tracking.
2570  typedef std::vector<BugReportEquivClass *> ContTy;
2571  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2572       I != E; ++I) {
2573    delete *I;
2574  }
2575}
2576
2577void BugReporter::FlushReports() {
2578  if (BugTypes.isEmpty())
2579    return;
2580
2581  // First flush the warnings for each BugType.  This may end up creating new
2582  // warnings and new BugTypes.
2583  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2584  // Turn NSErrorChecker into a proper checker and remove this.
2585  SmallVector<const BugType*, 16> bugTypes;
2586  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
2587    bugTypes.push_back(*I);
2588  for (SmallVector<const BugType*, 16>::iterator
2589         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2590    const_cast<BugType*>(*I)->FlushReports(*this);
2591
2592  // We need to flush reports in deterministic order to ensure the order
2593  // of the reports is consistent between runs.
2594  typedef std::vector<BugReportEquivClass *> ContVecTy;
2595  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2596       EI != EE; ++EI){
2597    BugReportEquivClass& EQ = **EI;
2598    FlushReport(EQ);
2599  }
2600
2601  // BugReporter owns and deletes only BugTypes created implicitly through
2602  // EmitBasicReport.
2603  // FIXME: There are leaks from checkers that assume that the BugTypes they
2604  // create will be destroyed by the BugReporter.
2605  for (llvm::StringMap<BugType*>::iterator
2606         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
2607    delete I->second;
2608
2609  // Remove all references to the BugType objects.
2610  BugTypes = F.getEmptySet();
2611}
2612
2613//===----------------------------------------------------------------------===//
2614// PathDiagnostics generation.
2615//===----------------------------------------------------------------------===//
2616
2617namespace {
2618/// A wrapper around a report graph, which contains only a single path, and its
2619/// node maps.
2620class ReportGraph {
2621public:
2622  InterExplodedGraphMap BackMap;
2623  OwningPtr<ExplodedGraph> Graph;
2624  const ExplodedNode *ErrorNode;
2625  size_t Index;
2626};
2627
2628/// A wrapper around a trimmed graph and its node maps.
2629class TrimmedGraph {
2630  InterExplodedGraphMap InverseMap;
2631
2632  typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2633  PriorityMapTy PriorityMap;
2634
2635  typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2636  SmallVector<NodeIndexPair, 32> ReportNodes;
2637
2638  OwningPtr<ExplodedGraph> G;
2639
2640  /// A helper class for sorting ExplodedNodes by priority.
2641  template <bool Descending>
2642  class PriorityCompare {
2643    const PriorityMapTy &PriorityMap;
2644
2645  public:
2646    PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2647
2648    bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2649      PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2650      PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2651      PriorityMapTy::const_iterator E = PriorityMap.end();
2652
2653      if (LI == E)
2654        return Descending;
2655      if (RI == E)
2656        return !Descending;
2657
2658      return Descending ? LI->second > RI->second
2659                        : LI->second < RI->second;
2660    }
2661
2662    bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2663      return (*this)(LHS.first, RHS.first);
2664    }
2665  };
2666
2667public:
2668  TrimmedGraph(const ExplodedGraph *OriginalGraph,
2669               ArrayRef<const ExplodedNode *> Nodes);
2670
2671  bool popNextReportGraph(ReportGraph &GraphWrapper);
2672};
2673}
2674
2675TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2676                           ArrayRef<const ExplodedNode *> Nodes) {
2677  // The trimmed graph is created in the body of the constructor to ensure
2678  // that the DenseMaps have been initialized already.
2679  InterExplodedGraphMap ForwardMap;
2680  G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
2681
2682  // Find the (first) error node in the trimmed graph.  We just need to consult
2683  // the node map which maps from nodes in the original graph to nodes
2684  // in the new graph.
2685  llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2686
2687  for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2688    if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2689      ReportNodes.push_back(std::make_pair(NewNode, i));
2690      RemainingNodes.insert(NewNode);
2691    }
2692  }
2693
2694  assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2695
2696  // Perform a forward BFS to find all the shortest paths.
2697  std::queue<const ExplodedNode *> WS;
2698
2699  assert(G->num_roots() == 1);
2700  WS.push(*G->roots_begin());
2701  unsigned Priority = 0;
2702
2703  while (!WS.empty()) {
2704    const ExplodedNode *Node = WS.front();
2705    WS.pop();
2706
2707    PriorityMapTy::iterator PriorityEntry;
2708    bool IsNew;
2709    llvm::tie(PriorityEntry, IsNew) =
2710      PriorityMap.insert(std::make_pair(Node, Priority));
2711    ++Priority;
2712
2713    if (!IsNew) {
2714      assert(PriorityEntry->second <= Priority);
2715      continue;
2716    }
2717
2718    if (RemainingNodes.erase(Node))
2719      if (RemainingNodes.empty())
2720        break;
2721
2722    for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2723                                           E = Node->succ_end();
2724         I != E; ++I)
2725      WS.push(*I);
2726  }
2727
2728  // Sort the error paths from longest to shortest.
2729  std::sort(ReportNodes.begin(), ReportNodes.end(),
2730            PriorityCompare<true>(PriorityMap));
2731}
2732
2733bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2734  if (ReportNodes.empty())
2735    return false;
2736
2737  const ExplodedNode *OrigN;
2738  llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2739  assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2740         "error node not accessible from root");
2741
2742  // Create a new graph with a single path.  This is the graph
2743  // that will be returned to the caller.
2744  ExplodedGraph *GNew = new ExplodedGraph();
2745  GraphWrapper.Graph.reset(GNew);
2746  GraphWrapper.BackMap.clear();
2747
2748  // Now walk from the error node up the BFS path, always taking the
2749  // predeccessor with the lowest number.
2750  ExplodedNode *Succ = 0;
2751  while (true) {
2752    // Create the equivalent node in the new graph with the same state
2753    // and location.
2754    ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2755                                       OrigN->isSink());
2756
2757    // Store the mapping to the original node.
2758    InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2759    assert(IMitr != InverseMap.end() && "No mapping to original node.");
2760    GraphWrapper.BackMap[NewN] = IMitr->second;
2761
2762    // Link up the new node with the previous node.
2763    if (Succ)
2764      Succ->addPredecessor(NewN, *GNew);
2765    else
2766      GraphWrapper.ErrorNode = NewN;
2767
2768    Succ = NewN;
2769
2770    // Are we at the final node?
2771    if (OrigN->pred_empty()) {
2772      GNew->addRoot(NewN);
2773      break;
2774    }
2775
2776    // Find the next predeccessor node.  We choose the node that is marked
2777    // with the lowest BFS number.
2778    OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2779                          PriorityCompare<false>(PriorityMap));
2780  }
2781
2782  return true;
2783}
2784
2785
2786/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2787///  and collapses PathDiagosticPieces that are expanded by macros.
2788static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2789  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2790                                SourceLocation> > MacroStackTy;
2791
2792  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2793          PiecesTy;
2794
2795  MacroStackTy MacroStack;
2796  PiecesTy Pieces;
2797
2798  for (PathPieces::const_iterator I = path.begin(), E = path.end();
2799       I!=E; ++I) {
2800
2801    PathDiagnosticPiece *piece = I->getPtr();
2802
2803    // Recursively compact calls.
2804    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2805      CompactPathDiagnostic(call->path, SM);
2806    }
2807
2808    // Get the location of the PathDiagnosticPiece.
2809    const FullSourceLoc Loc = piece->getLocation().asLocation();
2810
2811    // Determine the instantiation location, which is the location we group
2812    // related PathDiagnosticPieces.
2813    SourceLocation InstantiationLoc = Loc.isMacroID() ?
2814                                      SM.getExpansionLoc(Loc) :
2815                                      SourceLocation();
2816
2817    if (Loc.isFileID()) {
2818      MacroStack.clear();
2819      Pieces.push_back(piece);
2820      continue;
2821    }
2822
2823    assert(Loc.isMacroID());
2824
2825    // Is the PathDiagnosticPiece within the same macro group?
2826    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2827      MacroStack.back().first->subPieces.push_back(piece);
2828      continue;
2829    }
2830
2831    // We aren't in the same group.  Are we descending into a new macro
2832    // or are part of an old one?
2833    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
2834
2835    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2836                                          SM.getExpansionLoc(Loc) :
2837                                          SourceLocation();
2838
2839    // Walk the entire macro stack.
2840    while (!MacroStack.empty()) {
2841      if (InstantiationLoc == MacroStack.back().second) {
2842        MacroGroup = MacroStack.back().first;
2843        break;
2844      }
2845
2846      if (ParentInstantiationLoc == MacroStack.back().second) {
2847        MacroGroup = MacroStack.back().first;
2848        break;
2849      }
2850
2851      MacroStack.pop_back();
2852    }
2853
2854    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2855      // Create a new macro group and add it to the stack.
2856      PathDiagnosticMacroPiece *NewGroup =
2857        new PathDiagnosticMacroPiece(
2858          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2859
2860      if (MacroGroup)
2861        MacroGroup->subPieces.push_back(NewGroup);
2862      else {
2863        assert(InstantiationLoc.isFileID());
2864        Pieces.push_back(NewGroup);
2865      }
2866
2867      MacroGroup = NewGroup;
2868      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2869    }
2870
2871    // Finally, add the PathDiagnosticPiece to the group.
2872    MacroGroup->subPieces.push_back(piece);
2873  }
2874
2875  // Now take the pieces and construct a new PathDiagnostic.
2876  path.clear();
2877
2878  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
2879    path.push_back(*I);
2880}
2881
2882bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
2883                                           PathDiagnosticConsumer &PC,
2884                                           ArrayRef<BugReport *> &bugReports) {
2885  assert(!bugReports.empty());
2886
2887  bool HasValid = false;
2888  bool HasInvalid = false;
2889  SmallVector<const ExplodedNode *, 32> errorNodes;
2890  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
2891                                      E = bugReports.end(); I != E; ++I) {
2892    if ((*I)->isValid()) {
2893      HasValid = true;
2894      errorNodes.push_back((*I)->getErrorNode());
2895    } else {
2896      // Keep the errorNodes list in sync with the bugReports list.
2897      HasInvalid = true;
2898      errorNodes.push_back(0);
2899    }
2900  }
2901
2902  // If all the reports have been marked invalid by a previous path generation,
2903  // we're done.
2904  if (!HasValid)
2905    return false;
2906
2907  typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
2908  PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
2909
2910  if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
2911    AnalyzerOptions &options = getAnalyzerOptions();
2912    if (options.getBooleanOption("path-diagnostics-alternate", false)) {
2913      ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
2914    }
2915  }
2916
2917  TrimmedGraph TrimG(&getGraph(), errorNodes);
2918  ReportGraph ErrorGraph;
2919
2920  while (TrimG.popNextReportGraph(ErrorGraph)) {
2921    // Find the BugReport with the original location.
2922    assert(ErrorGraph.Index < bugReports.size());
2923    BugReport *R = bugReports[ErrorGraph.Index];
2924    assert(R && "No original report found for sliced graph.");
2925    assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2926
2927    // Start building the path diagnostic...
2928    PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
2929    const ExplodedNode *N = ErrorGraph.ErrorNode;
2930
2931    // Register additional node visitors.
2932    R->addVisitor(new NilReceiverBRVisitor());
2933    R->addVisitor(new ConditionBRVisitor());
2934    R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
2935
2936    BugReport::VisitorList visitors;
2937    unsigned origReportConfigToken, finalReportConfigToken;
2938    LocationContextMap LCM;
2939
2940    // While generating diagnostics, it's possible the visitors will decide
2941    // new symbols and regions are interesting, or add other visitors based on
2942    // the information they find. If they do, we need to regenerate the path
2943    // based on our new report configuration.
2944    do {
2945      // Get a clean copy of all the visitors.
2946      for (BugReport::visitor_iterator I = R->visitor_begin(),
2947                                       E = R->visitor_end(); I != E; ++I)
2948        visitors.push_back((*I)->clone());
2949
2950      // Clear out the active path from any previous work.
2951      PD.resetPath();
2952      origReportConfigToken = R->getConfigurationChangeToken();
2953
2954      // Generate the very last diagnostic piece - the piece is visible before
2955      // the trace is expanded.
2956      PathDiagnosticPiece *LastPiece = 0;
2957      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2958          I != E; ++I) {
2959        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2960          assert (!LastPiece &&
2961              "There can only be one final piece in a diagnostic.");
2962          LastPiece = Piece;
2963        }
2964      }
2965
2966      if (ActiveScheme != PathDiagnosticConsumer::None) {
2967        if (!LastPiece)
2968          LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2969        assert(LastPiece);
2970        PD.setEndOfPath(LastPiece);
2971      }
2972
2973      // Make sure we get a clean location context map so we don't
2974      // hold onto old mappings.
2975      LCM.clear();
2976
2977      switch (ActiveScheme) {
2978      case PathDiagnosticConsumer::AlternateExtensive:
2979        GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2980        break;
2981      case PathDiagnosticConsumer::Extensive:
2982        GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2983        break;
2984      case PathDiagnosticConsumer::Minimal:
2985        GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
2986        break;
2987      case PathDiagnosticConsumer::None:
2988        GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
2989        break;
2990      }
2991
2992      // Clean up the visitors we used.
2993      llvm::DeleteContainerPointers(visitors);
2994
2995      // Did anything change while generating this path?
2996      finalReportConfigToken = R->getConfigurationChangeToken();
2997    } while (finalReportConfigToken != origReportConfigToken);
2998
2999    if (!R->isValid())
3000      continue;
3001
3002    // Finally, prune the diagnostic path of uninteresting stuff.
3003    if (!PD.path.empty()) {
3004      // Remove messages that are basically the same.
3005      removeRedundantMsgs(PD.getMutablePieces());
3006
3007      if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3008        bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3009        assert(stillHasNotes);
3010        (void)stillHasNotes;
3011      }
3012
3013      adjustCallLocations(PD.getMutablePieces());
3014
3015      if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3016        SourceManager &SM = getSourceManager();
3017
3018        // Reduce the number of edges from a very conservative set
3019        // to an aesthetically pleasing subset that conveys the
3020        // necessary information.
3021        OptimizedCallsSet OCS;
3022        while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3023
3024        // Adjust edges into loop conditions to make them more uniform
3025        // and aesthetically pleasing.
3026        adjustBranchEdges(PD.getMutablePieces(), LCM, SM);
3027      }
3028    }
3029
3030    // We found a report and didn't suppress it.
3031    return true;
3032  }
3033
3034  // We suppressed all the reports in this equivalence class.
3035  assert(!HasInvalid && "Inconsistent suppression");
3036  (void)HasInvalid;
3037  return false;
3038}
3039
3040void BugReporter::Register(BugType *BT) {
3041  BugTypes = F.add(BugTypes, BT);
3042}
3043
3044void BugReporter::emitReport(BugReport* R) {
3045  // Compute the bug report's hash to determine its equivalence class.
3046  llvm::FoldingSetNodeID ID;
3047  R->Profile(ID);
3048
3049  // Lookup the equivance class.  If there isn't one, create it.
3050  BugType& BT = R->getBugType();
3051  Register(&BT);
3052  void *InsertPos;
3053  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3054
3055  if (!EQ) {
3056    EQ = new BugReportEquivClass(R);
3057    EQClasses.InsertNode(EQ, InsertPos);
3058    EQClassesVector.push_back(EQ);
3059  }
3060  else
3061    EQ->AddReport(R);
3062}
3063
3064
3065//===----------------------------------------------------------------------===//
3066// Emitting reports in equivalence classes.
3067//===----------------------------------------------------------------------===//
3068
3069namespace {
3070struct FRIEC_WLItem {
3071  const ExplodedNode *N;
3072  ExplodedNode::const_succ_iterator I, E;
3073
3074  FRIEC_WLItem(const ExplodedNode *n)
3075  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3076};
3077}
3078
3079static BugReport *
3080FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3081                             SmallVectorImpl<BugReport*> &bugReports) {
3082
3083  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3084  assert(I != E);
3085  BugType& BT = I->getBugType();
3086
3087  // If we don't need to suppress any of the nodes because they are
3088  // post-dominated by a sink, simply add all the nodes in the equivalence class
3089  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3090  if (!BT.isSuppressOnSink()) {
3091    BugReport *R = I;
3092    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3093      const ExplodedNode *N = I->getErrorNode();
3094      if (N) {
3095        R = I;
3096        bugReports.push_back(R);
3097      }
3098    }
3099    return R;
3100  }
3101
3102  // For bug reports that should be suppressed when all paths are post-dominated
3103  // by a sink node, iterate through the reports in the equivalence class
3104  // until we find one that isn't post-dominated (if one exists).  We use a
3105  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3106  // this as a recursive function, but we don't want to risk blowing out the
3107  // stack for very long paths.
3108  BugReport *exampleReport = 0;
3109
3110  for (; I != E; ++I) {
3111    const ExplodedNode *errorNode = I->getErrorNode();
3112
3113    if (!errorNode)
3114      continue;
3115    if (errorNode->isSink()) {
3116      llvm_unreachable(
3117           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3118    }
3119    // No successors?  By definition this nodes isn't post-dominated by a sink.
3120    if (errorNode->succ_empty()) {
3121      bugReports.push_back(I);
3122      if (!exampleReport)
3123        exampleReport = I;
3124      continue;
3125    }
3126
3127    // At this point we know that 'N' is not a sink and it has at least one
3128    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3129    typedef FRIEC_WLItem WLItem;
3130    typedef SmallVector<WLItem, 10> DFSWorkList;
3131    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3132
3133    DFSWorkList WL;
3134    WL.push_back(errorNode);
3135    Visited[errorNode] = 1;
3136
3137    while (!WL.empty()) {
3138      WLItem &WI = WL.back();
3139      assert(!WI.N->succ_empty());
3140
3141      for (; WI.I != WI.E; ++WI.I) {
3142        const ExplodedNode *Succ = *WI.I;
3143        // End-of-path node?
3144        if (Succ->succ_empty()) {
3145          // If we found an end-of-path node that is not a sink.
3146          if (!Succ->isSink()) {
3147            bugReports.push_back(I);
3148            if (!exampleReport)
3149              exampleReport = I;
3150            WL.clear();
3151            break;
3152          }
3153          // Found a sink?  Continue on to the next successor.
3154          continue;
3155        }
3156        // Mark the successor as visited.  If it hasn't been explored,
3157        // enqueue it to the DFS worklist.
3158        unsigned &mark = Visited[Succ];
3159        if (!mark) {
3160          mark = 1;
3161          WL.push_back(Succ);
3162          break;
3163        }
3164      }
3165
3166      // The worklist may have been cleared at this point.  First
3167      // check if it is empty before checking the last item.
3168      if (!WL.empty() && &WL.back() == &WI)
3169        WL.pop_back();
3170    }
3171  }
3172
3173  // ExampleReport will be NULL if all the nodes in the equivalence class
3174  // were post-dominated by sinks.
3175  return exampleReport;
3176}
3177
3178void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3179  SmallVector<BugReport*, 10> bugReports;
3180  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3181  if (exampleReport) {
3182    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
3183    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
3184                                                 E=C.end(); I != E; ++I) {
3185      FlushReport(exampleReport, **I, bugReports);
3186    }
3187  }
3188}
3189
3190void BugReporter::FlushReport(BugReport *exampleReport,
3191                              PathDiagnosticConsumer &PD,
3192                              ArrayRef<BugReport*> bugReports) {
3193
3194  // FIXME: Make sure we use the 'R' for the path that was actually used.
3195  // Probably doesn't make a difference in practice.
3196  BugType& BT = exampleReport->getBugType();
3197
3198  OwningPtr<PathDiagnostic>
3199    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
3200                         exampleReport->getBugType().getName(),
3201                         exampleReport->getDescription(),
3202                         exampleReport->getShortDescription(/*Fallback=*/false),
3203                         BT.getCategory(),
3204                         exampleReport->getUniqueingLocation(),
3205                         exampleReport->getUniqueingDecl()));
3206
3207  MaxBugClassSize = std::max(bugReports.size(),
3208                             static_cast<size_t>(MaxBugClassSize));
3209
3210  // Generate the full path diagnostic, using the generation scheme
3211  // specified by the PathDiagnosticConsumer. Note that we have to generate
3212  // path diagnostics even for consumers which do not support paths, because
3213  // the BugReporterVisitors may mark this bug as a false positive.
3214  if (!bugReports.empty())
3215    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3216      return;
3217
3218  MaxValidBugClassSize = std::max(bugReports.size(),
3219                                  static_cast<size_t>(MaxValidBugClassSize));
3220
3221  // Examine the report and see if the last piece is in a header. Reset the
3222  // report location to the last piece in the main source file.
3223  AnalyzerOptions& Opts = getAnalyzerOptions();
3224  if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3225    D->resetDiagnosticLocationToMainFile();
3226
3227  // If the path is empty, generate a single step path with the location
3228  // of the issue.
3229  if (D->path.empty()) {
3230    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3231    PathDiagnosticPiece *piece =
3232      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
3233    BugReport::ranges_iterator Beg, End;
3234    llvm::tie(Beg, End) = exampleReport->getRanges();
3235    for ( ; Beg != End; ++Beg)
3236      piece->addRange(*Beg);
3237    D->setEndOfPath(piece);
3238  }
3239
3240  // Get the meta data.
3241  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3242  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3243                                                e = Meta.end(); i != e; ++i) {
3244    D->addMeta(*i);
3245  }
3246
3247  PD.HandlePathDiagnostic(D.take());
3248}
3249
3250void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3251                                  StringRef name,
3252                                  StringRef category,
3253                                  StringRef str, PathDiagnosticLocation Loc,
3254                                  SourceRange* RBeg, unsigned NumRanges) {
3255
3256  // 'BT' is owned by BugReporter.
3257  BugType *BT = getBugTypeForName(name, category);
3258  BugReport *R = new BugReport(*BT, str, Loc);
3259  R->setDeclWithIssue(DeclWithIssue);
3260  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
3261  emitReport(R);
3262}
3263
3264BugType *BugReporter::getBugTypeForName(StringRef name,
3265                                        StringRef category) {
3266  SmallString<136> fullDesc;
3267  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
3268  llvm::StringMapEntry<BugType *> &
3269      entry = StrBugTypes.GetOrCreateValue(fullDesc);
3270  BugType *BT = entry.getValue();
3271  if (!BT) {
3272    BT = new BugType(name, category);
3273    entry.setValue(BT);
3274  }
3275  return BT;
3276}
3277