BugReporter.cpp revision afde200cdae9731aa5826c6178eae9e7fef74475
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "BugReporter"
16
17#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ParentMap.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Analysis/ProgramPoint.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/IntrusiveRefCntPtr.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/raw_ostream.h"
36#include <queue>
37
38using namespace clang;
39using namespace ento;
40
41STATISTIC(MaxBugClassSize,
42          "The maximum number of bug reports in the same equivalence class");
43STATISTIC(MaxValidBugClassSize,
44          "The maximum number of bug reports in the same equivalence class "
45          "where at least one report is valid (not suppressed)");
46
47BugReporterVisitor::~BugReporterVisitor() {}
48
49void BugReporterContext::anchor() {}
50
51//===----------------------------------------------------------------------===//
52// Helper routines for walking the ExplodedGraph and fetching statements.
53//===----------------------------------------------------------------------===//
54
55static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
56  for (N = N->getFirstPred(); N; N = N->getFirstPred())
57    if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
58      return S;
59
60  return 0;
61}
62
63static inline const Stmt*
64GetCurrentOrPreviousStmt(const ExplodedNode *N) {
65  if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
66    return S;
67
68  return GetPreviousStmt(N);
69}
70
71//===----------------------------------------------------------------------===//
72// Diagnostic cleanup.
73//===----------------------------------------------------------------------===//
74
75static PathDiagnosticEventPiece *
76eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
77                            PathDiagnosticEventPiece *Y) {
78  // Prefer diagnostics that come from ConditionBRVisitor over
79  // those that came from TrackConstraintBRVisitor.
80  const void *tagPreferred = ConditionBRVisitor::getTag();
81  const void *tagLesser = TrackConstraintBRVisitor::getTag();
82
83  if (X->getLocation() != Y->getLocation())
84    return 0;
85
86  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
87    return X;
88
89  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
90    return Y;
91
92  return 0;
93}
94
95/// An optimization pass over PathPieces that removes redundant diagnostics
96/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
97/// BugReporterVisitors use different methods to generate diagnostics, with
98/// one capable of emitting diagnostics in some cases but not in others.  This
99/// can lead to redundant diagnostic pieces at the same point in a path.
100static void removeRedundantMsgs(PathPieces &path) {
101  unsigned N = path.size();
102  if (N < 2)
103    return;
104  // NOTE: this loop intentionally is not using an iterator.  Instead, we
105  // are streaming the path and modifying it in place.  This is done by
106  // grabbing the front, processing it, and if we decide to keep it append
107  // it to the end of the path.  The entire path is processed in this way.
108  for (unsigned i = 0; i < N; ++i) {
109    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
110    path.pop_front();
111
112    switch (piece->getKind()) {
113      case clang::ento::PathDiagnosticPiece::Call:
114        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
115        break;
116      case clang::ento::PathDiagnosticPiece::Macro:
117        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
118        break;
119      case clang::ento::PathDiagnosticPiece::ControlFlow:
120        break;
121      case clang::ento::PathDiagnosticPiece::Event: {
122        if (i == N-1)
123          break;
124
125        if (PathDiagnosticEventPiece *nextEvent =
126            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
127          PathDiagnosticEventPiece *event =
128            cast<PathDiagnosticEventPiece>(piece);
129          // Check to see if we should keep one of the two pieces.  If we
130          // come up with a preference, record which piece to keep, and consume
131          // another piece from the path.
132          if (PathDiagnosticEventPiece *pieceToKeep =
133              eventsDescribeSameCondition(event, nextEvent)) {
134            piece = pieceToKeep;
135            path.pop_front();
136            ++i;
137          }
138        }
139        break;
140      }
141    }
142    path.push_back(piece);
143  }
144}
145
146/// A map from PathDiagnosticPiece to the LocationContext of the inlined
147/// function call it represents.
148typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
149        LocationContextMap;
150
151/// Recursively scan through a path and prune out calls and macros pieces
152/// that aren't needed.  Return true if afterwards the path contains
153/// "interesting stuff" which means it shouldn't be pruned from the parent path.
154static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
155                                LocationContextMap &LCM) {
156  bool containsSomethingInteresting = false;
157  const unsigned N = pieces.size();
158
159  for (unsigned i = 0 ; i < N ; ++i) {
160    // Remove the front piece from the path.  If it is still something we
161    // want to keep once we are done, we will push it back on the end.
162    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
163    pieces.pop_front();
164
165    // Throw away pieces with invalid locations. Note that we can't throw away
166    // calls just yet because they might have something interesting inside them.
167    // If so, their locations will be adjusted as necessary later.
168    if (piece->getKind() != PathDiagnosticPiece::Call &&
169        piece->getLocation().asLocation().isInvalid())
170      continue;
171
172    switch (piece->getKind()) {
173      case PathDiagnosticPiece::Call: {
174        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
175        // Check if the location context is interesting.
176        assert(LCM.count(&call->path));
177        if (R->isInteresting(LCM[&call->path])) {
178          containsSomethingInteresting = true;
179          break;
180        }
181
182        if (!removeUnneededCalls(call->path, R, LCM))
183          continue;
184
185        containsSomethingInteresting = true;
186        break;
187      }
188      case PathDiagnosticPiece::Macro: {
189        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
190        if (!removeUnneededCalls(macro->subPieces, R, LCM))
191          continue;
192        containsSomethingInteresting = true;
193        break;
194      }
195      case PathDiagnosticPiece::Event: {
196        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
197
198        // We never throw away an event, but we do throw it away wholesale
199        // as part of a path if we throw the entire path away.
200        containsSomethingInteresting |= !event->isPrunable();
201        break;
202      }
203      case PathDiagnosticPiece::ControlFlow:
204        break;
205    }
206
207    pieces.push_back(piece);
208  }
209
210  return containsSomethingInteresting;
211}
212
213/// Recursively scan through a path and make sure that all call pieces have
214/// valid locations. Note that all other pieces with invalid locations should
215/// have already been pruned out.
216static void adjustCallLocations(PathPieces &Pieces,
217                                PathDiagnosticLocation *LastCallLocation = 0) {
218  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
219    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
220
221    if (!Call) {
222      assert((*I)->getLocation().asLocation().isValid());
223      continue;
224    }
225
226    if (LastCallLocation) {
227      if (!Call->callEnter.asLocation().isValid() ||
228          Call->getCaller()->isImplicit())
229        Call->callEnter = *LastCallLocation;
230      if (!Call->callReturn.asLocation().isValid() ||
231          Call->getCaller()->isImplicit())
232        Call->callReturn = *LastCallLocation;
233    }
234
235    // Recursively clean out the subclass.  Keep this call around if
236    // it contains any informative diagnostics.
237    PathDiagnosticLocation *ThisCallLocation;
238    if (Call->callEnterWithin.asLocation().isValid() &&
239        !Call->getCallee()->isImplicit())
240      ThisCallLocation = &Call->callEnterWithin;
241    else
242      ThisCallLocation = &Call->callEnter;
243
244    assert(ThisCallLocation && "Outermost call has an invalid location");
245    adjustCallLocations(Call->path, ThisCallLocation);
246  }
247}
248
249//===----------------------------------------------------------------------===//
250// PathDiagnosticBuilder and its associated routines and helper objects.
251//===----------------------------------------------------------------------===//
252
253namespace {
254class NodeMapClosure : public BugReport::NodeResolver {
255  InterExplodedGraphMap &M;
256public:
257  NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
258
259  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
260    return M.lookup(N);
261  }
262};
263
264class PathDiagnosticBuilder : public BugReporterContext {
265  BugReport *R;
266  PathDiagnosticConsumer *PDC;
267  NodeMapClosure NMC;
268public:
269  const LocationContext *LC;
270
271  PathDiagnosticBuilder(GRBugReporter &br,
272                        BugReport *r, InterExplodedGraphMap &Backmap,
273                        PathDiagnosticConsumer *pdc)
274    : BugReporterContext(br),
275      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
276  {}
277
278  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
279
280  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
281                                            const ExplodedNode *N);
282
283  BugReport *getBugReport() { return R; }
284
285  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
286
287  ParentMap& getParentMap() { return LC->getParentMap(); }
288
289  const Stmt *getParent(const Stmt *S) {
290    return getParentMap().getParent(S);
291  }
292
293  virtual NodeMapClosure& getNodeResolver() { return NMC; }
294
295  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
296
297  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
298    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
299  }
300
301  bool supportsLogicalOpControlFlow() const {
302    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
303  }
304};
305} // end anonymous namespace
306
307PathDiagnosticLocation
308PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
309  if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
310    return PathDiagnosticLocation(S, getSourceManager(), LC);
311
312  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
313                                               getSourceManager());
314}
315
316PathDiagnosticLocation
317PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
318                                          const ExplodedNode *N) {
319
320  // Slow, but probably doesn't matter.
321  if (os.str().empty())
322    os << ' ';
323
324  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
325
326  if (Loc.asStmt())
327    os << "Execution continues on line "
328       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
329       << '.';
330  else {
331    os << "Execution jumps to the end of the ";
332    const Decl *D = N->getLocationContext()->getDecl();
333    if (isa<ObjCMethodDecl>(D))
334      os << "method";
335    else if (isa<FunctionDecl>(D))
336      os << "function";
337    else {
338      assert(isa<BlockDecl>(D));
339      os << "anonymous block";
340    }
341    os << '.';
342  }
343
344  return Loc;
345}
346
347static bool IsNested(const Stmt *S, ParentMap &PM) {
348  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
349    return true;
350
351  const Stmt *Parent = PM.getParentIgnoreParens(S);
352
353  if (Parent)
354    switch (Parent->getStmtClass()) {
355      case Stmt::ForStmtClass:
356      case Stmt::DoStmtClass:
357      case Stmt::WhileStmtClass:
358        return true;
359      default:
360        break;
361    }
362
363  return false;
364}
365
366PathDiagnosticLocation
367PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
368  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
369  ParentMap &P = getParentMap();
370  SourceManager &SMgr = getSourceManager();
371
372  while (IsNested(S, P)) {
373    const Stmt *Parent = P.getParentIgnoreParens(S);
374
375    if (!Parent)
376      break;
377
378    switch (Parent->getStmtClass()) {
379      case Stmt::BinaryOperatorClass: {
380        const BinaryOperator *B = cast<BinaryOperator>(Parent);
381        if (B->isLogicalOp())
382          return PathDiagnosticLocation(S, SMgr, LC);
383        break;
384      }
385      case Stmt::CompoundStmtClass:
386      case Stmt::StmtExprClass:
387        return PathDiagnosticLocation(S, SMgr, LC);
388      case Stmt::ChooseExprClass:
389        // Similar to '?' if we are referring to condition, just have the edge
390        // point to the entire choose expression.
391        if (cast<ChooseExpr>(Parent)->getCond() == S)
392          return PathDiagnosticLocation(Parent, SMgr, LC);
393        else
394          return PathDiagnosticLocation(S, SMgr, LC);
395      case Stmt::BinaryConditionalOperatorClass:
396      case Stmt::ConditionalOperatorClass:
397        // For '?', if we are referring to condition, just have the edge point
398        // to the entire '?' expression.
399        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
400          return PathDiagnosticLocation(Parent, SMgr, LC);
401        else
402          return PathDiagnosticLocation(S, SMgr, LC);
403      case Stmt::DoStmtClass:
404          return PathDiagnosticLocation(S, SMgr, LC);
405      case Stmt::ForStmtClass:
406        if (cast<ForStmt>(Parent)->getBody() == S)
407          return PathDiagnosticLocation(S, SMgr, LC);
408        break;
409      case Stmt::IfStmtClass:
410        if (cast<IfStmt>(Parent)->getCond() != S)
411          return PathDiagnosticLocation(S, SMgr, LC);
412        break;
413      case Stmt::ObjCForCollectionStmtClass:
414        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
415          return PathDiagnosticLocation(S, SMgr, LC);
416        break;
417      case Stmt::WhileStmtClass:
418        if (cast<WhileStmt>(Parent)->getCond() != S)
419          return PathDiagnosticLocation(S, SMgr, LC);
420        break;
421      default:
422        break;
423    }
424
425    S = Parent;
426  }
427
428  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
429
430  // Special case: DeclStmts can appear in for statement declarations, in which
431  //  case the ForStmt is the context.
432  if (isa<DeclStmt>(S)) {
433    if (const Stmt *Parent = P.getParent(S)) {
434      switch (Parent->getStmtClass()) {
435        case Stmt::ForStmtClass:
436        case Stmt::ObjCForCollectionStmtClass:
437          return PathDiagnosticLocation(Parent, SMgr, LC);
438        default:
439          break;
440      }
441    }
442  }
443  else if (isa<BinaryOperator>(S)) {
444    // Special case: the binary operator represents the initialization
445    // code in a for statement (this can happen when the variable being
446    // initialized is an old variable.
447    if (const ForStmt *FS =
448          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
449      if (FS->getInit() == S)
450        return PathDiagnosticLocation(FS, SMgr, LC);
451    }
452  }
453
454  return PathDiagnosticLocation(S, SMgr, LC);
455}
456
457//===----------------------------------------------------------------------===//
458// "Visitors only" path diagnostic generation algorithm.
459//===----------------------------------------------------------------------===//
460static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
461                                               PathDiagnosticBuilder &PDB,
462                                               const ExplodedNode *N,
463                                      ArrayRef<BugReporterVisitor *> visitors) {
464  // All path generation skips the very first node (the error node).
465  // This is because there is special handling for the end-of-path note.
466  N = N->getFirstPred();
467  if (!N)
468    return true;
469
470  BugReport *R = PDB.getBugReport();
471  while (const ExplodedNode *Pred = N->getFirstPred()) {
472    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
473                                                  E = visitors.end();
474         I != E; ++I) {
475      // Visit all the node pairs, but throw the path pieces away.
476      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
477      delete Piece;
478    }
479
480    N = Pred;
481  }
482
483  return R->isValid();
484}
485
486//===----------------------------------------------------------------------===//
487// "Minimal" path diagnostic generation algorithm.
488//===----------------------------------------------------------------------===//
489typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
490typedef SmallVector<StackDiagPair, 6> StackDiagVector;
491
492static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
493                                         StackDiagVector &CallStack) {
494  // If the piece contains a special message, add it to all the call
495  // pieces on the active stack.
496  if (PathDiagnosticEventPiece *ep =
497        dyn_cast<PathDiagnosticEventPiece>(P)) {
498
499    if (ep->hasCallStackHint())
500      for (StackDiagVector::iterator I = CallStack.begin(),
501                                     E = CallStack.end(); I != E; ++I) {
502        PathDiagnosticCallPiece *CP = I->first;
503        const ExplodedNode *N = I->second;
504        std::string stackMsg = ep->getCallStackMessage(N);
505
506        // The last message on the path to final bug is the most important
507        // one. Since we traverse the path backwards, do not add the message
508        // if one has been previously added.
509        if  (!CP->hasCallStackMessage())
510          CP->setCallStackMessage(stackMsg);
511      }
512  }
513}
514
515static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
516
517static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
518                                          PathDiagnosticBuilder &PDB,
519                                          const ExplodedNode *N,
520                                          LocationContextMap &LCM,
521                                      ArrayRef<BugReporterVisitor *> visitors) {
522
523  SourceManager& SMgr = PDB.getSourceManager();
524  const LocationContext *LC = PDB.LC;
525  const ExplodedNode *NextNode = N->pred_empty()
526                                        ? NULL : *(N->pred_begin());
527
528  StackDiagVector CallStack;
529
530  while (NextNode) {
531    N = NextNode;
532    PDB.LC = N->getLocationContext();
533    NextNode = N->getFirstPred();
534
535    ProgramPoint P = N->getLocation();
536
537    do {
538      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
539        PathDiagnosticCallPiece *C =
540            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
541        // Record the mapping from call piece to LocationContext.
542        LCM[&C->path] = CE->getCalleeContext();
543        PD.getActivePath().push_front(C);
544        PD.pushActivePath(&C->path);
545        CallStack.push_back(StackDiagPair(C, N));
546        break;
547      }
548
549      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
550        // Flush all locations, and pop the active path.
551        bool VisitedEntireCall = PD.isWithinCall();
552        PD.popActivePath();
553
554        // Either we just added a bunch of stuff to the top-level path, or
555        // we have a previous CallExitEnd.  If the former, it means that the
556        // path terminated within a function call.  We must then take the
557        // current contents of the active path and place it within
558        // a new PathDiagnosticCallPiece.
559        PathDiagnosticCallPiece *C;
560        if (VisitedEntireCall) {
561          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
562        } else {
563          const Decl *Caller = CE->getLocationContext()->getDecl();
564          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
565          // Record the mapping from call piece to LocationContext.
566          LCM[&C->path] = CE->getCalleeContext();
567        }
568
569        C->setCallee(*CE, SMgr);
570        if (!CallStack.empty()) {
571          assert(CallStack.back().first == C);
572          CallStack.pop_back();
573        }
574        break;
575      }
576
577      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
578        const CFGBlock *Src = BE->getSrc();
579        const CFGBlock *Dst = BE->getDst();
580        const Stmt *T = Src->getTerminator();
581
582        if (!T)
583          break;
584
585        PathDiagnosticLocation Start =
586            PathDiagnosticLocation::createBegin(T, SMgr,
587                N->getLocationContext());
588
589        switch (T->getStmtClass()) {
590        default:
591          break;
592
593        case Stmt::GotoStmtClass:
594        case Stmt::IndirectGotoStmtClass: {
595          const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
596
597          if (!S)
598            break;
599
600          std::string sbuf;
601          llvm::raw_string_ostream os(sbuf);
602          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
603
604          os << "Control jumps to line "
605              << End.asLocation().getExpansionLineNumber();
606          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
607              Start, End, os.str()));
608          break;
609        }
610
611        case Stmt::SwitchStmtClass: {
612          // Figure out what case arm we took.
613          std::string sbuf;
614          llvm::raw_string_ostream os(sbuf);
615
616          if (const Stmt *S = Dst->getLabel()) {
617            PathDiagnosticLocation End(S, SMgr, LC);
618
619            switch (S->getStmtClass()) {
620            default:
621              os << "No cases match in the switch statement. "
622              "Control jumps to line "
623              << End.asLocation().getExpansionLineNumber();
624              break;
625            case Stmt::DefaultStmtClass:
626              os << "Control jumps to the 'default' case at line "
627              << End.asLocation().getExpansionLineNumber();
628              break;
629
630            case Stmt::CaseStmtClass: {
631              os << "Control jumps to 'case ";
632              const CaseStmt *Case = cast<CaseStmt>(S);
633              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
634
635              // Determine if it is an enum.
636              bool GetRawInt = true;
637
638              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
639                // FIXME: Maybe this should be an assertion.  Are there cases
640                // were it is not an EnumConstantDecl?
641                const EnumConstantDecl *D =
642                    dyn_cast<EnumConstantDecl>(DR->getDecl());
643
644                if (D) {
645                  GetRawInt = false;
646                  os << *D;
647                }
648              }
649
650              if (GetRawInt)
651                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
652
653              os << ":'  at line "
654                  << End.asLocation().getExpansionLineNumber();
655              break;
656            }
657            }
658            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
659                Start, End, os.str()));
660          }
661          else {
662            os << "'Default' branch taken. ";
663            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
664            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
665                Start, End, os.str()));
666          }
667
668          break;
669        }
670
671        case Stmt::BreakStmtClass:
672        case Stmt::ContinueStmtClass: {
673          std::string sbuf;
674          llvm::raw_string_ostream os(sbuf);
675          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
676          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
677              Start, End, os.str()));
678          break;
679        }
680
681        // Determine control-flow for ternary '?'.
682        case Stmt::BinaryConditionalOperatorClass:
683        case Stmt::ConditionalOperatorClass: {
684          std::string sbuf;
685          llvm::raw_string_ostream os(sbuf);
686          os << "'?' condition is ";
687
688          if (*(Src->succ_begin()+1) == Dst)
689            os << "false";
690          else
691            os << "true";
692
693          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
694
695          if (const Stmt *S = End.asStmt())
696            End = PDB.getEnclosingStmtLocation(S);
697
698          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
699              Start, End, os.str()));
700          break;
701        }
702
703        // Determine control-flow for short-circuited '&&' and '||'.
704        case Stmt::BinaryOperatorClass: {
705          if (!PDB.supportsLogicalOpControlFlow())
706            break;
707
708          const BinaryOperator *B = cast<BinaryOperator>(T);
709          std::string sbuf;
710          llvm::raw_string_ostream os(sbuf);
711          os << "Left side of '";
712
713          if (B->getOpcode() == BO_LAnd) {
714            os << "&&" << "' is ";
715
716            if (*(Src->succ_begin()+1) == Dst) {
717              os << "false";
718              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
719              PathDiagnosticLocation Start =
720                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
721              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
722                  Start, End, os.str()));
723            }
724            else {
725              os << "true";
726              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
727              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
728              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
729                  Start, End, os.str()));
730            }
731          }
732          else {
733            assert(B->getOpcode() == BO_LOr);
734            os << "||" << "' is ";
735
736            if (*(Src->succ_begin()+1) == Dst) {
737              os << "false";
738              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
739              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
740              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
741                  Start, End, os.str()));
742            }
743            else {
744              os << "true";
745              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
746              PathDiagnosticLocation Start =
747                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
748              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
749                  Start, End, os.str()));
750            }
751          }
752
753          break;
754        }
755
756        case Stmt::DoStmtClass:  {
757          if (*(Src->succ_begin()) == Dst) {
758            std::string sbuf;
759            llvm::raw_string_ostream os(sbuf);
760
761            os << "Loop condition is true. ";
762            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
763
764            if (const Stmt *S = End.asStmt())
765              End = PDB.getEnclosingStmtLocation(S);
766
767            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
768                Start, End, os.str()));
769          }
770          else {
771            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
772
773            if (const Stmt *S = End.asStmt())
774              End = PDB.getEnclosingStmtLocation(S);
775
776            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
777                Start, End, "Loop condition is false.  Exiting loop"));
778          }
779
780          break;
781        }
782
783        case Stmt::WhileStmtClass:
784        case Stmt::ForStmtClass: {
785          if (*(Src->succ_begin()+1) == Dst) {
786            std::string sbuf;
787            llvm::raw_string_ostream os(sbuf);
788
789            os << "Loop condition is false. ";
790            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
791            if (const Stmt *S = End.asStmt())
792              End = PDB.getEnclosingStmtLocation(S);
793
794            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
795                Start, End, os.str()));
796          }
797          else {
798            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
799            if (const Stmt *S = End.asStmt())
800              End = PDB.getEnclosingStmtLocation(S);
801
802            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
803                Start, End, "Loop condition is true.  Entering loop body"));
804          }
805
806          break;
807        }
808
809        case Stmt::IfStmtClass: {
810          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
811
812          if (const Stmt *S = End.asStmt())
813            End = PDB.getEnclosingStmtLocation(S);
814
815          if (*(Src->succ_begin()+1) == Dst)
816            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
817                Start, End, "Taking false branch"));
818          else
819            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
820                Start, End, "Taking true branch"));
821
822          break;
823        }
824        }
825      }
826    } while(0);
827
828    if (NextNode) {
829      // Add diagnostic pieces from custom visitors.
830      BugReport *R = PDB.getBugReport();
831      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
832                                                    E = visitors.end();
833           I != E; ++I) {
834        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
835          PD.getActivePath().push_front(p);
836          updateStackPiecesWithMessage(p, CallStack);
837        }
838      }
839    }
840  }
841
842  if (!PDB.getBugReport()->isValid())
843    return false;
844
845  // After constructing the full PathDiagnostic, do a pass over it to compact
846  // PathDiagnosticPieces that occur within a macro.
847  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
848  return true;
849}
850
851//===----------------------------------------------------------------------===//
852// "Extensive" PathDiagnostic generation.
853//===----------------------------------------------------------------------===//
854
855static bool IsControlFlowExpr(const Stmt *S) {
856  const Expr *E = dyn_cast<Expr>(S);
857
858  if (!E)
859    return false;
860
861  E = E->IgnoreParenCasts();
862
863  if (isa<AbstractConditionalOperator>(E))
864    return true;
865
866  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
867    if (B->isLogicalOp())
868      return true;
869
870  return false;
871}
872
873namespace {
874class ContextLocation : public PathDiagnosticLocation {
875  bool IsDead;
876public:
877  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
878    : PathDiagnosticLocation(L), IsDead(isdead) {}
879
880  void markDead() { IsDead = true; }
881  bool isDead() const { return IsDead; }
882};
883
884static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
885                                              const LocationContext *LC,
886                                              bool firstCharOnly = false) {
887  if (const Stmt *S = L.asStmt()) {
888    const Stmt *Original = S;
889    while (1) {
890      // Adjust the location for some expressions that are best referenced
891      // by one of their subexpressions.
892      switch (S->getStmtClass()) {
893        default:
894          break;
895        case Stmt::ParenExprClass:
896        case Stmt::GenericSelectionExprClass:
897          S = cast<Expr>(S)->IgnoreParens();
898          firstCharOnly = true;
899          continue;
900        case Stmt::BinaryConditionalOperatorClass:
901        case Stmt::ConditionalOperatorClass:
902          S = cast<AbstractConditionalOperator>(S)->getCond();
903          firstCharOnly = true;
904          continue;
905        case Stmt::ChooseExprClass:
906          S = cast<ChooseExpr>(S)->getCond();
907          firstCharOnly = true;
908          continue;
909        case Stmt::BinaryOperatorClass:
910          S = cast<BinaryOperator>(S)->getLHS();
911          firstCharOnly = true;
912          continue;
913      }
914
915      break;
916    }
917
918    if (S != Original)
919      L = PathDiagnosticLocation(S, L.getManager(), LC);
920  }
921
922  if (firstCharOnly)
923    L  = PathDiagnosticLocation::createSingleLocation(L);
924
925  return L;
926}
927
928class EdgeBuilder {
929  std::vector<ContextLocation> CLocs;
930  typedef std::vector<ContextLocation>::iterator iterator;
931  PathDiagnostic &PD;
932  PathDiagnosticBuilder &PDB;
933  PathDiagnosticLocation PrevLoc;
934
935  bool IsConsumedExpr(const PathDiagnosticLocation &L);
936
937  bool containsLocation(const PathDiagnosticLocation &Container,
938                        const PathDiagnosticLocation &Containee);
939
940  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
941
942
943
944  void popLocation() {
945    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
946      // For contexts, we only one the first character as the range.
947      rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
948    }
949    CLocs.pop_back();
950  }
951
952public:
953  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
954    : PD(pd), PDB(pdb) {
955
956      // If the PathDiagnostic already has pieces, add the enclosing statement
957      // of the first piece as a context as well.
958      if (!PD.path.empty()) {
959        PrevLoc = (*PD.path.begin())->getLocation();
960
961        if (const Stmt *S = PrevLoc.asStmt())
962          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
963      }
964  }
965
966  ~EdgeBuilder() {
967    while (!CLocs.empty()) popLocation();
968
969    // Finally, add an initial edge from the start location of the first
970    // statement (if it doesn't already exist).
971    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
972                                                       PDB.LC,
973                                                       PDB.getSourceManager());
974    if (L.isValid())
975      rawAddEdge(L);
976  }
977
978  void flushLocations() {
979    while (!CLocs.empty())
980      popLocation();
981    PrevLoc = PathDiagnosticLocation();
982  }
983
984  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
985               bool IsPostJump = false);
986
987  void rawAddEdge(PathDiagnosticLocation NewLoc);
988
989  void addContext(const Stmt *S);
990  void addContext(const PathDiagnosticLocation &L);
991  void addExtendedContext(const Stmt *S);
992};
993} // end anonymous namespace
994
995
996PathDiagnosticLocation
997EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
998  if (const Stmt *S = L.asStmt()) {
999    if (IsControlFlowExpr(S))
1000      return L;
1001
1002    return PDB.getEnclosingStmtLocation(S);
1003  }
1004
1005  return L;
1006}
1007
1008bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1009                                   const PathDiagnosticLocation &Containee) {
1010
1011  if (Container == Containee)
1012    return true;
1013
1014  if (Container.asDecl())
1015    return true;
1016
1017  if (const Stmt *S = Containee.asStmt())
1018    if (const Stmt *ContainerS = Container.asStmt()) {
1019      while (S) {
1020        if (S == ContainerS)
1021          return true;
1022        S = PDB.getParent(S);
1023      }
1024      return false;
1025    }
1026
1027  // Less accurate: compare using source ranges.
1028  SourceRange ContainerR = Container.asRange();
1029  SourceRange ContaineeR = Containee.asRange();
1030
1031  SourceManager &SM = PDB.getSourceManager();
1032  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1033  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1034  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1035  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1036
1037  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1038  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1039  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1040  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1041
1042  assert(ContainerBegLine <= ContainerEndLine);
1043  assert(ContaineeBegLine <= ContaineeEndLine);
1044
1045  return (ContainerBegLine <= ContaineeBegLine &&
1046          ContainerEndLine >= ContaineeEndLine &&
1047          (ContainerBegLine != ContaineeBegLine ||
1048           SM.getExpansionColumnNumber(ContainerRBeg) <=
1049           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1050          (ContainerEndLine != ContaineeEndLine ||
1051           SM.getExpansionColumnNumber(ContainerREnd) >=
1052           SM.getExpansionColumnNumber(ContaineeREnd)));
1053}
1054
1055void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1056  if (!PrevLoc.isValid()) {
1057    PrevLoc = NewLoc;
1058    return;
1059  }
1060
1061  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1062  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1063
1064  if (PrevLocClean.asLocation().isInvalid()) {
1065    PrevLoc = NewLoc;
1066    return;
1067  }
1068
1069  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1070    return;
1071
1072  // FIXME: Ignore intra-macro edges for now.
1073  if (NewLocClean.asLocation().getExpansionLoc() ==
1074      PrevLocClean.asLocation().getExpansionLoc())
1075    return;
1076
1077  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1078  PrevLoc = NewLoc;
1079}
1080
1081void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1082                          bool IsPostJump) {
1083
1084  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1085    return;
1086
1087  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1088
1089  while (!CLocs.empty()) {
1090    ContextLocation &TopContextLoc = CLocs.back();
1091
1092    // Is the top location context the same as the one for the new location?
1093    if (TopContextLoc == CLoc) {
1094      if (alwaysAdd) {
1095        if (IsConsumedExpr(TopContextLoc))
1096          TopContextLoc.markDead();
1097
1098        rawAddEdge(NewLoc);
1099      }
1100
1101      if (IsPostJump)
1102        TopContextLoc.markDead();
1103      return;
1104    }
1105
1106    if (containsLocation(TopContextLoc, CLoc)) {
1107      if (alwaysAdd) {
1108        rawAddEdge(NewLoc);
1109
1110        if (IsConsumedExpr(CLoc)) {
1111          CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1112          return;
1113        }
1114      }
1115
1116      CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1117      return;
1118    }
1119
1120    // Context does not contain the location.  Flush it.
1121    popLocation();
1122  }
1123
1124  // If we reach here, there is no enclosing context.  Just add the edge.
1125  rawAddEdge(NewLoc);
1126}
1127
1128bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1129  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1130    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1131
1132  return false;
1133}
1134
1135void EdgeBuilder::addExtendedContext(const Stmt *S) {
1136  if (!S)
1137    return;
1138
1139  const Stmt *Parent = PDB.getParent(S);
1140  while (Parent) {
1141    if (isa<CompoundStmt>(Parent))
1142      Parent = PDB.getParent(Parent);
1143    else
1144      break;
1145  }
1146
1147  if (Parent) {
1148    switch (Parent->getStmtClass()) {
1149      case Stmt::DoStmtClass:
1150      case Stmt::ObjCAtSynchronizedStmtClass:
1151        addContext(Parent);
1152      default:
1153        break;
1154    }
1155  }
1156
1157  addContext(S);
1158}
1159
1160void EdgeBuilder::addContext(const Stmt *S) {
1161  if (!S)
1162    return;
1163
1164  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1165  addContext(L);
1166}
1167
1168void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1169  while (!CLocs.empty()) {
1170    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1171
1172    // Is the top location context the same as the one for the new location?
1173    if (TopContextLoc == L)
1174      return;
1175
1176    if (containsLocation(TopContextLoc, L)) {
1177      CLocs.push_back(L);
1178      return;
1179    }
1180
1181    // Context does not contain the location.  Flush it.
1182    popLocation();
1183  }
1184
1185  CLocs.push_back(L);
1186}
1187
1188// Cone-of-influence: support the reverse propagation of "interesting" symbols
1189// and values by tracing interesting calculations backwards through evaluated
1190// expressions along a path.  This is probably overly complicated, but the idea
1191// is that if an expression computed an "interesting" value, the child
1192// expressions are are also likely to be "interesting" as well (which then
1193// propagates to the values they in turn compute).  This reverse propagation
1194// is needed to track interesting correlations across function call boundaries,
1195// where formal arguments bind to actual arguments, etc.  This is also needed
1196// because the constraint solver sometimes simplifies certain symbolic values
1197// into constants when appropriate, and this complicates reasoning about
1198// interesting values.
1199typedef llvm::DenseSet<const Expr *> InterestingExprs;
1200
1201static void reversePropagateIntererstingSymbols(BugReport &R,
1202                                                InterestingExprs &IE,
1203                                                const ProgramState *State,
1204                                                const Expr *Ex,
1205                                                const LocationContext *LCtx) {
1206  SVal V = State->getSVal(Ex, LCtx);
1207  if (!(R.isInteresting(V) || IE.count(Ex)))
1208    return;
1209
1210  switch (Ex->getStmtClass()) {
1211    default:
1212      if (!isa<CastExpr>(Ex))
1213        break;
1214      // Fall through.
1215    case Stmt::BinaryOperatorClass:
1216    case Stmt::UnaryOperatorClass: {
1217      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1218            CE = Ex->child_end();
1219            CI != CE; ++CI) {
1220        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1221          IE.insert(child);
1222          SVal ChildV = State->getSVal(child, LCtx);
1223          R.markInteresting(ChildV);
1224        }
1225        break;
1226      }
1227    }
1228  }
1229
1230  R.markInteresting(V);
1231}
1232
1233static void reversePropagateInterestingSymbols(BugReport &R,
1234                                               InterestingExprs &IE,
1235                                               const ProgramState *State,
1236                                               const LocationContext *CalleeCtx,
1237                                               const LocationContext *CallerCtx)
1238{
1239  // FIXME: Handle non-CallExpr-based CallEvents.
1240  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1241  const Stmt *CallSite = Callee->getCallSite();
1242  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1243    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1244      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1245                                         PE = FD->param_end();
1246      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1247      for (; AI != AE && PI != PE; ++AI, ++PI) {
1248        if (const Expr *ArgE = *AI) {
1249          if (const ParmVarDecl *PD = *PI) {
1250            Loc LV = State->getLValue(PD, CalleeCtx);
1251            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1252              IE.insert(ArgE);
1253          }
1254        }
1255      }
1256    }
1257  }
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Functions for determining if a loop was executed 0 times.
1262//===----------------------------------------------------------------------===//
1263
1264static bool isLoop(const Stmt *Term) {
1265  switch (Term->getStmtClass()) {
1266    case Stmt::ForStmtClass:
1267    case Stmt::WhileStmtClass:
1268    case Stmt::ObjCForCollectionStmtClass:
1269      return true;
1270    default:
1271      // Note that we intentionally do not include do..while here.
1272      return false;
1273  }
1274}
1275
1276static bool isJumpToFalseBranch(const BlockEdge *BE) {
1277  const CFGBlock *Src = BE->getSrc();
1278  assert(Src->succ_size() == 2);
1279  return (*(Src->succ_begin()+1) == BE->getDst());
1280}
1281
1282/// Return true if the terminator is a loop and the destination is the
1283/// false branch.
1284static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1285  if (!isLoop(Term))
1286    return false;
1287
1288  // Did we take the false branch?
1289  return isJumpToFalseBranch(BE);
1290}
1291
1292static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1293  while (SubS) {
1294    if (SubS == S)
1295      return true;
1296    SubS = PM.getParent(SubS);
1297  }
1298  return false;
1299}
1300
1301static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1302                                     const ExplodedNode *N) {
1303  while (N) {
1304    Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1305    if (SP) {
1306      const Stmt *S = SP->getStmt();
1307      if (!isContainedByStmt(PM, Term, S))
1308        return S;
1309    }
1310    N = N->getFirstPred();
1311  }
1312  return 0;
1313}
1314
1315static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1316  const Stmt *LoopBody = 0;
1317  switch (Term->getStmtClass()) {
1318    case Stmt::ForStmtClass: {
1319      const ForStmt *FS = cast<ForStmt>(Term);
1320      if (isContainedByStmt(PM, FS->getInc(), S))
1321        return true;
1322      LoopBody = FS->getBody();
1323      break;
1324    }
1325    case Stmt::ObjCForCollectionStmtClass: {
1326      const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1327      LoopBody = FC->getBody();
1328      break;
1329    }
1330    case Stmt::WhileStmtClass:
1331      LoopBody = cast<WhileStmt>(Term)->getBody();
1332      break;
1333    default:
1334      return false;
1335  }
1336  return isContainedByStmt(PM, LoopBody, S);
1337}
1338
1339//===----------------------------------------------------------------------===//
1340// Top-level logic for generating extensive path diagnostics.
1341//===----------------------------------------------------------------------===//
1342
1343static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1344                                            PathDiagnosticBuilder &PDB,
1345                                            const ExplodedNode *N,
1346                                            LocationContextMap &LCM,
1347                                      ArrayRef<BugReporterVisitor *> visitors) {
1348  EdgeBuilder EB(PD, PDB);
1349  const SourceManager& SM = PDB.getSourceManager();
1350  StackDiagVector CallStack;
1351  InterestingExprs IE;
1352
1353  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1354  while (NextNode) {
1355    N = NextNode;
1356    NextNode = N->getFirstPred();
1357    ProgramPoint P = N->getLocation();
1358
1359    do {
1360      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1361        if (const Expr *Ex = PS->getStmtAs<Expr>())
1362          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1363                                              N->getState().getPtr(), Ex,
1364                                              N->getLocationContext());
1365      }
1366
1367      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1368        const Stmt *S = CE->getCalleeContext()->getCallSite();
1369        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1370            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1371                                                N->getState().getPtr(), Ex,
1372                                                N->getLocationContext());
1373        }
1374
1375        PathDiagnosticCallPiece *C =
1376          PathDiagnosticCallPiece::construct(N, *CE, SM);
1377        LCM[&C->path] = CE->getCalleeContext();
1378
1379        EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1380        EB.flushLocations();
1381
1382        PD.getActivePath().push_front(C);
1383        PD.pushActivePath(&C->path);
1384        CallStack.push_back(StackDiagPair(C, N));
1385        break;
1386      }
1387
1388      // Pop the call hierarchy if we are done walking the contents
1389      // of a function call.
1390      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1391        // Add an edge to the start of the function.
1392        const Decl *D = CE->getCalleeContext()->getDecl();
1393        PathDiagnosticLocation pos =
1394          PathDiagnosticLocation::createBegin(D, SM);
1395        EB.addEdge(pos);
1396
1397        // Flush all locations, and pop the active path.
1398        bool VisitedEntireCall = PD.isWithinCall();
1399        EB.flushLocations();
1400        PD.popActivePath();
1401        PDB.LC = N->getLocationContext();
1402
1403        // Either we just added a bunch of stuff to the top-level path, or
1404        // we have a previous CallExitEnd.  If the former, it means that the
1405        // path terminated within a function call.  We must then take the
1406        // current contents of the active path and place it within
1407        // a new PathDiagnosticCallPiece.
1408        PathDiagnosticCallPiece *C;
1409        if (VisitedEntireCall) {
1410          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1411        } else {
1412          const Decl *Caller = CE->getLocationContext()->getDecl();
1413          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1414          LCM[&C->path] = CE->getCalleeContext();
1415        }
1416
1417        C->setCallee(*CE, SM);
1418        EB.addContext(C->getLocation());
1419
1420        if (!CallStack.empty()) {
1421          assert(CallStack.back().first == C);
1422          CallStack.pop_back();
1423        }
1424        break;
1425      }
1426
1427      // Note that is important that we update the LocationContext
1428      // after looking at CallExits.  CallExit basically adds an
1429      // edge in the *caller*, so we don't want to update the LocationContext
1430      // too soon.
1431      PDB.LC = N->getLocationContext();
1432
1433      // Block edges.
1434      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1435        // Does this represent entering a call?  If so, look at propagating
1436        // interesting symbols across call boundaries.
1437        if (NextNode) {
1438          const LocationContext *CallerCtx = NextNode->getLocationContext();
1439          const LocationContext *CalleeCtx = PDB.LC;
1440          if (CallerCtx != CalleeCtx) {
1441            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1442                                               N->getState().getPtr(),
1443                                               CalleeCtx, CallerCtx);
1444          }
1445        }
1446
1447        // Are we jumping to the head of a loop?  Add a special diagnostic.
1448        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1449          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1450          const CompoundStmt *CS = NULL;
1451
1452          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1453            CS = dyn_cast<CompoundStmt>(FS->getBody());
1454          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1455            CS = dyn_cast<CompoundStmt>(WS->getBody());
1456
1457          PathDiagnosticEventPiece *p =
1458            new PathDiagnosticEventPiece(L,
1459                                        "Looping back to the head of the loop");
1460          p->setPrunable(true);
1461
1462          EB.addEdge(p->getLocation(), true);
1463          PD.getActivePath().push_front(p);
1464
1465          if (CS) {
1466            PathDiagnosticLocation BL =
1467              PathDiagnosticLocation::createEndBrace(CS, SM);
1468            EB.addEdge(BL);
1469          }
1470        }
1471
1472        const CFGBlock *BSrc = BE->getSrc();
1473        ParentMap &PM = PDB.getParentMap();
1474
1475        if (const Stmt *Term = BSrc->getTerminator()) {
1476          // Are we jumping past the loop body without ever executing the
1477          // loop (because the condition was false)?
1478          if (isLoopJumpPastBody(Term, &*BE) &&
1479              !isInLoopBody(PM,
1480                            getStmtBeforeCond(PM,
1481                                              BSrc->getTerminatorCondition(),
1482                                              N),
1483                            Term)) {
1484            PathDiagnosticLocation L(Term, SM, PDB.LC);
1485            PathDiagnosticEventPiece *PE =
1486                new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1487            PE->setPrunable(true);
1488
1489            EB.addEdge(PE->getLocation(), true);
1490            PD.getActivePath().push_front(PE);
1491          }
1492
1493          // In any case, add the terminator as the current statement
1494          // context for control edges.
1495          EB.addContext(Term);
1496        }
1497
1498        break;
1499      }
1500
1501      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1502        Optional<CFGElement> First = BE->getFirstElement();
1503        if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1504          const Stmt *stmt = S->getStmt();
1505          if (IsControlFlowExpr(stmt)) {
1506            // Add the proper context for '&&', '||', and '?'.
1507            EB.addContext(stmt);
1508          }
1509          else
1510            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1511        }
1512
1513        break;
1514      }
1515
1516
1517    } while (0);
1518
1519    if (!NextNode)
1520      continue;
1521
1522    // Add pieces from custom visitors.
1523    BugReport *R = PDB.getBugReport();
1524    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1525                                                  E = visitors.end();
1526         I != E; ++I) {
1527      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1528        const PathDiagnosticLocation &Loc = p->getLocation();
1529        EB.addEdge(Loc, true);
1530        PD.getActivePath().push_front(p);
1531        updateStackPiecesWithMessage(p, CallStack);
1532
1533        if (const Stmt *S = Loc.asStmt())
1534          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1535      }
1536    }
1537  }
1538
1539  return PDB.getBugReport()->isValid();
1540}
1541
1542/// \brief Adds a sanitized control-flow diagnostic edge to a path.
1543static void addEdgeToPath(PathPieces &path,
1544                          PathDiagnosticLocation &PrevLoc,
1545                          PathDiagnosticLocation NewLoc,
1546                          const LocationContext *LC) {
1547  if (!NewLoc.isValid())
1548    return;
1549
1550  SourceLocation NewLocL = NewLoc.asLocation();
1551  if (NewLocL.isInvalid() || NewLocL.isMacroID())
1552    return;
1553
1554  if (!PrevLoc.isValid()) {
1555    PrevLoc = NewLoc;
1556    return;
1557  }
1558
1559  // FIXME: ignore intra-macro edges for now.
1560  if (NewLoc.asLocation().getExpansionLoc() ==
1561      PrevLoc.asLocation().getExpansionLoc())
1562    return;
1563
1564  path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1565                                                     PrevLoc));
1566  PrevLoc = NewLoc;
1567}
1568
1569static bool
1570GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
1571                                         PathDiagnosticBuilder &PDB,
1572                                         const ExplodedNode *N,
1573                                         LocationContextMap &LCM,
1574                                      ArrayRef<BugReporterVisitor *> visitors) {
1575
1576  BugReport *report = PDB.getBugReport();
1577  const SourceManager& SM = PDB.getSourceManager();
1578  StackDiagVector CallStack;
1579  InterestingExprs IE;
1580
1581  // Record the last location for a given visited stack frame.
1582  llvm::DenseMap<const StackFrameContext *, PathDiagnosticLocation>
1583    PrevLocMap;
1584
1585  const ExplodedNode *NextNode = N->getFirstPred();
1586  while (NextNode) {
1587    N = NextNode;
1588    NextNode = N->getFirstPred();
1589    ProgramPoint P = N->getLocation();
1590
1591    do {
1592      // Have we encountered an entrance to a call?  It may be
1593      // the case that we have not encountered a matching
1594      // call exit before this point.  This means that the path
1595      // terminated within the call itself.
1596      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1597        // Add an edge to the start of the function.
1598        const StackFrameContext *CalleeLC = CE->getCalleeContext();
1599        PathDiagnosticLocation &PrevLocCallee = PrevLocMap[CalleeLC];
1600        const Decl *D = CalleeLC->getDecl();
1601        addEdgeToPath(PD.getActivePath(), PrevLocCallee,
1602                      PathDiagnosticLocation::createBegin(D, SM),
1603                      CalleeLC);
1604
1605        // Did we visit an entire call?
1606        bool VisitedEntireCall = PD.isWithinCall();
1607        PD.popActivePath();
1608
1609        PathDiagnosticCallPiece *C;
1610        if (VisitedEntireCall) {
1611          PathDiagnosticPiece *P = PD.getActivePath().front().getPtr();
1612          C = cast<PathDiagnosticCallPiece>(P);
1613        } else {
1614          const Decl *Caller = CE->getLocationContext()->getDecl();
1615          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1616
1617          // Since we just transferred the path over to the call piece,
1618          // reset the mapping from active to location context.
1619          assert(PD.getActivePath().size() == 1 &&
1620                 PD.getActivePath().front() == C);
1621          LCM[&PD.getActivePath()] = 0;
1622
1623          // Record the location context mapping for the path within
1624          // the call.
1625          assert(LCM[&C->path] == 0 ||
1626                 LCM[&C->path] == CE->getCalleeContext());
1627          LCM[&C->path] = CE->getCalleeContext();
1628
1629          // If this is the first item in the active path, record
1630          // the new mapping from active path to location context.
1631          const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1632          if (!NewLC) {
1633            NewLC = N->getLocationContext();
1634          }
1635          PDB.LC = NewLC;
1636
1637          // Update the previous location in the active path
1638          // since we just created the call piece lazily.
1639          PrevLocMap[PDB.LC->getCurrentStackFrame()] = C->getLocation();
1640        }
1641        C->setCallee(*CE, SM);
1642
1643        if (!CallStack.empty()) {
1644          assert(CallStack.back().first == C);
1645          CallStack.pop_back();
1646        }
1647        break;
1648      }
1649
1650      // Query the location context here and the previous location
1651      // as processing CallEnter may change the active path.
1652      PDB.LC = N->getLocationContext();
1653
1654      // Get the previous location for the current active
1655      // location context.  All edges will be based on this
1656      // location, and it will be updated in place.
1657      PathDiagnosticLocation &PrevLoc =
1658        PrevLocMap[PDB.LC->getCurrentStackFrame()];
1659
1660      // Record the mapping from the active path to the location
1661      // context.
1662      assert(!LCM[&PD.getActivePath()] ||
1663             LCM[&PD.getActivePath()] == PDB.LC);
1664      LCM[&PD.getActivePath()] = PDB.LC;
1665
1666      // Have we encountered an exit from a function call?
1667      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1668        const Stmt *S = CE->getCalleeContext()->getCallSite();
1669        // Propagate the interesting symbols accordingly.
1670        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1671          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1672                                              N->getState().getPtr(), Ex,
1673                                              N->getLocationContext());
1674        }
1675
1676        // We are descending into a call (backwards).  Construct
1677        // a new call piece to contain the path pieces for that call.
1678        PathDiagnosticCallPiece *C =
1679          PathDiagnosticCallPiece::construct(N, *CE, SM);
1680
1681        // Record the location context for this call piece.
1682        LCM[&C->path] = CE->getCalleeContext();
1683
1684        // Add the edge to the return site.
1685        addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1686        PD.getActivePath().push_front(C);
1687
1688        // Make the contents of the call the active path for now.
1689        PD.pushActivePath(&C->path);
1690        CallStack.push_back(StackDiagPair(C, N));
1691        break;
1692      }
1693
1694      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1695        // For expressions, make sure we propagate the
1696        // interesting symbols correctly.
1697        if (const Expr *Ex = PS->getStmtAs<Expr>())
1698          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1699                                              N->getState().getPtr(), Ex,
1700                                              N->getLocationContext());
1701
1702        PathDiagnosticLocation L =
1703          PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1704        addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1705        break;
1706      }
1707
1708      // Block edges.
1709      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1710        // Does this represent entering a call?  If so, look at propagating
1711        // interesting symbols across call boundaries.
1712        if (NextNode) {
1713          const LocationContext *CallerCtx = NextNode->getLocationContext();
1714          const LocationContext *CalleeCtx = PDB.LC;
1715          if (CallerCtx != CalleeCtx) {
1716            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1717                                               N->getState().getPtr(),
1718                                               CalleeCtx, CallerCtx);
1719          }
1720        }
1721
1722        // Are we jumping to the head of a loop?  Add a special diagnostic.
1723        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1724          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1725          const CompoundStmt *CS = NULL;
1726
1727          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1728            CS = dyn_cast<CompoundStmt>(FS->getBody());
1729          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1730            CS = dyn_cast<CompoundStmt>(WS->getBody());
1731
1732          PathDiagnosticEventPiece *p =
1733            new PathDiagnosticEventPiece(L, "Looping back to the head "
1734                                            "of the loop");
1735          p->setPrunable(true);
1736
1737          addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1738          PD.getActivePath().push_front(p);
1739
1740          if (CS) {
1741            addEdgeToPath(PD.getActivePath(), PrevLoc,
1742                          PathDiagnosticLocation::createEndBrace(CS, SM),
1743                          PDB.LC);
1744          }
1745        }
1746
1747        const CFGBlock *BSrc = BE->getSrc();
1748        ParentMap &PM = PDB.getParentMap();
1749
1750        if (const Stmt *Term = BSrc->getTerminator()) {
1751          // Are we jumping past the loop body without ever executing the
1752          // loop (because the condition was false)?
1753          if (isLoop(Term)) {
1754            const Stmt *TermCond = BSrc->getTerminatorCondition();
1755            bool IsInLoopBody =
1756              isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1757
1758            const char *str = 0;
1759
1760            if (isJumpToFalseBranch(&*BE)) {
1761              if (!IsInLoopBody) {
1762                str = "Loop body executed 0 times";
1763              }
1764            }
1765            else {
1766              str = "Entering loop body";
1767            }
1768
1769            if (str) {
1770              PathDiagnosticLocation L(TermCond, SM, PDB.LC);
1771              PathDiagnosticEventPiece *PE =
1772                new PathDiagnosticEventPiece(L, str);
1773              PE->setPrunable(true);
1774              addEdgeToPath(PD.getActivePath(), PrevLoc,
1775                            PE->getLocation(), PDB.LC);
1776              PD.getActivePath().push_front(PE);
1777            }
1778          }
1779          else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1780                   isa<GotoStmt>(Term)) {
1781            PathDiagnosticLocation L(Term, SM, PDB.LC);
1782            addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1783          }
1784        }
1785        break;
1786      }
1787    } while (0);
1788
1789    if (!NextNode)
1790      continue;
1791
1792    // Since the active path may have been updated prior
1793    // to this point, query the active location context now.
1794    PathDiagnosticLocation &PrevLoc =
1795      PrevLocMap[PDB.LC->getCurrentStackFrame()];
1796
1797    // Add pieces from custom visitors.
1798    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1799         E = visitors.end();
1800         I != E; ++I) {
1801      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
1802        addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1803        PD.getActivePath().push_front(p);
1804        updateStackPiecesWithMessage(p, CallStack);
1805      }
1806    }
1807  }
1808
1809  return report->isValid();
1810}
1811
1812const Stmt *getLocStmt(PathDiagnosticLocation L) {
1813  if (!L.isValid())
1814    return 0;
1815  return L.asStmt();
1816}
1817
1818const Stmt *getStmtParent(const Stmt *S, ParentMap &PM) {
1819  if (!S)
1820    return 0;
1821  return PM.getParentIgnoreParens(S);
1822}
1823
1824static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1825  switch (S->getStmtClass()) {
1826    case Stmt::BinaryOperatorClass: {
1827      const BinaryOperator *BO = cast<BinaryOperator>(S);
1828      if (!BO->isLogicalOp())
1829        return false;
1830      return BO->getLHS() == Cond || BO->getRHS() == Cond;
1831    }
1832    case Stmt::IfStmtClass:
1833      return cast<IfStmt>(S)->getCond() == Cond;
1834    case Stmt::ForStmtClass:
1835      return cast<ForStmt>(S)->getCond() == Cond;
1836    case Stmt::WhileStmtClass:
1837      return cast<WhileStmt>(S)->getCond() == Cond;
1838    case Stmt::DoStmtClass:
1839      return cast<DoStmt>(S)->getCond() == Cond;
1840    case Stmt::ChooseExprClass:
1841      return cast<ChooseExpr>(S)->getCond() == Cond;
1842    case Stmt::IndirectGotoStmtClass:
1843      return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1844    case Stmt::SwitchStmtClass:
1845      return cast<SwitchStmt>(S)->getCond() == Cond;
1846    case Stmt::BinaryConditionalOperatorClass:
1847      return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1848    case Stmt::ConditionalOperatorClass: {
1849      const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1850      return CO->getCond() == Cond ||
1851             CO->getLHS() == Cond ||
1852             CO->getRHS() == Cond;
1853    }
1854    case Stmt::ObjCForCollectionStmtClass:
1855      return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1856    default:
1857      return false;
1858  }
1859}
1860
1861static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1862  const ForStmt *FS = dyn_cast<ForStmt>(FL);
1863  if (!FS)
1864    return false;
1865  return FS->getInc() == S || FS->getInit() == S;
1866}
1867
1868typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1869        OptimizedCallsSet;
1870
1871static bool optimizeEdges(PathPieces &path, SourceManager &SM,
1872                          OptimizedCallsSet &OCS,
1873                          LocationContextMap &LCM) {
1874  bool hasChanges = false;
1875  const LocationContext *LC = LCM[&path];
1876  assert(LC);
1877  bool isFirst = true;
1878
1879  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1880    bool wasFirst = isFirst;
1881    isFirst = false;
1882
1883    // Optimize subpaths.
1884    if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
1885      // Record the fact that a call has been optimized so we only do the
1886      // effort once.
1887      if (!OCS.count(CallI)) {
1888        while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
1889        OCS.insert(CallI);
1890      }
1891      ++I;
1892      continue;
1893    }
1894
1895    // Pattern match the current piece and its successor.
1896    PathDiagnosticControlFlowPiece *PieceI =
1897      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1898
1899    if (!PieceI) {
1900      ++I;
1901      continue;
1902    }
1903
1904    ParentMap &PM = LC->getParentMap();
1905    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
1906    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
1907    const Stmt *level1 = getStmtParent(s1Start, PM);
1908    const Stmt *level2 = getStmtParent(s1End, PM);
1909
1910    if (wasFirst) {
1911      wasFirst = false;
1912
1913      // If the first edge (in isolation) is just a transition from
1914      // an expression to a parent expression then eliminate that edge.
1915      if (level1 && level2 && level2 == PM.getParent(level1)) {
1916        path.erase(I);
1917        // Since we are erasing the current edge at the start of the
1918        // path, just return now so we start analyzing the start of the path
1919        // again.
1920        return true;
1921      }
1922
1923      // If the first edge (in isolation) is a transition from the
1924      // initialization or increment in a for loop then remove it.
1925      if (level1 && isIncrementOrInitInForLoop(s1Start, level1)) {
1926        path.erase(I);
1927        return true;
1928      }
1929    }
1930
1931    PathPieces::iterator NextI = I; ++NextI;
1932    if (NextI == E)
1933      break;
1934
1935    PathDiagnosticControlFlowPiece *PieceNextI =
1936      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
1937
1938    if (!PieceNextI) {
1939      ++I;
1940      continue;
1941    }
1942
1943    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
1944    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
1945    const Stmt *level3 = getStmtParent(s2Start, PM);
1946    const Stmt *level4 = getStmtParent(s2End, PM);
1947
1948    // Rule I.
1949    //
1950    // If we have two consecutive control edges whose end/begin locations
1951    // are at the same level (e.g. statements or top-level expressions within
1952    // a compound statement, or siblings share a single ancestor expression),
1953    // then merge them if they have no interesting intermediate event.
1954    //
1955    // For example:
1956    //
1957    // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1958    // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1959    //
1960    // NOTE: this will be limited later in cases where we add barriers
1961    // to prevent this optimization.
1962    //
1963    if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1964      PieceI->setEndLocation(PieceNextI->getEndLocation());
1965      path.erase(NextI);
1966      hasChanges = true;
1967      continue;
1968    }
1969
1970    // Rule II.
1971    //
1972    // Eliminate edges between subexpressions and parent expressions
1973    // when the subexpression is consumed.
1974    //
1975    // NOTE: this will be limited later in cases where we add barriers
1976    // to prevent this optimization.
1977    //
1978    if (s1End && s1End == s2Start && level2) {
1979      if (isIncrementOrInitInForLoop(s1End, level2) ||
1980          (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End)) &&
1981            !isConditionForTerminator(level2, s1End)))
1982      {
1983        PieceI->setEndLocation(PieceNextI->getEndLocation());
1984        path.erase(NextI);
1985        hasChanges = true;
1986        continue;
1987      }
1988    }
1989
1990    // No changes at this index?  Move to the next one.
1991    ++I;
1992  }
1993
1994  // No changes.
1995  return hasChanges;
1996}
1997
1998static void adjustLoopEdges(PathPieces &pieces, LocationContextMap &LCM,
1999                            SourceManager &SM) {
2000  // Retrieve the parent map for this path.
2001  const LocationContext *LC = LCM[&pieces];
2002  ParentMap &PM = LC->getParentMap();
2003  PathPieces::iterator Prev = pieces.end();
2004  for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E;
2005       Prev = I, ++I) {
2006    // Adjust edges in subpaths.
2007    if (PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I)) {
2008      adjustLoopEdges(Call->path, LCM, SM);
2009      continue;
2010    }
2011
2012    PathDiagnosticControlFlowPiece *PieceI =
2013      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2014
2015    if (!PieceI)
2016      continue;
2017
2018    // We are looking at two edges.  Is the second one incident
2019    // on an expression (or subexpression) of a loop condition.
2020    const Stmt *Dst = getLocStmt(PieceI->getEndLocation());
2021    const Stmt *Src = getLocStmt(PieceI->getStartLocation());
2022
2023    if (!Dst || !Src)
2024      continue;
2025
2026    const Stmt *Loop = 0;
2027    const Stmt *S = Dst;
2028    while (const Stmt *Parent = PM.getParentIgnoreParens(S)) {
2029      if (const ForStmt *FS = dyn_cast<ForStmt>(Parent)) {
2030        if (FS->getCond()->IgnoreParens() == S)
2031          Loop = FS;
2032        break;
2033      }
2034      if (const WhileStmt *WS = dyn_cast<WhileStmt>(Parent)) {
2035        if (WS->getCond()->IgnoreParens() == S)
2036          Loop = WS;
2037        break;
2038      }
2039      S = Parent;
2040    }
2041
2042    // If 'Loop' is non-null we have found a match where we have an edge
2043    // incident on the condition of a for/while statement.
2044    if (!Loop)
2045      continue;
2046
2047    // If the current source of the edge is the 'for'/'while', then there is
2048    // nothing left to be done.
2049    if (Src == Loop)
2050      continue;
2051
2052    // Now look at the previous edge.  We want to know if this was in the same
2053    // "level" as the for statement.
2054    const Stmt *SrcParent = PM.getParentIgnoreParens(Src);
2055    const Stmt *FSParent = PM.getParentIgnoreParens(Loop);
2056    if (SrcParent && SrcParent == FSParent) {
2057      PathDiagnosticLocation L(Loop, SM, LC);
2058      bool needsEdge = true;
2059
2060      if (Prev != E) {
2061        if (PathDiagnosticControlFlowPiece *P =
2062            dyn_cast<PathDiagnosticControlFlowPiece>(*Prev)) {
2063          const Stmt *PrevSrc = getLocStmt(P->getStartLocation());
2064          if (PrevSrc) {
2065            const Stmt *PrevSrcParent = PM.getParentIgnoreParens(PrevSrc);
2066            if (PrevSrcParent == FSParent) {
2067              P->setEndLocation(L);
2068              needsEdge = false;
2069            }
2070          }
2071        }
2072      }
2073
2074      if (needsEdge) {
2075        PathDiagnosticControlFlowPiece *P =
2076          new PathDiagnosticControlFlowPiece(PieceI->getStartLocation(), L);
2077        pieces.insert(I, P);
2078      }
2079
2080      PieceI->setStartLocation(L);
2081    }
2082  }
2083}
2084
2085//===----------------------------------------------------------------------===//
2086// Methods for BugType and subclasses.
2087//===----------------------------------------------------------------------===//
2088BugType::~BugType() { }
2089
2090void BugType::FlushReports(BugReporter &BR) {}
2091
2092void BuiltinBug::anchor() {}
2093
2094//===----------------------------------------------------------------------===//
2095// Methods for BugReport and subclasses.
2096//===----------------------------------------------------------------------===//
2097
2098void BugReport::NodeResolver::anchor() {}
2099
2100void BugReport::addVisitor(BugReporterVisitor* visitor) {
2101  if (!visitor)
2102    return;
2103
2104  llvm::FoldingSetNodeID ID;
2105  visitor->Profile(ID);
2106  void *InsertPos;
2107
2108  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2109    delete visitor;
2110    return;
2111  }
2112
2113  CallbacksSet.InsertNode(visitor, InsertPos);
2114  Callbacks.push_back(visitor);
2115  ++ConfigurationChangeToken;
2116}
2117
2118BugReport::~BugReport() {
2119  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
2120    delete *I;
2121  }
2122  while (!interestingSymbols.empty()) {
2123    popInterestingSymbolsAndRegions();
2124  }
2125}
2126
2127const Decl *BugReport::getDeclWithIssue() const {
2128  if (DeclWithIssue)
2129    return DeclWithIssue;
2130
2131  const ExplodedNode *N = getErrorNode();
2132  if (!N)
2133    return 0;
2134
2135  const LocationContext *LC = N->getLocationContext();
2136  return LC->getCurrentStackFrame()->getDecl();
2137}
2138
2139void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2140  hash.AddPointer(&BT);
2141  hash.AddString(Description);
2142  PathDiagnosticLocation UL = getUniqueingLocation();
2143  if (UL.isValid()) {
2144    UL.Profile(hash);
2145  } else if (Location.isValid()) {
2146    Location.Profile(hash);
2147  } else {
2148    assert(ErrorNode);
2149    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2150  }
2151
2152  for (SmallVectorImpl<SourceRange>::const_iterator I =
2153      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2154    const SourceRange range = *I;
2155    if (!range.isValid())
2156      continue;
2157    hash.AddInteger(range.getBegin().getRawEncoding());
2158    hash.AddInteger(range.getEnd().getRawEncoding());
2159  }
2160}
2161
2162void BugReport::markInteresting(SymbolRef sym) {
2163  if (!sym)
2164    return;
2165
2166  // If the symbol wasn't already in our set, note a configuration change.
2167  if (getInterestingSymbols().insert(sym).second)
2168    ++ConfigurationChangeToken;
2169
2170  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2171    getInterestingRegions().insert(meta->getRegion());
2172}
2173
2174void BugReport::markInteresting(const MemRegion *R) {
2175  if (!R)
2176    return;
2177
2178  // If the base region wasn't already in our set, note a configuration change.
2179  R = R->getBaseRegion();
2180  if (getInterestingRegions().insert(R).second)
2181    ++ConfigurationChangeToken;
2182
2183  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2184    getInterestingSymbols().insert(SR->getSymbol());
2185}
2186
2187void BugReport::markInteresting(SVal V) {
2188  markInteresting(V.getAsRegion());
2189  markInteresting(V.getAsSymbol());
2190}
2191
2192void BugReport::markInteresting(const LocationContext *LC) {
2193  if (!LC)
2194    return;
2195  InterestingLocationContexts.insert(LC);
2196}
2197
2198bool BugReport::isInteresting(SVal V) {
2199  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2200}
2201
2202bool BugReport::isInteresting(SymbolRef sym) {
2203  if (!sym)
2204    return false;
2205  // We don't currently consider metadata symbols to be interesting
2206  // even if we know their region is interesting. Is that correct behavior?
2207  return getInterestingSymbols().count(sym);
2208}
2209
2210bool BugReport::isInteresting(const MemRegion *R) {
2211  if (!R)
2212    return false;
2213  R = R->getBaseRegion();
2214  bool b = getInterestingRegions().count(R);
2215  if (b)
2216    return true;
2217  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2218    return getInterestingSymbols().count(SR->getSymbol());
2219  return false;
2220}
2221
2222bool BugReport::isInteresting(const LocationContext *LC) {
2223  if (!LC)
2224    return false;
2225  return InterestingLocationContexts.count(LC);
2226}
2227
2228void BugReport::lazyInitializeInterestingSets() {
2229  if (interestingSymbols.empty()) {
2230    interestingSymbols.push_back(new Symbols());
2231    interestingRegions.push_back(new Regions());
2232  }
2233}
2234
2235BugReport::Symbols &BugReport::getInterestingSymbols() {
2236  lazyInitializeInterestingSets();
2237  return *interestingSymbols.back();
2238}
2239
2240BugReport::Regions &BugReport::getInterestingRegions() {
2241  lazyInitializeInterestingSets();
2242  return *interestingRegions.back();
2243}
2244
2245void BugReport::pushInterestingSymbolsAndRegions() {
2246  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2247  interestingRegions.push_back(new Regions(getInterestingRegions()));
2248}
2249
2250void BugReport::popInterestingSymbolsAndRegions() {
2251  delete interestingSymbols.back();
2252  interestingSymbols.pop_back();
2253  delete interestingRegions.back();
2254  interestingRegions.pop_back();
2255}
2256
2257const Stmt *BugReport::getStmt() const {
2258  if (!ErrorNode)
2259    return 0;
2260
2261  ProgramPoint ProgP = ErrorNode->getLocation();
2262  const Stmt *S = NULL;
2263
2264  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2265    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2266    if (BE->getBlock() == &Exit)
2267      S = GetPreviousStmt(ErrorNode);
2268  }
2269  if (!S)
2270    S = PathDiagnosticLocation::getStmt(ErrorNode);
2271
2272  return S;
2273}
2274
2275std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
2276BugReport::getRanges() {
2277    // If no custom ranges, add the range of the statement corresponding to
2278    // the error node.
2279    if (Ranges.empty()) {
2280      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2281        addRange(E->getSourceRange());
2282      else
2283        return std::make_pair(ranges_iterator(), ranges_iterator());
2284    }
2285
2286    // User-specified absence of range info.
2287    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2288      return std::make_pair(ranges_iterator(), ranges_iterator());
2289
2290    return std::make_pair(Ranges.begin(), Ranges.end());
2291}
2292
2293PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2294  if (ErrorNode) {
2295    assert(!Location.isValid() &&
2296     "Either Location or ErrorNode should be specified but not both.");
2297    return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2298  } else {
2299    assert(Location.isValid());
2300    return Location;
2301  }
2302
2303  return PathDiagnosticLocation();
2304}
2305
2306//===----------------------------------------------------------------------===//
2307// Methods for BugReporter and subclasses.
2308//===----------------------------------------------------------------------===//
2309
2310BugReportEquivClass::~BugReportEquivClass() { }
2311GRBugReporter::~GRBugReporter() { }
2312BugReporterData::~BugReporterData() {}
2313
2314ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2315
2316ProgramStateManager&
2317GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2318
2319BugReporter::~BugReporter() {
2320  FlushReports();
2321
2322  // Free the bug reports we are tracking.
2323  typedef std::vector<BugReportEquivClass *> ContTy;
2324  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2325       I != E; ++I) {
2326    delete *I;
2327  }
2328}
2329
2330void BugReporter::FlushReports() {
2331  if (BugTypes.isEmpty())
2332    return;
2333
2334  // First flush the warnings for each BugType.  This may end up creating new
2335  // warnings and new BugTypes.
2336  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2337  // Turn NSErrorChecker into a proper checker and remove this.
2338  SmallVector<const BugType*, 16> bugTypes;
2339  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
2340    bugTypes.push_back(*I);
2341  for (SmallVector<const BugType*, 16>::iterator
2342         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2343    const_cast<BugType*>(*I)->FlushReports(*this);
2344
2345  // We need to flush reports in deterministic order to ensure the order
2346  // of the reports is consistent between runs.
2347  typedef std::vector<BugReportEquivClass *> ContVecTy;
2348  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2349       EI != EE; ++EI){
2350    BugReportEquivClass& EQ = **EI;
2351    FlushReport(EQ);
2352  }
2353
2354  // BugReporter owns and deletes only BugTypes created implicitly through
2355  // EmitBasicReport.
2356  // FIXME: There are leaks from checkers that assume that the BugTypes they
2357  // create will be destroyed by the BugReporter.
2358  for (llvm::StringMap<BugType*>::iterator
2359         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
2360    delete I->second;
2361
2362  // Remove all references to the BugType objects.
2363  BugTypes = F.getEmptySet();
2364}
2365
2366//===----------------------------------------------------------------------===//
2367// PathDiagnostics generation.
2368//===----------------------------------------------------------------------===//
2369
2370namespace {
2371/// A wrapper around a report graph, which contains only a single path, and its
2372/// node maps.
2373class ReportGraph {
2374public:
2375  InterExplodedGraphMap BackMap;
2376  OwningPtr<ExplodedGraph> Graph;
2377  const ExplodedNode *ErrorNode;
2378  size_t Index;
2379};
2380
2381/// A wrapper around a trimmed graph and its node maps.
2382class TrimmedGraph {
2383  InterExplodedGraphMap InverseMap;
2384
2385  typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2386  PriorityMapTy PriorityMap;
2387
2388  typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2389  SmallVector<NodeIndexPair, 32> ReportNodes;
2390
2391  OwningPtr<ExplodedGraph> G;
2392
2393  /// A helper class for sorting ExplodedNodes by priority.
2394  template <bool Descending>
2395  class PriorityCompare {
2396    const PriorityMapTy &PriorityMap;
2397
2398  public:
2399    PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2400
2401    bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2402      PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2403      PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2404      PriorityMapTy::const_iterator E = PriorityMap.end();
2405
2406      if (LI == E)
2407        return Descending;
2408      if (RI == E)
2409        return !Descending;
2410
2411      return Descending ? LI->second > RI->second
2412                        : LI->second < RI->second;
2413    }
2414
2415    bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2416      return (*this)(LHS.first, RHS.first);
2417    }
2418  };
2419
2420public:
2421  TrimmedGraph(const ExplodedGraph *OriginalGraph,
2422               ArrayRef<const ExplodedNode *> Nodes);
2423
2424  bool popNextReportGraph(ReportGraph &GraphWrapper);
2425};
2426}
2427
2428TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2429                           ArrayRef<const ExplodedNode *> Nodes) {
2430  // The trimmed graph is created in the body of the constructor to ensure
2431  // that the DenseMaps have been initialized already.
2432  InterExplodedGraphMap ForwardMap;
2433  G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
2434
2435  // Find the (first) error node in the trimmed graph.  We just need to consult
2436  // the node map which maps from nodes in the original graph to nodes
2437  // in the new graph.
2438  llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2439
2440  for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2441    if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2442      ReportNodes.push_back(std::make_pair(NewNode, i));
2443      RemainingNodes.insert(NewNode);
2444    }
2445  }
2446
2447  assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2448
2449  // Perform a forward BFS to find all the shortest paths.
2450  std::queue<const ExplodedNode *> WS;
2451
2452  assert(G->num_roots() == 1);
2453  WS.push(*G->roots_begin());
2454  unsigned Priority = 0;
2455
2456  while (!WS.empty()) {
2457    const ExplodedNode *Node = WS.front();
2458    WS.pop();
2459
2460    PriorityMapTy::iterator PriorityEntry;
2461    bool IsNew;
2462    llvm::tie(PriorityEntry, IsNew) =
2463      PriorityMap.insert(std::make_pair(Node, Priority));
2464    ++Priority;
2465
2466    if (!IsNew) {
2467      assert(PriorityEntry->second <= Priority);
2468      continue;
2469    }
2470
2471    if (RemainingNodes.erase(Node))
2472      if (RemainingNodes.empty())
2473        break;
2474
2475    for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2476                                           E = Node->succ_end();
2477         I != E; ++I)
2478      WS.push(*I);
2479  }
2480
2481  // Sort the error paths from longest to shortest.
2482  std::sort(ReportNodes.begin(), ReportNodes.end(),
2483            PriorityCompare<true>(PriorityMap));
2484}
2485
2486bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2487  if (ReportNodes.empty())
2488    return false;
2489
2490  const ExplodedNode *OrigN;
2491  llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2492  assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2493         "error node not accessible from root");
2494
2495  // Create a new graph with a single path.  This is the graph
2496  // that will be returned to the caller.
2497  ExplodedGraph *GNew = new ExplodedGraph();
2498  GraphWrapper.Graph.reset(GNew);
2499  GraphWrapper.BackMap.clear();
2500
2501  // Now walk from the error node up the BFS path, always taking the
2502  // predeccessor with the lowest number.
2503  ExplodedNode *Succ = 0;
2504  while (true) {
2505    // Create the equivalent node in the new graph with the same state
2506    // and location.
2507    ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2508                                       OrigN->isSink());
2509
2510    // Store the mapping to the original node.
2511    InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2512    assert(IMitr != InverseMap.end() && "No mapping to original node.");
2513    GraphWrapper.BackMap[NewN] = IMitr->second;
2514
2515    // Link up the new node with the previous node.
2516    if (Succ)
2517      Succ->addPredecessor(NewN, *GNew);
2518    else
2519      GraphWrapper.ErrorNode = NewN;
2520
2521    Succ = NewN;
2522
2523    // Are we at the final node?
2524    if (OrigN->pred_empty()) {
2525      GNew->addRoot(NewN);
2526      break;
2527    }
2528
2529    // Find the next predeccessor node.  We choose the node that is marked
2530    // with the lowest BFS number.
2531    OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2532                          PriorityCompare<false>(PriorityMap));
2533  }
2534
2535  return true;
2536}
2537
2538
2539/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2540///  and collapses PathDiagosticPieces that are expanded by macros.
2541static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2542  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2543                                SourceLocation> > MacroStackTy;
2544
2545  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2546          PiecesTy;
2547
2548  MacroStackTy MacroStack;
2549  PiecesTy Pieces;
2550
2551  for (PathPieces::const_iterator I = path.begin(), E = path.end();
2552       I!=E; ++I) {
2553
2554    PathDiagnosticPiece *piece = I->getPtr();
2555
2556    // Recursively compact calls.
2557    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2558      CompactPathDiagnostic(call->path, SM);
2559    }
2560
2561    // Get the location of the PathDiagnosticPiece.
2562    const FullSourceLoc Loc = piece->getLocation().asLocation();
2563
2564    // Determine the instantiation location, which is the location we group
2565    // related PathDiagnosticPieces.
2566    SourceLocation InstantiationLoc = Loc.isMacroID() ?
2567                                      SM.getExpansionLoc(Loc) :
2568                                      SourceLocation();
2569
2570    if (Loc.isFileID()) {
2571      MacroStack.clear();
2572      Pieces.push_back(piece);
2573      continue;
2574    }
2575
2576    assert(Loc.isMacroID());
2577
2578    // Is the PathDiagnosticPiece within the same macro group?
2579    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2580      MacroStack.back().first->subPieces.push_back(piece);
2581      continue;
2582    }
2583
2584    // We aren't in the same group.  Are we descending into a new macro
2585    // or are part of an old one?
2586    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
2587
2588    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2589                                          SM.getExpansionLoc(Loc) :
2590                                          SourceLocation();
2591
2592    // Walk the entire macro stack.
2593    while (!MacroStack.empty()) {
2594      if (InstantiationLoc == MacroStack.back().second) {
2595        MacroGroup = MacroStack.back().first;
2596        break;
2597      }
2598
2599      if (ParentInstantiationLoc == MacroStack.back().second) {
2600        MacroGroup = MacroStack.back().first;
2601        break;
2602      }
2603
2604      MacroStack.pop_back();
2605    }
2606
2607    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2608      // Create a new macro group and add it to the stack.
2609      PathDiagnosticMacroPiece *NewGroup =
2610        new PathDiagnosticMacroPiece(
2611          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2612
2613      if (MacroGroup)
2614        MacroGroup->subPieces.push_back(NewGroup);
2615      else {
2616        assert(InstantiationLoc.isFileID());
2617        Pieces.push_back(NewGroup);
2618      }
2619
2620      MacroGroup = NewGroup;
2621      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2622    }
2623
2624    // Finally, add the PathDiagnosticPiece to the group.
2625    MacroGroup->subPieces.push_back(piece);
2626  }
2627
2628  // Now take the pieces and construct a new PathDiagnostic.
2629  path.clear();
2630
2631  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
2632    path.push_back(*I);
2633}
2634
2635bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
2636                                           PathDiagnosticConsumer &PC,
2637                                           ArrayRef<BugReport *> &bugReports) {
2638  assert(!bugReports.empty());
2639
2640  bool HasValid = false;
2641  bool HasInvalid = false;
2642  SmallVector<const ExplodedNode *, 32> errorNodes;
2643  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
2644                                      E = bugReports.end(); I != E; ++I) {
2645    if ((*I)->isValid()) {
2646      HasValid = true;
2647      errorNodes.push_back((*I)->getErrorNode());
2648    } else {
2649      // Keep the errorNodes list in sync with the bugReports list.
2650      HasInvalid = true;
2651      errorNodes.push_back(0);
2652    }
2653  }
2654
2655  // If all the reports have been marked invalid by a previous path generation,
2656  // we're done.
2657  if (!HasValid)
2658    return false;
2659
2660  typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
2661  PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
2662
2663  if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
2664    AnalyzerOptions &options = getEngine().getAnalysisManager().options;
2665    if (options.getBooleanOption("path-diagnostics-alternate", false)) {
2666      ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
2667    }
2668  }
2669
2670  TrimmedGraph TrimG(&getGraph(), errorNodes);
2671  ReportGraph ErrorGraph;
2672
2673  while (TrimG.popNextReportGraph(ErrorGraph)) {
2674    // Find the BugReport with the original location.
2675    assert(ErrorGraph.Index < bugReports.size());
2676    BugReport *R = bugReports[ErrorGraph.Index];
2677    assert(R && "No original report found for sliced graph.");
2678    assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2679
2680    // Start building the path diagnostic...
2681    PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
2682    const ExplodedNode *N = ErrorGraph.ErrorNode;
2683
2684    // Register additional node visitors.
2685    R->addVisitor(new NilReceiverBRVisitor());
2686    R->addVisitor(new ConditionBRVisitor());
2687    R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
2688
2689    BugReport::VisitorList visitors;
2690    unsigned origReportConfigToken, finalReportConfigToken;
2691    LocationContextMap LCM;
2692
2693    // While generating diagnostics, it's possible the visitors will decide
2694    // new symbols and regions are interesting, or add other visitors based on
2695    // the information they find. If they do, we need to regenerate the path
2696    // based on our new report configuration.
2697    do {
2698      // Get a clean copy of all the visitors.
2699      for (BugReport::visitor_iterator I = R->visitor_begin(),
2700                                       E = R->visitor_end(); I != E; ++I)
2701        visitors.push_back((*I)->clone());
2702
2703      // Clear out the active path from any previous work.
2704      PD.resetPath();
2705      origReportConfigToken = R->getConfigurationChangeToken();
2706
2707      // Generate the very last diagnostic piece - the piece is visible before
2708      // the trace is expanded.
2709      PathDiagnosticPiece *LastPiece = 0;
2710      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2711          I != E; ++I) {
2712        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2713          assert (!LastPiece &&
2714              "There can only be one final piece in a diagnostic.");
2715          LastPiece = Piece;
2716        }
2717      }
2718
2719      if (ActiveScheme != PathDiagnosticConsumer::None) {
2720        if (!LastPiece)
2721          LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2722        assert(LastPiece);
2723        PD.setEndOfPath(LastPiece);
2724      }
2725
2726      // Make sure we get a clean location context map so we don't
2727      // hold onto old mappings.
2728      LCM.clear();
2729
2730      switch (ActiveScheme) {
2731      case PathDiagnosticConsumer::AlternateExtensive:
2732        GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2733        break;
2734      case PathDiagnosticConsumer::Extensive:
2735        GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2736        break;
2737      case PathDiagnosticConsumer::Minimal:
2738        GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
2739        break;
2740      case PathDiagnosticConsumer::None:
2741        GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
2742        break;
2743      }
2744
2745      // Clean up the visitors we used.
2746      llvm::DeleteContainerPointers(visitors);
2747
2748      // Did anything change while generating this path?
2749      finalReportConfigToken = R->getConfigurationChangeToken();
2750    } while (finalReportConfigToken != origReportConfigToken);
2751
2752    if (!R->isValid())
2753      continue;
2754
2755    // Finally, prune the diagnostic path of uninteresting stuff.
2756    if (!PD.path.empty()) {
2757      // Remove messages that are basically the same.
2758      removeRedundantMsgs(PD.getMutablePieces());
2759
2760      if (R->shouldPrunePath() &&
2761          getEngine().getAnalysisManager().options.shouldPrunePaths()) {
2762        bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
2763        assert(stillHasNotes);
2764        (void)stillHasNotes;
2765      }
2766
2767      adjustCallLocations(PD.getMutablePieces());
2768
2769      if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
2770        SourceManager &SM = getSourceManager();
2771
2772        // Reduce the number of edges from a very conservative set
2773        // to an aesthetically pleasing subset that conveys the
2774        // necessary information.
2775        OptimizedCallsSet OCS;
2776        while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
2777
2778        // Adjust edges into loop conditions to make them more uniform
2779        // and aesthetically pleasing.
2780        adjustLoopEdges(PD.getMutablePieces(), LCM, SM);
2781      }
2782    }
2783
2784    // We found a report and didn't suppress it.
2785    return true;
2786  }
2787
2788  // We suppressed all the reports in this equivalence class.
2789  assert(!HasInvalid && "Inconsistent suppression");
2790  (void)HasInvalid;
2791  return false;
2792}
2793
2794void BugReporter::Register(BugType *BT) {
2795  BugTypes = F.add(BugTypes, BT);
2796}
2797
2798void BugReporter::emitReport(BugReport* R) {
2799  // Compute the bug report's hash to determine its equivalence class.
2800  llvm::FoldingSetNodeID ID;
2801  R->Profile(ID);
2802
2803  // Lookup the equivance class.  If there isn't one, create it.
2804  BugType& BT = R->getBugType();
2805  Register(&BT);
2806  void *InsertPos;
2807  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2808
2809  if (!EQ) {
2810    EQ = new BugReportEquivClass(R);
2811    EQClasses.InsertNode(EQ, InsertPos);
2812    EQClassesVector.push_back(EQ);
2813  }
2814  else
2815    EQ->AddReport(R);
2816}
2817
2818
2819//===----------------------------------------------------------------------===//
2820// Emitting reports in equivalence classes.
2821//===----------------------------------------------------------------------===//
2822
2823namespace {
2824struct FRIEC_WLItem {
2825  const ExplodedNode *N;
2826  ExplodedNode::const_succ_iterator I, E;
2827
2828  FRIEC_WLItem(const ExplodedNode *n)
2829  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2830};
2831}
2832
2833static BugReport *
2834FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2835                             SmallVectorImpl<BugReport*> &bugReports) {
2836
2837  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2838  assert(I != E);
2839  BugType& BT = I->getBugType();
2840
2841  // If we don't need to suppress any of the nodes because they are
2842  // post-dominated by a sink, simply add all the nodes in the equivalence class
2843  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2844  if (!BT.isSuppressOnSink()) {
2845    BugReport *R = I;
2846    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2847      const ExplodedNode *N = I->getErrorNode();
2848      if (N) {
2849        R = I;
2850        bugReports.push_back(R);
2851      }
2852    }
2853    return R;
2854  }
2855
2856  // For bug reports that should be suppressed when all paths are post-dominated
2857  // by a sink node, iterate through the reports in the equivalence class
2858  // until we find one that isn't post-dominated (if one exists).  We use a
2859  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2860  // this as a recursive function, but we don't want to risk blowing out the
2861  // stack for very long paths.
2862  BugReport *exampleReport = 0;
2863
2864  for (; I != E; ++I) {
2865    const ExplodedNode *errorNode = I->getErrorNode();
2866
2867    if (!errorNode)
2868      continue;
2869    if (errorNode->isSink()) {
2870      llvm_unreachable(
2871           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2872    }
2873    // No successors?  By definition this nodes isn't post-dominated by a sink.
2874    if (errorNode->succ_empty()) {
2875      bugReports.push_back(I);
2876      if (!exampleReport)
2877        exampleReport = I;
2878      continue;
2879    }
2880
2881    // At this point we know that 'N' is not a sink and it has at least one
2882    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2883    typedef FRIEC_WLItem WLItem;
2884    typedef SmallVector<WLItem, 10> DFSWorkList;
2885    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2886
2887    DFSWorkList WL;
2888    WL.push_back(errorNode);
2889    Visited[errorNode] = 1;
2890
2891    while (!WL.empty()) {
2892      WLItem &WI = WL.back();
2893      assert(!WI.N->succ_empty());
2894
2895      for (; WI.I != WI.E; ++WI.I) {
2896        const ExplodedNode *Succ = *WI.I;
2897        // End-of-path node?
2898        if (Succ->succ_empty()) {
2899          // If we found an end-of-path node that is not a sink.
2900          if (!Succ->isSink()) {
2901            bugReports.push_back(I);
2902            if (!exampleReport)
2903              exampleReport = I;
2904            WL.clear();
2905            break;
2906          }
2907          // Found a sink?  Continue on to the next successor.
2908          continue;
2909        }
2910        // Mark the successor as visited.  If it hasn't been explored,
2911        // enqueue it to the DFS worklist.
2912        unsigned &mark = Visited[Succ];
2913        if (!mark) {
2914          mark = 1;
2915          WL.push_back(Succ);
2916          break;
2917        }
2918      }
2919
2920      // The worklist may have been cleared at this point.  First
2921      // check if it is empty before checking the last item.
2922      if (!WL.empty() && &WL.back() == &WI)
2923        WL.pop_back();
2924    }
2925  }
2926
2927  // ExampleReport will be NULL if all the nodes in the equivalence class
2928  // were post-dominated by sinks.
2929  return exampleReport;
2930}
2931
2932void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2933  SmallVector<BugReport*, 10> bugReports;
2934  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2935  if (exampleReport) {
2936    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2937    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2938                                                 E=C.end(); I != E; ++I) {
2939      FlushReport(exampleReport, **I, bugReports);
2940    }
2941  }
2942}
2943
2944void BugReporter::FlushReport(BugReport *exampleReport,
2945                              PathDiagnosticConsumer &PD,
2946                              ArrayRef<BugReport*> bugReports) {
2947
2948  // FIXME: Make sure we use the 'R' for the path that was actually used.
2949  // Probably doesn't make a difference in practice.
2950  BugType& BT = exampleReport->getBugType();
2951
2952  OwningPtr<PathDiagnostic>
2953    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2954                         exampleReport->getBugType().getName(),
2955                         exampleReport->getDescription(),
2956                         exampleReport->getShortDescription(/*Fallback=*/false),
2957                         BT.getCategory(),
2958                         exampleReport->getUniqueingLocation(),
2959                         exampleReport->getUniqueingDecl()));
2960
2961  MaxBugClassSize = std::max(bugReports.size(),
2962                             static_cast<size_t>(MaxBugClassSize));
2963
2964  // Generate the full path diagnostic, using the generation scheme
2965  // specified by the PathDiagnosticConsumer. Note that we have to generate
2966  // path diagnostics even for consumers which do not support paths, because
2967  // the BugReporterVisitors may mark this bug as a false positive.
2968  if (!bugReports.empty())
2969    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2970      return;
2971
2972  MaxValidBugClassSize = std::max(bugReports.size(),
2973                                  static_cast<size_t>(MaxValidBugClassSize));
2974
2975  // If the path is empty, generate a single step path with the location
2976  // of the issue.
2977  if (D->path.empty()) {
2978    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2979    PathDiagnosticPiece *piece =
2980      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2981    BugReport::ranges_iterator Beg, End;
2982    llvm::tie(Beg, End) = exampleReport->getRanges();
2983    for ( ; Beg != End; ++Beg)
2984      piece->addRange(*Beg);
2985    D->setEndOfPath(piece);
2986  }
2987
2988  // Get the meta data.
2989  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2990  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2991                                                e = Meta.end(); i != e; ++i) {
2992    D->addMeta(*i);
2993  }
2994
2995  PD.HandlePathDiagnostic(D.take());
2996}
2997
2998void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2999                                  StringRef name,
3000                                  StringRef category,
3001                                  StringRef str, PathDiagnosticLocation Loc,
3002                                  SourceRange* RBeg, unsigned NumRanges) {
3003
3004  // 'BT' is owned by BugReporter.
3005  BugType *BT = getBugTypeForName(name, category);
3006  BugReport *R = new BugReport(*BT, str, Loc);
3007  R->setDeclWithIssue(DeclWithIssue);
3008  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
3009  emitReport(R);
3010}
3011
3012BugType *BugReporter::getBugTypeForName(StringRef name,
3013                                        StringRef category) {
3014  SmallString<136> fullDesc;
3015  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
3016  llvm::StringMapEntry<BugType *> &
3017      entry = StrBugTypes.GetOrCreateValue(fullDesc);
3018  BugType *BT = entry.getValue();
3019  if (!BT) {
3020    BT = new BugType(name, category);
3021    entry.setValue(BT);
3022  }
3023  return BT;
3024}
3025