BugReporter.cpp revision bb518991ce4298d8662235fc8cb13813f011c18d
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "BugReporter"
16
17#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ParentMap.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Analysis/ProgramPoint.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/IntrusiveRefCntPtr.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/raw_ostream.h"
36#include <queue>
37
38using namespace clang;
39using namespace ento;
40
41STATISTIC(MaxBugClassSize,
42          "The maximum number of bug reports in the same equivalence class");
43STATISTIC(MaxValidBugClassSize,
44          "The maximum number of bug reports in the same equivalence class "
45          "where at least one report is valid (not suppressed)");
46
47BugReporterVisitor::~BugReporterVisitor() {}
48
49void BugReporterContext::anchor() {}
50
51//===----------------------------------------------------------------------===//
52// Helper routines for walking the ExplodedGraph and fetching statements.
53//===----------------------------------------------------------------------===//
54
55static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
56  for (N = N->getFirstPred(); N; N = N->getFirstPred())
57    if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
58      return S;
59
60  return 0;
61}
62
63static inline const Stmt*
64GetCurrentOrPreviousStmt(const ExplodedNode *N) {
65  if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
66    return S;
67
68  return GetPreviousStmt(N);
69}
70
71//===----------------------------------------------------------------------===//
72// Diagnostic cleanup.
73//===----------------------------------------------------------------------===//
74
75static PathDiagnosticEventPiece *
76eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
77                            PathDiagnosticEventPiece *Y) {
78  // Prefer diagnostics that come from ConditionBRVisitor over
79  // those that came from TrackConstraintBRVisitor.
80  const void *tagPreferred = ConditionBRVisitor::getTag();
81  const void *tagLesser = TrackConstraintBRVisitor::getTag();
82
83  if (X->getLocation() != Y->getLocation())
84    return 0;
85
86  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
87    return X;
88
89  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
90    return Y;
91
92  return 0;
93}
94
95/// An optimization pass over PathPieces that removes redundant diagnostics
96/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
97/// BugReporterVisitors use different methods to generate diagnostics, with
98/// one capable of emitting diagnostics in some cases but not in others.  This
99/// can lead to redundant diagnostic pieces at the same point in a path.
100static void removeRedundantMsgs(PathPieces &path) {
101  unsigned N = path.size();
102  if (N < 2)
103    return;
104  // NOTE: this loop intentionally is not using an iterator.  Instead, we
105  // are streaming the path and modifying it in place.  This is done by
106  // grabbing the front, processing it, and if we decide to keep it append
107  // it to the end of the path.  The entire path is processed in this way.
108  for (unsigned i = 0; i < N; ++i) {
109    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
110    path.pop_front();
111
112    switch (piece->getKind()) {
113      case clang::ento::PathDiagnosticPiece::Call:
114        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
115        break;
116      case clang::ento::PathDiagnosticPiece::Macro:
117        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
118        break;
119      case clang::ento::PathDiagnosticPiece::ControlFlow:
120        break;
121      case clang::ento::PathDiagnosticPiece::Event: {
122        if (i == N-1)
123          break;
124
125        if (PathDiagnosticEventPiece *nextEvent =
126            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
127          PathDiagnosticEventPiece *event =
128            cast<PathDiagnosticEventPiece>(piece);
129          // Check to see if we should keep one of the two pieces.  If we
130          // come up with a preference, record which piece to keep, and consume
131          // another piece from the path.
132          if (PathDiagnosticEventPiece *pieceToKeep =
133              eventsDescribeSameCondition(event, nextEvent)) {
134            piece = pieceToKeep;
135            path.pop_front();
136            ++i;
137          }
138        }
139        break;
140      }
141    }
142    path.push_back(piece);
143  }
144}
145
146/// A map from PathDiagnosticPiece to the LocationContext of the inlined
147/// function call it represents.
148typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
149        LocationContextMap;
150
151/// Recursively scan through a path and prune out calls and macros pieces
152/// that aren't needed.  Return true if afterwards the path contains
153/// "interesting stuff" which means it shouldn't be pruned from the parent path.
154static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
155                                LocationContextMap &LCM) {
156  bool containsSomethingInteresting = false;
157  const unsigned N = pieces.size();
158
159  for (unsigned i = 0 ; i < N ; ++i) {
160    // Remove the front piece from the path.  If it is still something we
161    // want to keep once we are done, we will push it back on the end.
162    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
163    pieces.pop_front();
164
165    // Throw away pieces with invalid locations. Note that we can't throw away
166    // calls just yet because they might have something interesting inside them.
167    // If so, their locations will be adjusted as necessary later.
168    if (piece->getKind() != PathDiagnosticPiece::Call &&
169        piece->getLocation().asLocation().isInvalid())
170      continue;
171
172    switch (piece->getKind()) {
173      case PathDiagnosticPiece::Call: {
174        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
175        // Check if the location context is interesting.
176        assert(LCM.count(&call->path));
177        if (R->isInteresting(LCM[&call->path])) {
178          containsSomethingInteresting = true;
179          break;
180        }
181
182        if (!removeUnneededCalls(call->path, R, LCM))
183          continue;
184
185        containsSomethingInteresting = true;
186        break;
187      }
188      case PathDiagnosticPiece::Macro: {
189        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
190        if (!removeUnneededCalls(macro->subPieces, R, LCM))
191          continue;
192        containsSomethingInteresting = true;
193        break;
194      }
195      case PathDiagnosticPiece::Event: {
196        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
197
198        // We never throw away an event, but we do throw it away wholesale
199        // as part of a path if we throw the entire path away.
200        containsSomethingInteresting |= !event->isPrunable();
201        break;
202      }
203      case PathDiagnosticPiece::ControlFlow:
204        break;
205    }
206
207    pieces.push_back(piece);
208  }
209
210  return containsSomethingInteresting;
211}
212
213/// Recursively scan through a path and make sure that all call pieces have
214/// valid locations. Note that all other pieces with invalid locations should
215/// have already been pruned out.
216static void adjustCallLocations(PathPieces &Pieces,
217                                PathDiagnosticLocation *LastCallLocation = 0) {
218  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
219    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
220
221    if (!Call) {
222      assert((*I)->getLocation().asLocation().isValid());
223      continue;
224    }
225
226    if (LastCallLocation) {
227      if (!Call->callEnter.asLocation().isValid() ||
228          Call->getCaller()->isImplicit())
229        Call->callEnter = *LastCallLocation;
230      if (!Call->callReturn.asLocation().isValid() ||
231          Call->getCaller()->isImplicit())
232        Call->callReturn = *LastCallLocation;
233    }
234
235    // Recursively clean out the subclass.  Keep this call around if
236    // it contains any informative diagnostics.
237    PathDiagnosticLocation *ThisCallLocation;
238    if (Call->callEnterWithin.asLocation().isValid() &&
239        !Call->getCallee()->isImplicit())
240      ThisCallLocation = &Call->callEnterWithin;
241    else
242      ThisCallLocation = &Call->callEnter;
243
244    assert(ThisCallLocation && "Outermost call has an invalid location");
245    adjustCallLocations(Call->path, ThisCallLocation);
246  }
247}
248
249//===----------------------------------------------------------------------===//
250// PathDiagnosticBuilder and its associated routines and helper objects.
251//===----------------------------------------------------------------------===//
252
253namespace {
254class NodeMapClosure : public BugReport::NodeResolver {
255  InterExplodedGraphMap &M;
256public:
257  NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
258
259  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
260    return M.lookup(N);
261  }
262};
263
264class PathDiagnosticBuilder : public BugReporterContext {
265  BugReport *R;
266  PathDiagnosticConsumer *PDC;
267  NodeMapClosure NMC;
268public:
269  const LocationContext *LC;
270
271  PathDiagnosticBuilder(GRBugReporter &br,
272                        BugReport *r, InterExplodedGraphMap &Backmap,
273                        PathDiagnosticConsumer *pdc)
274    : BugReporterContext(br),
275      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
276  {}
277
278  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
279
280  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
281                                            const ExplodedNode *N);
282
283  BugReport *getBugReport() { return R; }
284
285  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
286
287  ParentMap& getParentMap() { return LC->getParentMap(); }
288
289  const Stmt *getParent(const Stmt *S) {
290    return getParentMap().getParent(S);
291  }
292
293  virtual NodeMapClosure& getNodeResolver() { return NMC; }
294
295  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
296
297  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
298    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
299  }
300
301  bool supportsLogicalOpControlFlow() const {
302    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
303  }
304};
305} // end anonymous namespace
306
307PathDiagnosticLocation
308PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
309  if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
310    return PathDiagnosticLocation(S, getSourceManager(), LC);
311
312  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
313                                               getSourceManager());
314}
315
316PathDiagnosticLocation
317PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
318                                          const ExplodedNode *N) {
319
320  // Slow, but probably doesn't matter.
321  if (os.str().empty())
322    os << ' ';
323
324  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
325
326  if (Loc.asStmt())
327    os << "Execution continues on line "
328       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
329       << '.';
330  else {
331    os << "Execution jumps to the end of the ";
332    const Decl *D = N->getLocationContext()->getDecl();
333    if (isa<ObjCMethodDecl>(D))
334      os << "method";
335    else if (isa<FunctionDecl>(D))
336      os << "function";
337    else {
338      assert(isa<BlockDecl>(D));
339      os << "anonymous block";
340    }
341    os << '.';
342  }
343
344  return Loc;
345}
346
347static bool IsNested(const Stmt *S, ParentMap &PM) {
348  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
349    return true;
350
351  const Stmt *Parent = PM.getParentIgnoreParens(S);
352
353  if (Parent)
354    switch (Parent->getStmtClass()) {
355      case Stmt::ForStmtClass:
356      case Stmt::DoStmtClass:
357      case Stmt::WhileStmtClass:
358        return true;
359      default:
360        break;
361    }
362
363  return false;
364}
365
366PathDiagnosticLocation
367PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
368  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
369  ParentMap &P = getParentMap();
370  SourceManager &SMgr = getSourceManager();
371
372  while (IsNested(S, P)) {
373    const Stmt *Parent = P.getParentIgnoreParens(S);
374
375    if (!Parent)
376      break;
377
378    switch (Parent->getStmtClass()) {
379      case Stmt::BinaryOperatorClass: {
380        const BinaryOperator *B = cast<BinaryOperator>(Parent);
381        if (B->isLogicalOp())
382          return PathDiagnosticLocation(S, SMgr, LC);
383        break;
384      }
385      case Stmt::CompoundStmtClass:
386      case Stmt::StmtExprClass:
387        return PathDiagnosticLocation(S, SMgr, LC);
388      case Stmt::ChooseExprClass:
389        // Similar to '?' if we are referring to condition, just have the edge
390        // point to the entire choose expression.
391        if (cast<ChooseExpr>(Parent)->getCond() == S)
392          return PathDiagnosticLocation(Parent, SMgr, LC);
393        else
394          return PathDiagnosticLocation(S, SMgr, LC);
395      case Stmt::BinaryConditionalOperatorClass:
396      case Stmt::ConditionalOperatorClass:
397        // For '?', if we are referring to condition, just have the edge point
398        // to the entire '?' expression.
399        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
400          return PathDiagnosticLocation(Parent, SMgr, LC);
401        else
402          return PathDiagnosticLocation(S, SMgr, LC);
403      case Stmt::DoStmtClass:
404          return PathDiagnosticLocation(S, SMgr, LC);
405      case Stmt::ForStmtClass:
406        if (cast<ForStmt>(Parent)->getBody() == S)
407          return PathDiagnosticLocation(S, SMgr, LC);
408        break;
409      case Stmt::IfStmtClass:
410        if (cast<IfStmt>(Parent)->getCond() != S)
411          return PathDiagnosticLocation(S, SMgr, LC);
412        break;
413      case Stmt::ObjCForCollectionStmtClass:
414        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
415          return PathDiagnosticLocation(S, SMgr, LC);
416        break;
417      case Stmt::WhileStmtClass:
418        if (cast<WhileStmt>(Parent)->getCond() != S)
419          return PathDiagnosticLocation(S, SMgr, LC);
420        break;
421      default:
422        break;
423    }
424
425    S = Parent;
426  }
427
428  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
429
430  // Special case: DeclStmts can appear in for statement declarations, in which
431  //  case the ForStmt is the context.
432  if (isa<DeclStmt>(S)) {
433    if (const Stmt *Parent = P.getParent(S)) {
434      switch (Parent->getStmtClass()) {
435        case Stmt::ForStmtClass:
436        case Stmt::ObjCForCollectionStmtClass:
437          return PathDiagnosticLocation(Parent, SMgr, LC);
438        default:
439          break;
440      }
441    }
442  }
443  else if (isa<BinaryOperator>(S)) {
444    // Special case: the binary operator represents the initialization
445    // code in a for statement (this can happen when the variable being
446    // initialized is an old variable.
447    if (const ForStmt *FS =
448          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
449      if (FS->getInit() == S)
450        return PathDiagnosticLocation(FS, SMgr, LC);
451    }
452  }
453
454  return PathDiagnosticLocation(S, SMgr, LC);
455}
456
457//===----------------------------------------------------------------------===//
458// "Visitors only" path diagnostic generation algorithm.
459//===----------------------------------------------------------------------===//
460static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
461                                               PathDiagnosticBuilder &PDB,
462                                               const ExplodedNode *N,
463                                      ArrayRef<BugReporterVisitor *> visitors) {
464  // All path generation skips the very first node (the error node).
465  // This is because there is special handling for the end-of-path note.
466  N = N->getFirstPred();
467  if (!N)
468    return true;
469
470  BugReport *R = PDB.getBugReport();
471  while (const ExplodedNode *Pred = N->getFirstPred()) {
472    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
473                                                  E = visitors.end();
474         I != E; ++I) {
475      // Visit all the node pairs, but throw the path pieces away.
476      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
477      delete Piece;
478    }
479
480    N = Pred;
481  }
482
483  return R->isValid();
484}
485
486//===----------------------------------------------------------------------===//
487// "Minimal" path diagnostic generation algorithm.
488//===----------------------------------------------------------------------===//
489typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
490typedef SmallVector<StackDiagPair, 6> StackDiagVector;
491
492static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
493                                         StackDiagVector &CallStack) {
494  // If the piece contains a special message, add it to all the call
495  // pieces on the active stack.
496  if (PathDiagnosticEventPiece *ep =
497        dyn_cast<PathDiagnosticEventPiece>(P)) {
498
499    if (ep->hasCallStackHint())
500      for (StackDiagVector::iterator I = CallStack.begin(),
501                                     E = CallStack.end(); I != E; ++I) {
502        PathDiagnosticCallPiece *CP = I->first;
503        const ExplodedNode *N = I->second;
504        std::string stackMsg = ep->getCallStackMessage(N);
505
506        // The last message on the path to final bug is the most important
507        // one. Since we traverse the path backwards, do not add the message
508        // if one has been previously added.
509        if  (!CP->hasCallStackMessage())
510          CP->setCallStackMessage(stackMsg);
511      }
512  }
513}
514
515static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
516
517static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
518                                          PathDiagnosticBuilder &PDB,
519                                          const ExplodedNode *N,
520                                          LocationContextMap &LCM,
521                                      ArrayRef<BugReporterVisitor *> visitors) {
522
523  SourceManager& SMgr = PDB.getSourceManager();
524  const LocationContext *LC = PDB.LC;
525  const ExplodedNode *NextNode = N->pred_empty()
526                                        ? NULL : *(N->pred_begin());
527
528  StackDiagVector CallStack;
529
530  while (NextNode) {
531    N = NextNode;
532    PDB.LC = N->getLocationContext();
533    NextNode = N->getFirstPred();
534
535    ProgramPoint P = N->getLocation();
536
537    do {
538      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
539        PathDiagnosticCallPiece *C =
540            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
541        // Record the mapping from call piece to LocationContext.
542        LCM[&C->path] = CE->getCalleeContext();
543        PD.getActivePath().push_front(C);
544        PD.pushActivePath(&C->path);
545        CallStack.push_back(StackDiagPair(C, N));
546        break;
547      }
548
549      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
550        // Flush all locations, and pop the active path.
551        bool VisitedEntireCall = PD.isWithinCall();
552        PD.popActivePath();
553
554        // Either we just added a bunch of stuff to the top-level path, or
555        // we have a previous CallExitEnd.  If the former, it means that the
556        // path terminated within a function call.  We must then take the
557        // current contents of the active path and place it within
558        // a new PathDiagnosticCallPiece.
559        PathDiagnosticCallPiece *C;
560        if (VisitedEntireCall) {
561          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
562        } else {
563          const Decl *Caller = CE->getLocationContext()->getDecl();
564          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
565          // Record the mapping from call piece to LocationContext.
566          LCM[&C->path] = CE->getCalleeContext();
567        }
568
569        C->setCallee(*CE, SMgr);
570        if (!CallStack.empty()) {
571          assert(CallStack.back().first == C);
572          CallStack.pop_back();
573        }
574        break;
575      }
576
577      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
578        const CFGBlock *Src = BE->getSrc();
579        const CFGBlock *Dst = BE->getDst();
580        const Stmt *T = Src->getTerminator();
581
582        if (!T)
583          break;
584
585        PathDiagnosticLocation Start =
586            PathDiagnosticLocation::createBegin(T, SMgr,
587                N->getLocationContext());
588
589        switch (T->getStmtClass()) {
590        default:
591          break;
592
593        case Stmt::GotoStmtClass:
594        case Stmt::IndirectGotoStmtClass: {
595          const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
596
597          if (!S)
598            break;
599
600          std::string sbuf;
601          llvm::raw_string_ostream os(sbuf);
602          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
603
604          os << "Control jumps to line "
605              << End.asLocation().getExpansionLineNumber();
606          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
607              Start, End, os.str()));
608          break;
609        }
610
611        case Stmt::SwitchStmtClass: {
612          // Figure out what case arm we took.
613          std::string sbuf;
614          llvm::raw_string_ostream os(sbuf);
615
616          if (const Stmt *S = Dst->getLabel()) {
617            PathDiagnosticLocation End(S, SMgr, LC);
618
619            switch (S->getStmtClass()) {
620            default:
621              os << "No cases match in the switch statement. "
622              "Control jumps to line "
623              << End.asLocation().getExpansionLineNumber();
624              break;
625            case Stmt::DefaultStmtClass:
626              os << "Control jumps to the 'default' case at line "
627              << End.asLocation().getExpansionLineNumber();
628              break;
629
630            case Stmt::CaseStmtClass: {
631              os << "Control jumps to 'case ";
632              const CaseStmt *Case = cast<CaseStmt>(S);
633              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
634
635              // Determine if it is an enum.
636              bool GetRawInt = true;
637
638              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
639                // FIXME: Maybe this should be an assertion.  Are there cases
640                // were it is not an EnumConstantDecl?
641                const EnumConstantDecl *D =
642                    dyn_cast<EnumConstantDecl>(DR->getDecl());
643
644                if (D) {
645                  GetRawInt = false;
646                  os << *D;
647                }
648              }
649
650              if (GetRawInt)
651                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
652
653              os << ":'  at line "
654                  << End.asLocation().getExpansionLineNumber();
655              break;
656            }
657            }
658            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
659                Start, End, os.str()));
660          }
661          else {
662            os << "'Default' branch taken. ";
663            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
664            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
665                Start, End, os.str()));
666          }
667
668          break;
669        }
670
671        case Stmt::BreakStmtClass:
672        case Stmt::ContinueStmtClass: {
673          std::string sbuf;
674          llvm::raw_string_ostream os(sbuf);
675          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
676          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
677              Start, End, os.str()));
678          break;
679        }
680
681        // Determine control-flow for ternary '?'.
682        case Stmt::BinaryConditionalOperatorClass:
683        case Stmt::ConditionalOperatorClass: {
684          std::string sbuf;
685          llvm::raw_string_ostream os(sbuf);
686          os << "'?' condition is ";
687
688          if (*(Src->succ_begin()+1) == Dst)
689            os << "false";
690          else
691            os << "true";
692
693          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
694
695          if (const Stmt *S = End.asStmt())
696            End = PDB.getEnclosingStmtLocation(S);
697
698          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
699              Start, End, os.str()));
700          break;
701        }
702
703        // Determine control-flow for short-circuited '&&' and '||'.
704        case Stmt::BinaryOperatorClass: {
705          if (!PDB.supportsLogicalOpControlFlow())
706            break;
707
708          const BinaryOperator *B = cast<BinaryOperator>(T);
709          std::string sbuf;
710          llvm::raw_string_ostream os(sbuf);
711          os << "Left side of '";
712
713          if (B->getOpcode() == BO_LAnd) {
714            os << "&&" << "' is ";
715
716            if (*(Src->succ_begin()+1) == Dst) {
717              os << "false";
718              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
719              PathDiagnosticLocation Start =
720                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
721              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
722                  Start, End, os.str()));
723            }
724            else {
725              os << "true";
726              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
727              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
728              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
729                  Start, End, os.str()));
730            }
731          }
732          else {
733            assert(B->getOpcode() == BO_LOr);
734            os << "||" << "' is ";
735
736            if (*(Src->succ_begin()+1) == Dst) {
737              os << "false";
738              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
739              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
740              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
741                  Start, End, os.str()));
742            }
743            else {
744              os << "true";
745              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
746              PathDiagnosticLocation Start =
747                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
748              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
749                  Start, End, os.str()));
750            }
751          }
752
753          break;
754        }
755
756        case Stmt::DoStmtClass:  {
757          if (*(Src->succ_begin()) == Dst) {
758            std::string sbuf;
759            llvm::raw_string_ostream os(sbuf);
760
761            os << "Loop condition is true. ";
762            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
763
764            if (const Stmt *S = End.asStmt())
765              End = PDB.getEnclosingStmtLocation(S);
766
767            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
768                Start, End, os.str()));
769          }
770          else {
771            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
772
773            if (const Stmt *S = End.asStmt())
774              End = PDB.getEnclosingStmtLocation(S);
775
776            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
777                Start, End, "Loop condition is false.  Exiting loop"));
778          }
779
780          break;
781        }
782
783        case Stmt::WhileStmtClass:
784        case Stmt::ForStmtClass: {
785          if (*(Src->succ_begin()+1) == Dst) {
786            std::string sbuf;
787            llvm::raw_string_ostream os(sbuf);
788
789            os << "Loop condition is false. ";
790            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
791            if (const Stmt *S = End.asStmt())
792              End = PDB.getEnclosingStmtLocation(S);
793
794            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
795                Start, End, os.str()));
796          }
797          else {
798            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
799            if (const Stmt *S = End.asStmt())
800              End = PDB.getEnclosingStmtLocation(S);
801
802            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
803                Start, End, "Loop condition is true.  Entering loop body"));
804          }
805
806          break;
807        }
808
809        case Stmt::IfStmtClass: {
810          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
811
812          if (const Stmt *S = End.asStmt())
813            End = PDB.getEnclosingStmtLocation(S);
814
815          if (*(Src->succ_begin()+1) == Dst)
816            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
817                Start, End, "Taking false branch"));
818          else
819            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
820                Start, End, "Taking true branch"));
821
822          break;
823        }
824        }
825      }
826    } while(0);
827
828    if (NextNode) {
829      // Add diagnostic pieces from custom visitors.
830      BugReport *R = PDB.getBugReport();
831      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
832                                                    E = visitors.end();
833           I != E; ++I) {
834        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
835          PD.getActivePath().push_front(p);
836          updateStackPiecesWithMessage(p, CallStack);
837        }
838      }
839    }
840  }
841
842  if (!PDB.getBugReport()->isValid())
843    return false;
844
845  // After constructing the full PathDiagnostic, do a pass over it to compact
846  // PathDiagnosticPieces that occur within a macro.
847  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
848  return true;
849}
850
851//===----------------------------------------------------------------------===//
852// "Extensive" PathDiagnostic generation.
853//===----------------------------------------------------------------------===//
854
855static bool IsControlFlowExpr(const Stmt *S) {
856  const Expr *E = dyn_cast<Expr>(S);
857
858  if (!E)
859    return false;
860
861  E = E->IgnoreParenCasts();
862
863  if (isa<AbstractConditionalOperator>(E))
864    return true;
865
866  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
867    if (B->isLogicalOp())
868      return true;
869
870  return false;
871}
872
873namespace {
874class ContextLocation : public PathDiagnosticLocation {
875  bool IsDead;
876public:
877  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
878    : PathDiagnosticLocation(L), IsDead(isdead) {}
879
880  void markDead() { IsDead = true; }
881  bool isDead() const { return IsDead; }
882};
883
884static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
885                                              const LocationContext *LC,
886                                              bool firstCharOnly = false) {
887  if (const Stmt *S = L.asStmt()) {
888    const Stmt *Original = S;
889    while (1) {
890      // Adjust the location for some expressions that are best referenced
891      // by one of their subexpressions.
892      switch (S->getStmtClass()) {
893        default:
894          break;
895        case Stmt::ParenExprClass:
896        case Stmt::GenericSelectionExprClass:
897          S = cast<Expr>(S)->IgnoreParens();
898          firstCharOnly = true;
899          continue;
900        case Stmt::BinaryConditionalOperatorClass:
901        case Stmt::ConditionalOperatorClass:
902          S = cast<AbstractConditionalOperator>(S)->getCond();
903          firstCharOnly = true;
904          continue;
905        case Stmt::ChooseExprClass:
906          S = cast<ChooseExpr>(S)->getCond();
907          firstCharOnly = true;
908          continue;
909        case Stmt::BinaryOperatorClass:
910          S = cast<BinaryOperator>(S)->getLHS();
911          firstCharOnly = true;
912          continue;
913      }
914
915      break;
916    }
917
918    if (S != Original)
919      L = PathDiagnosticLocation(S, L.getManager(), LC);
920  }
921
922  if (firstCharOnly)
923    L  = PathDiagnosticLocation::createSingleLocation(L);
924
925  return L;
926}
927
928class EdgeBuilder {
929  std::vector<ContextLocation> CLocs;
930  typedef std::vector<ContextLocation>::iterator iterator;
931  PathDiagnostic &PD;
932  PathDiagnosticBuilder &PDB;
933  PathDiagnosticLocation PrevLoc;
934
935  bool IsConsumedExpr(const PathDiagnosticLocation &L);
936
937  bool containsLocation(const PathDiagnosticLocation &Container,
938                        const PathDiagnosticLocation &Containee);
939
940  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
941
942
943
944  void popLocation() {
945    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
946      // For contexts, we only one the first character as the range.
947      rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
948    }
949    CLocs.pop_back();
950  }
951
952public:
953  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
954    : PD(pd), PDB(pdb) {
955
956      // If the PathDiagnostic already has pieces, add the enclosing statement
957      // of the first piece as a context as well.
958      if (!PD.path.empty()) {
959        PrevLoc = (*PD.path.begin())->getLocation();
960
961        if (const Stmt *S = PrevLoc.asStmt())
962          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
963      }
964  }
965
966  ~EdgeBuilder() {
967    while (!CLocs.empty()) popLocation();
968
969    // Finally, add an initial edge from the start location of the first
970    // statement (if it doesn't already exist).
971    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
972                                                       PDB.LC,
973                                                       PDB.getSourceManager());
974    if (L.isValid())
975      rawAddEdge(L);
976  }
977
978  void flushLocations() {
979    while (!CLocs.empty())
980      popLocation();
981    PrevLoc = PathDiagnosticLocation();
982  }
983
984  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
985               bool IsPostJump = false);
986
987  void rawAddEdge(PathDiagnosticLocation NewLoc);
988
989  void addContext(const Stmt *S);
990  void addContext(const PathDiagnosticLocation &L);
991  void addExtendedContext(const Stmt *S);
992};
993} // end anonymous namespace
994
995
996PathDiagnosticLocation
997EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
998  if (const Stmt *S = L.asStmt()) {
999    if (IsControlFlowExpr(S))
1000      return L;
1001
1002    return PDB.getEnclosingStmtLocation(S);
1003  }
1004
1005  return L;
1006}
1007
1008bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1009                                   const PathDiagnosticLocation &Containee) {
1010
1011  if (Container == Containee)
1012    return true;
1013
1014  if (Container.asDecl())
1015    return true;
1016
1017  if (const Stmt *S = Containee.asStmt())
1018    if (const Stmt *ContainerS = Container.asStmt()) {
1019      while (S) {
1020        if (S == ContainerS)
1021          return true;
1022        S = PDB.getParent(S);
1023      }
1024      return false;
1025    }
1026
1027  // Less accurate: compare using source ranges.
1028  SourceRange ContainerR = Container.asRange();
1029  SourceRange ContaineeR = Containee.asRange();
1030
1031  SourceManager &SM = PDB.getSourceManager();
1032  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1033  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1034  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1035  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1036
1037  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1038  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1039  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1040  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1041
1042  assert(ContainerBegLine <= ContainerEndLine);
1043  assert(ContaineeBegLine <= ContaineeEndLine);
1044
1045  return (ContainerBegLine <= ContaineeBegLine &&
1046          ContainerEndLine >= ContaineeEndLine &&
1047          (ContainerBegLine != ContaineeBegLine ||
1048           SM.getExpansionColumnNumber(ContainerRBeg) <=
1049           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1050          (ContainerEndLine != ContaineeEndLine ||
1051           SM.getExpansionColumnNumber(ContainerREnd) >=
1052           SM.getExpansionColumnNumber(ContaineeREnd)));
1053}
1054
1055void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1056  if (!PrevLoc.isValid()) {
1057    PrevLoc = NewLoc;
1058    return;
1059  }
1060
1061  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1062  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1063
1064  if (PrevLocClean.asLocation().isInvalid()) {
1065    PrevLoc = NewLoc;
1066    return;
1067  }
1068
1069  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1070    return;
1071
1072  // FIXME: Ignore intra-macro edges for now.
1073  if (NewLocClean.asLocation().getExpansionLoc() ==
1074      PrevLocClean.asLocation().getExpansionLoc())
1075    return;
1076
1077  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1078  PrevLoc = NewLoc;
1079}
1080
1081void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1082                          bool IsPostJump) {
1083
1084  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1085    return;
1086
1087  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1088
1089  while (!CLocs.empty()) {
1090    ContextLocation &TopContextLoc = CLocs.back();
1091
1092    // Is the top location context the same as the one for the new location?
1093    if (TopContextLoc == CLoc) {
1094      if (alwaysAdd) {
1095        if (IsConsumedExpr(TopContextLoc))
1096          TopContextLoc.markDead();
1097
1098        rawAddEdge(NewLoc);
1099      }
1100
1101      if (IsPostJump)
1102        TopContextLoc.markDead();
1103      return;
1104    }
1105
1106    if (containsLocation(TopContextLoc, CLoc)) {
1107      if (alwaysAdd) {
1108        rawAddEdge(NewLoc);
1109
1110        if (IsConsumedExpr(CLoc)) {
1111          CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1112          return;
1113        }
1114      }
1115
1116      CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1117      return;
1118    }
1119
1120    // Context does not contain the location.  Flush it.
1121    popLocation();
1122  }
1123
1124  // If we reach here, there is no enclosing context.  Just add the edge.
1125  rawAddEdge(NewLoc);
1126}
1127
1128bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1129  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1130    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1131
1132  return false;
1133}
1134
1135void EdgeBuilder::addExtendedContext(const Stmt *S) {
1136  if (!S)
1137    return;
1138
1139  const Stmt *Parent = PDB.getParent(S);
1140  while (Parent) {
1141    if (isa<CompoundStmt>(Parent))
1142      Parent = PDB.getParent(Parent);
1143    else
1144      break;
1145  }
1146
1147  if (Parent) {
1148    switch (Parent->getStmtClass()) {
1149      case Stmt::DoStmtClass:
1150      case Stmt::ObjCAtSynchronizedStmtClass:
1151        addContext(Parent);
1152      default:
1153        break;
1154    }
1155  }
1156
1157  addContext(S);
1158}
1159
1160void EdgeBuilder::addContext(const Stmt *S) {
1161  if (!S)
1162    return;
1163
1164  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1165  addContext(L);
1166}
1167
1168void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1169  while (!CLocs.empty()) {
1170    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1171
1172    // Is the top location context the same as the one for the new location?
1173    if (TopContextLoc == L)
1174      return;
1175
1176    if (containsLocation(TopContextLoc, L)) {
1177      CLocs.push_back(L);
1178      return;
1179    }
1180
1181    // Context does not contain the location.  Flush it.
1182    popLocation();
1183  }
1184
1185  CLocs.push_back(L);
1186}
1187
1188// Cone-of-influence: support the reverse propagation of "interesting" symbols
1189// and values by tracing interesting calculations backwards through evaluated
1190// expressions along a path.  This is probably overly complicated, but the idea
1191// is that if an expression computed an "interesting" value, the child
1192// expressions are are also likely to be "interesting" as well (which then
1193// propagates to the values they in turn compute).  This reverse propagation
1194// is needed to track interesting correlations across function call boundaries,
1195// where formal arguments bind to actual arguments, etc.  This is also needed
1196// because the constraint solver sometimes simplifies certain symbolic values
1197// into constants when appropriate, and this complicates reasoning about
1198// interesting values.
1199typedef llvm::DenseSet<const Expr *> InterestingExprs;
1200
1201static void reversePropagateIntererstingSymbols(BugReport &R,
1202                                                InterestingExprs &IE,
1203                                                const ProgramState *State,
1204                                                const Expr *Ex,
1205                                                const LocationContext *LCtx) {
1206  SVal V = State->getSVal(Ex, LCtx);
1207  if (!(R.isInteresting(V) || IE.count(Ex)))
1208    return;
1209
1210  switch (Ex->getStmtClass()) {
1211    default:
1212      if (!isa<CastExpr>(Ex))
1213        break;
1214      // Fall through.
1215    case Stmt::BinaryOperatorClass:
1216    case Stmt::UnaryOperatorClass: {
1217      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1218            CE = Ex->child_end();
1219            CI != CE; ++CI) {
1220        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1221          IE.insert(child);
1222          SVal ChildV = State->getSVal(child, LCtx);
1223          R.markInteresting(ChildV);
1224        }
1225        break;
1226      }
1227    }
1228  }
1229
1230  R.markInteresting(V);
1231}
1232
1233static void reversePropagateInterestingSymbols(BugReport &R,
1234                                               InterestingExprs &IE,
1235                                               const ProgramState *State,
1236                                               const LocationContext *CalleeCtx,
1237                                               const LocationContext *CallerCtx)
1238{
1239  // FIXME: Handle non-CallExpr-based CallEvents.
1240  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1241  const Stmt *CallSite = Callee->getCallSite();
1242  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1243    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1244      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1245                                         PE = FD->param_end();
1246      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1247      for (; AI != AE && PI != PE; ++AI, ++PI) {
1248        if (const Expr *ArgE = *AI) {
1249          if (const ParmVarDecl *PD = *PI) {
1250            Loc LV = State->getLValue(PD, CalleeCtx);
1251            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1252              IE.insert(ArgE);
1253          }
1254        }
1255      }
1256    }
1257  }
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Functions for determining if a loop was executed 0 times.
1262//===----------------------------------------------------------------------===//
1263
1264static bool isLoop(const Stmt *Term) {
1265  switch (Term->getStmtClass()) {
1266    case Stmt::ForStmtClass:
1267    case Stmt::WhileStmtClass:
1268    case Stmt::ObjCForCollectionStmtClass:
1269      return true;
1270    default:
1271      // Note that we intentionally do not include do..while here.
1272      return false;
1273  }
1274}
1275
1276static bool isJumpToFalseBranch(const BlockEdge *BE) {
1277  const CFGBlock *Src = BE->getSrc();
1278  assert(Src->succ_size() == 2);
1279  return (*(Src->succ_begin()+1) == BE->getDst());
1280}
1281
1282/// Return true if the terminator is a loop and the destination is the
1283/// false branch.
1284static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1285  if (!isLoop(Term))
1286    return false;
1287
1288  // Did we take the false branch?
1289  return isJumpToFalseBranch(BE);
1290}
1291
1292static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1293  while (SubS) {
1294    if (SubS == S)
1295      return true;
1296    SubS = PM.getParent(SubS);
1297  }
1298  return false;
1299}
1300
1301static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1302                                     const ExplodedNode *N) {
1303  while (N) {
1304    Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1305    if (SP) {
1306      const Stmt *S = SP->getStmt();
1307      if (!isContainedByStmt(PM, Term, S))
1308        return S;
1309    }
1310    N = N->getFirstPred();
1311  }
1312  return 0;
1313}
1314
1315static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1316  const Stmt *LoopBody = 0;
1317  switch (Term->getStmtClass()) {
1318    case Stmt::ForStmtClass: {
1319      const ForStmt *FS = cast<ForStmt>(Term);
1320      if (isContainedByStmt(PM, FS->getInc(), S))
1321        return true;
1322      LoopBody = FS->getBody();
1323      break;
1324    }
1325    case Stmt::ObjCForCollectionStmtClass: {
1326      const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1327      LoopBody = FC->getBody();
1328      break;
1329    }
1330    case Stmt::WhileStmtClass:
1331      LoopBody = cast<WhileStmt>(Term)->getBody();
1332      break;
1333    default:
1334      return false;
1335  }
1336  return isContainedByStmt(PM, LoopBody, S);
1337}
1338
1339//===----------------------------------------------------------------------===//
1340// Top-level logic for generating extensive path diagnostics.
1341//===----------------------------------------------------------------------===//
1342
1343static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1344                                            PathDiagnosticBuilder &PDB,
1345                                            const ExplodedNode *N,
1346                                            LocationContextMap &LCM,
1347                                      ArrayRef<BugReporterVisitor *> visitors) {
1348  EdgeBuilder EB(PD, PDB);
1349  const SourceManager& SM = PDB.getSourceManager();
1350  StackDiagVector CallStack;
1351  InterestingExprs IE;
1352
1353  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1354  while (NextNode) {
1355    N = NextNode;
1356    NextNode = N->getFirstPred();
1357    ProgramPoint P = N->getLocation();
1358
1359    do {
1360      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1361        if (const Expr *Ex = PS->getStmtAs<Expr>())
1362          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1363                                              N->getState().getPtr(), Ex,
1364                                              N->getLocationContext());
1365      }
1366
1367      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1368        const Stmt *S = CE->getCalleeContext()->getCallSite();
1369        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1370            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1371                                                N->getState().getPtr(), Ex,
1372                                                N->getLocationContext());
1373        }
1374
1375        PathDiagnosticCallPiece *C =
1376          PathDiagnosticCallPiece::construct(N, *CE, SM);
1377        LCM[&C->path] = CE->getCalleeContext();
1378
1379        EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1380        EB.flushLocations();
1381
1382        PD.getActivePath().push_front(C);
1383        PD.pushActivePath(&C->path);
1384        CallStack.push_back(StackDiagPair(C, N));
1385        break;
1386      }
1387
1388      // Pop the call hierarchy if we are done walking the contents
1389      // of a function call.
1390      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1391        // Add an edge to the start of the function.
1392        const Decl *D = CE->getCalleeContext()->getDecl();
1393        PathDiagnosticLocation pos =
1394          PathDiagnosticLocation::createBegin(D, SM);
1395        EB.addEdge(pos);
1396
1397        // Flush all locations, and pop the active path.
1398        bool VisitedEntireCall = PD.isWithinCall();
1399        EB.flushLocations();
1400        PD.popActivePath();
1401        PDB.LC = N->getLocationContext();
1402
1403        // Either we just added a bunch of stuff to the top-level path, or
1404        // we have a previous CallExitEnd.  If the former, it means that the
1405        // path terminated within a function call.  We must then take the
1406        // current contents of the active path and place it within
1407        // a new PathDiagnosticCallPiece.
1408        PathDiagnosticCallPiece *C;
1409        if (VisitedEntireCall) {
1410          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1411        } else {
1412          const Decl *Caller = CE->getLocationContext()->getDecl();
1413          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1414          LCM[&C->path] = CE->getCalleeContext();
1415        }
1416
1417        C->setCallee(*CE, SM);
1418        EB.addContext(C->getLocation());
1419
1420        if (!CallStack.empty()) {
1421          assert(CallStack.back().first == C);
1422          CallStack.pop_back();
1423        }
1424        break;
1425      }
1426
1427      // Note that is important that we update the LocationContext
1428      // after looking at CallExits.  CallExit basically adds an
1429      // edge in the *caller*, so we don't want to update the LocationContext
1430      // too soon.
1431      PDB.LC = N->getLocationContext();
1432
1433      // Block edges.
1434      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1435        // Does this represent entering a call?  If so, look at propagating
1436        // interesting symbols across call boundaries.
1437        if (NextNode) {
1438          const LocationContext *CallerCtx = NextNode->getLocationContext();
1439          const LocationContext *CalleeCtx = PDB.LC;
1440          if (CallerCtx != CalleeCtx) {
1441            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1442                                               N->getState().getPtr(),
1443                                               CalleeCtx, CallerCtx);
1444          }
1445        }
1446
1447        // Are we jumping to the head of a loop?  Add a special diagnostic.
1448        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1449          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1450          const CompoundStmt *CS = NULL;
1451
1452          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1453            CS = dyn_cast<CompoundStmt>(FS->getBody());
1454          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1455            CS = dyn_cast<CompoundStmt>(WS->getBody());
1456
1457          PathDiagnosticEventPiece *p =
1458            new PathDiagnosticEventPiece(L,
1459                                        "Looping back to the head of the loop");
1460          p->setPrunable(true);
1461
1462          EB.addEdge(p->getLocation(), true);
1463          PD.getActivePath().push_front(p);
1464
1465          if (CS) {
1466            PathDiagnosticLocation BL =
1467              PathDiagnosticLocation::createEndBrace(CS, SM);
1468            EB.addEdge(BL);
1469          }
1470        }
1471
1472        const CFGBlock *BSrc = BE->getSrc();
1473        ParentMap &PM = PDB.getParentMap();
1474
1475        if (const Stmt *Term = BSrc->getTerminator()) {
1476          // Are we jumping past the loop body without ever executing the
1477          // loop (because the condition was false)?
1478          if (isLoopJumpPastBody(Term, &*BE) &&
1479              !isInLoopBody(PM,
1480                            getStmtBeforeCond(PM,
1481                                              BSrc->getTerminatorCondition(),
1482                                              N),
1483                            Term)) {
1484            PathDiagnosticLocation L(Term, SM, PDB.LC);
1485            PathDiagnosticEventPiece *PE =
1486                new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1487            PE->setPrunable(true);
1488
1489            EB.addEdge(PE->getLocation(), true);
1490            PD.getActivePath().push_front(PE);
1491          }
1492
1493          // In any case, add the terminator as the current statement
1494          // context for control edges.
1495          EB.addContext(Term);
1496        }
1497
1498        break;
1499      }
1500
1501      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1502        Optional<CFGElement> First = BE->getFirstElement();
1503        if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1504          const Stmt *stmt = S->getStmt();
1505          if (IsControlFlowExpr(stmt)) {
1506            // Add the proper context for '&&', '||', and '?'.
1507            EB.addContext(stmt);
1508          }
1509          else
1510            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1511        }
1512
1513        break;
1514      }
1515
1516
1517    } while (0);
1518
1519    if (!NextNode)
1520      continue;
1521
1522    // Add pieces from custom visitors.
1523    BugReport *R = PDB.getBugReport();
1524    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1525                                                  E = visitors.end();
1526         I != E; ++I) {
1527      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1528        const PathDiagnosticLocation &Loc = p->getLocation();
1529        EB.addEdge(Loc, true);
1530        PD.getActivePath().push_front(p);
1531        updateStackPiecesWithMessage(p, CallStack);
1532
1533        if (const Stmt *S = Loc.asStmt())
1534          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1535      }
1536    }
1537  }
1538
1539  return PDB.getBugReport()->isValid();
1540}
1541
1542/// \brief Adds a sanitized control-flow diagnostic edge to a path.
1543static void addEdgeToPath(PathPieces &path,
1544                          PathDiagnosticLocation &PrevLoc,
1545                          PathDiagnosticLocation NewLoc,
1546                          const LocationContext *LC) {
1547  if (!NewLoc.isValid())
1548    return;
1549
1550  SourceLocation NewLocL = NewLoc.asLocation();
1551  if (NewLocL.isInvalid() || NewLocL.isMacroID())
1552    return;
1553
1554  if (!PrevLoc.isValid()) {
1555    PrevLoc = NewLoc;
1556    return;
1557  }
1558
1559  // FIXME: ignore intra-macro edges for now.
1560  if (NewLoc.asLocation().getExpansionLoc() ==
1561      PrevLoc.asLocation().getExpansionLoc())
1562    return;
1563
1564  path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1565                                                     PrevLoc));
1566  PrevLoc = NewLoc;
1567}
1568
1569static bool
1570GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
1571                                         PathDiagnosticBuilder &PDB,
1572                                         const ExplodedNode *N,
1573                                         LocationContextMap &LCM,
1574                                      ArrayRef<BugReporterVisitor *> visitors) {
1575
1576  BugReport *report = PDB.getBugReport();
1577  const SourceManager& SM = PDB.getSourceManager();
1578  StackDiagVector CallStack;
1579  InterestingExprs IE;
1580
1581  // Record the last location for a given visited stack frame.
1582  llvm::DenseMap<const StackFrameContext *, PathDiagnosticLocation>
1583    PrevLocMap;
1584
1585  const ExplodedNode *NextNode = N->getFirstPred();
1586  while (NextNode) {
1587    N = NextNode;
1588    NextNode = N->getFirstPred();
1589    ProgramPoint P = N->getLocation();
1590
1591    do {
1592      // Have we encountered an entrance to a call?  It may be
1593      // the case that we have not encountered a matching
1594      // call exit before this point.  This means that the path
1595      // terminated within the call itself.
1596      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1597        // Did we visit an entire call?
1598        bool VisitedEntireCall = PD.isWithinCall();
1599        PD.popActivePath();
1600
1601        PathDiagnosticCallPiece *C;
1602        if (VisitedEntireCall) {
1603          PathDiagnosticPiece *P = PD.getActivePath().front().getPtr();
1604          C = cast<PathDiagnosticCallPiece>(P);
1605        } else {
1606          const Decl *Caller = CE->getLocationContext()->getDecl();
1607          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1608
1609          // Since we just transferred the path over to the call piece,
1610          // reset the mapping from active to location context.
1611          assert(PD.getActivePath().size() == 1 &&
1612                 PD.getActivePath().front() == C);
1613          LCM[&PD.getActivePath()] = 0;
1614
1615          // Record the location context mapping for the path within
1616          // the call.
1617          assert(LCM[&C->path] == 0 ||
1618                 LCM[&C->path] == CE->getCalleeContext());
1619          LCM[&C->path] = CE->getCalleeContext();
1620
1621          // If this is the first item in the active path, record
1622          // the new mapping from active path to location context.
1623          const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1624          if (!NewLC) {
1625            NewLC = N->getLocationContext();
1626          }
1627          PDB.LC = NewLC;
1628
1629          // Update the previous location in the active path
1630          // since we just created the call piece lazily.
1631          PrevLocMap[PDB.LC->getCurrentStackFrame()] = C->getLocation();
1632        }
1633        C->setCallee(*CE, SM);
1634
1635        if (!CallStack.empty()) {
1636          assert(CallStack.back().first == C);
1637          CallStack.pop_back();
1638        }
1639        break;
1640      }
1641
1642      // Query the location context here and the previous location
1643      // as processing CallEnter may change the active path.
1644      PDB.LC = N->getLocationContext();
1645
1646      // Get the previous location for the current active
1647      // location context.  All edges will be based on this
1648      // location, and it will be updated in place.
1649      PathDiagnosticLocation &PrevLoc =
1650        PrevLocMap[PDB.LC->getCurrentStackFrame()];
1651
1652      // Record the mapping from the active path to the location
1653      // context.
1654      assert(!LCM[&PD.getActivePath()] ||
1655             LCM[&PD.getActivePath()] == PDB.LC);
1656      LCM[&PD.getActivePath()] = PDB.LC;
1657
1658      // Have we encountered an exit from a function call?
1659      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1660        const Stmt *S = CE->getCalleeContext()->getCallSite();
1661        // Propagate the interesting symbols accordingly.
1662        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1663          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1664                                              N->getState().getPtr(), Ex,
1665                                              N->getLocationContext());
1666        }
1667
1668        // We are descending into a call (backwards).  Construct
1669        // a new call piece to contain the path pieces for that call.
1670        PathDiagnosticCallPiece *C =
1671          PathDiagnosticCallPiece::construct(N, *CE, SM);
1672
1673        // Record the location context for this call piece.
1674        LCM[&C->path] = CE->getCalleeContext();
1675
1676        // Add the edge to the return site.
1677        addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1678        PD.getActivePath().push_front(C);
1679
1680        // Make the contents of the call the active path for now.
1681        PD.pushActivePath(&C->path);
1682        CallStack.push_back(StackDiagPair(C, N));
1683        break;
1684      }
1685
1686      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1687        // For expressions, make sure we propagate the
1688        // interesting symbols correctly.
1689        if (const Expr *Ex = PS->getStmtAs<Expr>())
1690          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1691                                              N->getState().getPtr(), Ex,
1692                                              N->getLocationContext());
1693
1694        PathDiagnosticLocation L =
1695          PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1696        addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1697        break;
1698      }
1699
1700      // Block edges.
1701      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1702        // Does this represent entering a call?  If so, look at propagating
1703        // interesting symbols across call boundaries.
1704        if (NextNode) {
1705          const LocationContext *CallerCtx = NextNode->getLocationContext();
1706          const LocationContext *CalleeCtx = PDB.LC;
1707          if (CallerCtx != CalleeCtx) {
1708            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1709                                               N->getState().getPtr(),
1710                                               CalleeCtx, CallerCtx);
1711          }
1712        }
1713
1714        // Are we jumping to the head of a loop?  Add a special diagnostic.
1715        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1716          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1717          const CompoundStmt *CS = NULL;
1718
1719          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1720            CS = dyn_cast<CompoundStmt>(FS->getBody());
1721          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1722            CS = dyn_cast<CompoundStmt>(WS->getBody());
1723
1724          PathDiagnosticEventPiece *p =
1725            new PathDiagnosticEventPiece(L, "Looping back to the head "
1726                                            "of the loop");
1727          p->setPrunable(true);
1728
1729          addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1730          PD.getActivePath().push_front(p);
1731
1732          if (CS) {
1733            addEdgeToPath(PD.getActivePath(), PrevLoc,
1734                          PathDiagnosticLocation::createEndBrace(CS, SM),
1735                          PDB.LC);
1736          }
1737        }
1738
1739        const CFGBlock *BSrc = BE->getSrc();
1740        ParentMap &PM = PDB.getParentMap();
1741
1742        if (const Stmt *Term = BSrc->getTerminator()) {
1743          // Are we jumping past the loop body without ever executing the
1744          // loop (because the condition was false)?
1745          if (isLoop(Term)) {
1746            const Stmt *TermCond = BSrc->getTerminatorCondition();
1747            bool IsInLoopBody =
1748              isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1749
1750            const char *str = 0;
1751
1752            if (isJumpToFalseBranch(&*BE)) {
1753              if (!IsInLoopBody) {
1754                str = "Loop body executed 0 times";
1755              }
1756            }
1757            else {
1758              str = "Entering loop body";
1759            }
1760
1761            if (str) {
1762              PathDiagnosticLocation L(TermCond, SM, PDB.LC);
1763              PathDiagnosticEventPiece *PE =
1764                new PathDiagnosticEventPiece(L, str);
1765              PE->setPrunable(true);
1766              addEdgeToPath(PD.getActivePath(), PrevLoc,
1767                            PE->getLocation(), PDB.LC);
1768              PD.getActivePath().push_front(PE);
1769            }
1770          }
1771          else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1772                   isa<GotoStmt>(Term)) {
1773            PathDiagnosticLocation L(Term, SM, PDB.LC);
1774            addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1775          }
1776        }
1777        break;
1778      }
1779    } while (0);
1780
1781    if (!NextNode)
1782      continue;
1783
1784    // Since the active path may have been updated prior
1785    // to this point, query the active location context now.
1786    PathDiagnosticLocation &PrevLoc =
1787      PrevLocMap[PDB.LC->getCurrentStackFrame()];
1788
1789    // Add pieces from custom visitors.
1790    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1791         E = visitors.end();
1792         I != E; ++I) {
1793      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
1794        addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1795        PD.getActivePath().push_front(p);
1796        updateStackPiecesWithMessage(p, CallStack);
1797      }
1798    }
1799  }
1800
1801  return report->isValid();
1802}
1803
1804const Stmt *getLocStmt(PathDiagnosticLocation L) {
1805  if (!L.isValid())
1806    return 0;
1807  return L.asStmt();
1808}
1809
1810const Stmt *getStmtParent(const Stmt *S, ParentMap &PM) {
1811  if (!S)
1812    return 0;
1813
1814  while (true) {
1815    S = PM.getParentIgnoreParens(S);
1816
1817    if (!S)
1818      break;
1819
1820    if (isa<ExprWithCleanups>(S))
1821      continue;
1822
1823    break;
1824  }
1825
1826  return S;
1827}
1828
1829static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1830  switch (S->getStmtClass()) {
1831    case Stmt::BinaryOperatorClass: {
1832      const BinaryOperator *BO = cast<BinaryOperator>(S);
1833      if (!BO->isLogicalOp())
1834        return false;
1835      return BO->getLHS() == Cond || BO->getRHS() == Cond;
1836    }
1837    case Stmt::IfStmtClass:
1838      return cast<IfStmt>(S)->getCond() == Cond;
1839    case Stmt::ForStmtClass:
1840      return cast<ForStmt>(S)->getCond() == Cond;
1841    case Stmt::WhileStmtClass:
1842      return cast<WhileStmt>(S)->getCond() == Cond;
1843    case Stmt::DoStmtClass:
1844      return cast<DoStmt>(S)->getCond() == Cond;
1845    case Stmt::ChooseExprClass:
1846      return cast<ChooseExpr>(S)->getCond() == Cond;
1847    case Stmt::IndirectGotoStmtClass:
1848      return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1849    case Stmt::SwitchStmtClass:
1850      return cast<SwitchStmt>(S)->getCond() == Cond;
1851    case Stmt::BinaryConditionalOperatorClass:
1852      return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1853    case Stmt::ConditionalOperatorClass: {
1854      const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1855      return CO->getCond() == Cond ||
1856             CO->getLHS() == Cond ||
1857             CO->getRHS() == Cond;
1858    }
1859    case Stmt::ObjCForCollectionStmtClass:
1860      return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1861    default:
1862      return false;
1863  }
1864}
1865
1866static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1867  const ForStmt *FS = dyn_cast<ForStmt>(FL);
1868  if (!FS)
1869    return false;
1870  return FS->getInc() == S || FS->getInit() == S;
1871}
1872
1873typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1874        OptimizedCallsSet;
1875
1876static bool optimizeEdges(PathPieces &path, SourceManager &SM,
1877                          OptimizedCallsSet &OCS,
1878                          LocationContextMap &LCM) {
1879  bool hasChanges = false;
1880  const LocationContext *LC = LCM[&path];
1881  assert(LC);
1882  bool isFirst = true;
1883
1884  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1885    bool wasFirst = isFirst;
1886    isFirst = false;
1887
1888    // Optimize subpaths.
1889    if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
1890      // Record the fact that a call has been optimized so we only do the
1891      // effort once.
1892      if (!OCS.count(CallI)) {
1893        while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
1894        OCS.insert(CallI);
1895      }
1896      ++I;
1897      continue;
1898    }
1899
1900    // Pattern match the current piece and its successor.
1901    PathDiagnosticControlFlowPiece *PieceI =
1902      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1903
1904    if (!PieceI) {
1905      ++I;
1906      continue;
1907    }
1908
1909    ParentMap &PM = LC->getParentMap();
1910    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
1911    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
1912    const Stmt *level1 = getStmtParent(s1Start, PM);
1913    const Stmt *level2 = getStmtParent(s1End, PM);
1914
1915    if (wasFirst) {
1916      wasFirst = false;
1917
1918      // If the first edge (in isolation) is just a transition from
1919      // an expression to a parent expression then eliminate that edge.
1920      if (level1 && level2 && level2 == PM.getParent(level1)) {
1921        path.erase(I);
1922        // Since we are erasing the current edge at the start of the
1923        // path, just return now so we start analyzing the start of the path
1924        // again.
1925        return true;
1926      }
1927
1928      // If the first edge (in isolation) is a transition from the
1929      // initialization or increment in a for loop then remove it.
1930      if (level1 && isIncrementOrInitInForLoop(s1Start, level1)) {
1931        path.erase(I);
1932        return true;
1933      }
1934    }
1935
1936    PathPieces::iterator NextI = I; ++NextI;
1937    if (NextI == E)
1938      break;
1939
1940    PathDiagnosticControlFlowPiece *PieceNextI =
1941      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
1942
1943    if (!PieceNextI) {
1944      ++I;
1945      continue;
1946    }
1947
1948    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
1949    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
1950    const Stmt *level3 = getStmtParent(s2Start, PM);
1951    const Stmt *level4 = getStmtParent(s2End, PM);
1952
1953    // Rule I.
1954    //
1955    // If we have two consecutive control edges whose end/begin locations
1956    // are at the same level (e.g. statements or top-level expressions within
1957    // a compound statement, or siblings share a single ancestor expression),
1958    // then merge them if they have no interesting intermediate event.
1959    //
1960    // For example:
1961    //
1962    // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1963    // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1964    //
1965    // NOTE: this will be limited later in cases where we add barriers
1966    // to prevent this optimization.
1967    //
1968    if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1969      PieceI->setEndLocation(PieceNextI->getEndLocation());
1970      path.erase(NextI);
1971      hasChanges = true;
1972      continue;
1973    }
1974
1975    // Rule II.
1976    //
1977    // Eliminate edges between subexpressions and parent expressions
1978    // when the subexpression is consumed.
1979    //
1980    // NOTE: this will be limited later in cases where we add barriers
1981    // to prevent this optimization.
1982    //
1983    if (s1End && s1End == s2Start && level2) {
1984      if (isIncrementOrInitInForLoop(s1End, level2) ||
1985          (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End)) &&
1986            !isConditionForTerminator(level2, s1End)))
1987      {
1988        PieceI->setEndLocation(PieceNextI->getEndLocation());
1989        path.erase(NextI);
1990        hasChanges = true;
1991        continue;
1992      }
1993    }
1994
1995    // No changes at this index?  Move to the next one.
1996    ++I;
1997  }
1998
1999  // No changes.
2000  return hasChanges;
2001}
2002
2003static void adjustBranchEdges(PathPieces &pieces, LocationContextMap &LCM,
2004                            SourceManager &SM) {
2005  // Retrieve the parent map for this path.
2006  const LocationContext *LC = LCM[&pieces];
2007  ParentMap &PM = LC->getParentMap();
2008  PathPieces::iterator Prev = pieces.end();
2009  for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E;
2010       Prev = I, ++I) {
2011    // Adjust edges in subpaths.
2012    if (PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I)) {
2013      adjustBranchEdges(Call->path, LCM, SM);
2014      continue;
2015    }
2016
2017    PathDiagnosticControlFlowPiece *PieceI =
2018      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2019
2020    if (!PieceI)
2021      continue;
2022
2023    // We are looking at two edges.  Is the second one incident
2024    // on an expression (or subexpression) of a branch condition.
2025    const Stmt *Dst = getLocStmt(PieceI->getEndLocation());
2026    const Stmt *Src = getLocStmt(PieceI->getStartLocation());
2027
2028    if (!Dst || !Src)
2029      continue;
2030
2031    const Stmt *Branch = 0;
2032    const Stmt *S = Dst;
2033    while (const Stmt *Parent = getStmtParent(S, PM)) {
2034      if (const ForStmt *FS = dyn_cast<ForStmt>(Parent)) {
2035        if (FS->getCond()->IgnoreParens() == S)
2036          Branch = FS;
2037        break;
2038      }
2039      if (const WhileStmt *WS = dyn_cast<WhileStmt>(Parent)) {
2040        if (WS->getCond()->IgnoreParens() == S)
2041          Branch = WS;
2042        break;
2043      }
2044      if (const IfStmt *IS = dyn_cast<IfStmt>(Parent)) {
2045        if (IS->getCond()->IgnoreParens() == S)
2046          Branch = IS;
2047        break;
2048      }
2049      S = Parent;
2050    }
2051
2052    // If 'Branch' is non-null we have found a match where we have an edge
2053    // incident on the condition of a if/for/while statement.
2054    if (!Branch)
2055      continue;
2056
2057    // If the current source of the edge is the if/for/while, then there is
2058    // nothing left to be done.
2059    if (Src == Branch)
2060      continue;
2061
2062    // Now look at the previous edge.  We want to know if this was in the same
2063    // "level" as the for statement.
2064    const Stmt *SrcParent = getStmtParent(Src, PM);
2065    const Stmt *BranchParent = getStmtParent(Branch, PM);
2066    if (SrcParent && SrcParent == BranchParent) {
2067      PathDiagnosticLocation L(Branch, SM, LC);
2068      bool needsEdge = true;
2069
2070      if (Prev != E) {
2071        if (PathDiagnosticControlFlowPiece *P =
2072            dyn_cast<PathDiagnosticControlFlowPiece>(*Prev)) {
2073          const Stmt *PrevSrc = getLocStmt(P->getStartLocation());
2074          if (PrevSrc) {
2075            const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2076            if (PrevSrcParent == BranchParent) {
2077              P->setEndLocation(L);
2078              needsEdge = false;
2079            }
2080          }
2081        }
2082      }
2083
2084      if (needsEdge) {
2085        PathDiagnosticControlFlowPiece *P =
2086          new PathDiagnosticControlFlowPiece(PieceI->getStartLocation(), L);
2087        pieces.insert(I, P);
2088      }
2089
2090      PieceI->setStartLocation(L);
2091    }
2092  }
2093}
2094
2095//===----------------------------------------------------------------------===//
2096// Methods for BugType and subclasses.
2097//===----------------------------------------------------------------------===//
2098BugType::~BugType() { }
2099
2100void BugType::FlushReports(BugReporter &BR) {}
2101
2102void BuiltinBug::anchor() {}
2103
2104//===----------------------------------------------------------------------===//
2105// Methods for BugReport and subclasses.
2106//===----------------------------------------------------------------------===//
2107
2108void BugReport::NodeResolver::anchor() {}
2109
2110void BugReport::addVisitor(BugReporterVisitor* visitor) {
2111  if (!visitor)
2112    return;
2113
2114  llvm::FoldingSetNodeID ID;
2115  visitor->Profile(ID);
2116  void *InsertPos;
2117
2118  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2119    delete visitor;
2120    return;
2121  }
2122
2123  CallbacksSet.InsertNode(visitor, InsertPos);
2124  Callbacks.push_back(visitor);
2125  ++ConfigurationChangeToken;
2126}
2127
2128BugReport::~BugReport() {
2129  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
2130    delete *I;
2131  }
2132  while (!interestingSymbols.empty()) {
2133    popInterestingSymbolsAndRegions();
2134  }
2135}
2136
2137const Decl *BugReport::getDeclWithIssue() const {
2138  if (DeclWithIssue)
2139    return DeclWithIssue;
2140
2141  const ExplodedNode *N = getErrorNode();
2142  if (!N)
2143    return 0;
2144
2145  const LocationContext *LC = N->getLocationContext();
2146  return LC->getCurrentStackFrame()->getDecl();
2147}
2148
2149void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2150  hash.AddPointer(&BT);
2151  hash.AddString(Description);
2152  PathDiagnosticLocation UL = getUniqueingLocation();
2153  if (UL.isValid()) {
2154    UL.Profile(hash);
2155  } else if (Location.isValid()) {
2156    Location.Profile(hash);
2157  } else {
2158    assert(ErrorNode);
2159    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2160  }
2161
2162  for (SmallVectorImpl<SourceRange>::const_iterator I =
2163      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2164    const SourceRange range = *I;
2165    if (!range.isValid())
2166      continue;
2167    hash.AddInteger(range.getBegin().getRawEncoding());
2168    hash.AddInteger(range.getEnd().getRawEncoding());
2169  }
2170}
2171
2172void BugReport::markInteresting(SymbolRef sym) {
2173  if (!sym)
2174    return;
2175
2176  // If the symbol wasn't already in our set, note a configuration change.
2177  if (getInterestingSymbols().insert(sym).second)
2178    ++ConfigurationChangeToken;
2179
2180  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2181    getInterestingRegions().insert(meta->getRegion());
2182}
2183
2184void BugReport::markInteresting(const MemRegion *R) {
2185  if (!R)
2186    return;
2187
2188  // If the base region wasn't already in our set, note a configuration change.
2189  R = R->getBaseRegion();
2190  if (getInterestingRegions().insert(R).second)
2191    ++ConfigurationChangeToken;
2192
2193  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2194    getInterestingSymbols().insert(SR->getSymbol());
2195}
2196
2197void BugReport::markInteresting(SVal V) {
2198  markInteresting(V.getAsRegion());
2199  markInteresting(V.getAsSymbol());
2200}
2201
2202void BugReport::markInteresting(const LocationContext *LC) {
2203  if (!LC)
2204    return;
2205  InterestingLocationContexts.insert(LC);
2206}
2207
2208bool BugReport::isInteresting(SVal V) {
2209  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2210}
2211
2212bool BugReport::isInteresting(SymbolRef sym) {
2213  if (!sym)
2214    return false;
2215  // We don't currently consider metadata symbols to be interesting
2216  // even if we know their region is interesting. Is that correct behavior?
2217  return getInterestingSymbols().count(sym);
2218}
2219
2220bool BugReport::isInteresting(const MemRegion *R) {
2221  if (!R)
2222    return false;
2223  R = R->getBaseRegion();
2224  bool b = getInterestingRegions().count(R);
2225  if (b)
2226    return true;
2227  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2228    return getInterestingSymbols().count(SR->getSymbol());
2229  return false;
2230}
2231
2232bool BugReport::isInteresting(const LocationContext *LC) {
2233  if (!LC)
2234    return false;
2235  return InterestingLocationContexts.count(LC);
2236}
2237
2238void BugReport::lazyInitializeInterestingSets() {
2239  if (interestingSymbols.empty()) {
2240    interestingSymbols.push_back(new Symbols());
2241    interestingRegions.push_back(new Regions());
2242  }
2243}
2244
2245BugReport::Symbols &BugReport::getInterestingSymbols() {
2246  lazyInitializeInterestingSets();
2247  return *interestingSymbols.back();
2248}
2249
2250BugReport::Regions &BugReport::getInterestingRegions() {
2251  lazyInitializeInterestingSets();
2252  return *interestingRegions.back();
2253}
2254
2255void BugReport::pushInterestingSymbolsAndRegions() {
2256  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2257  interestingRegions.push_back(new Regions(getInterestingRegions()));
2258}
2259
2260void BugReport::popInterestingSymbolsAndRegions() {
2261  delete interestingSymbols.back();
2262  interestingSymbols.pop_back();
2263  delete interestingRegions.back();
2264  interestingRegions.pop_back();
2265}
2266
2267const Stmt *BugReport::getStmt() const {
2268  if (!ErrorNode)
2269    return 0;
2270
2271  ProgramPoint ProgP = ErrorNode->getLocation();
2272  const Stmt *S = NULL;
2273
2274  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2275    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2276    if (BE->getBlock() == &Exit)
2277      S = GetPreviousStmt(ErrorNode);
2278  }
2279  if (!S)
2280    S = PathDiagnosticLocation::getStmt(ErrorNode);
2281
2282  return S;
2283}
2284
2285std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
2286BugReport::getRanges() {
2287    // If no custom ranges, add the range of the statement corresponding to
2288    // the error node.
2289    if (Ranges.empty()) {
2290      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2291        addRange(E->getSourceRange());
2292      else
2293        return std::make_pair(ranges_iterator(), ranges_iterator());
2294    }
2295
2296    // User-specified absence of range info.
2297    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2298      return std::make_pair(ranges_iterator(), ranges_iterator());
2299
2300    return std::make_pair(Ranges.begin(), Ranges.end());
2301}
2302
2303PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2304  if (ErrorNode) {
2305    assert(!Location.isValid() &&
2306     "Either Location or ErrorNode should be specified but not both.");
2307    return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2308  } else {
2309    assert(Location.isValid());
2310    return Location;
2311  }
2312
2313  return PathDiagnosticLocation();
2314}
2315
2316//===----------------------------------------------------------------------===//
2317// Methods for BugReporter and subclasses.
2318//===----------------------------------------------------------------------===//
2319
2320BugReportEquivClass::~BugReportEquivClass() { }
2321GRBugReporter::~GRBugReporter() { }
2322BugReporterData::~BugReporterData() {}
2323
2324ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2325
2326ProgramStateManager&
2327GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2328
2329BugReporter::~BugReporter() {
2330  FlushReports();
2331
2332  // Free the bug reports we are tracking.
2333  typedef std::vector<BugReportEquivClass *> ContTy;
2334  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2335       I != E; ++I) {
2336    delete *I;
2337  }
2338}
2339
2340void BugReporter::FlushReports() {
2341  if (BugTypes.isEmpty())
2342    return;
2343
2344  // First flush the warnings for each BugType.  This may end up creating new
2345  // warnings and new BugTypes.
2346  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2347  // Turn NSErrorChecker into a proper checker and remove this.
2348  SmallVector<const BugType*, 16> bugTypes;
2349  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
2350    bugTypes.push_back(*I);
2351  for (SmallVector<const BugType*, 16>::iterator
2352         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2353    const_cast<BugType*>(*I)->FlushReports(*this);
2354
2355  // We need to flush reports in deterministic order to ensure the order
2356  // of the reports is consistent between runs.
2357  typedef std::vector<BugReportEquivClass *> ContVecTy;
2358  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2359       EI != EE; ++EI){
2360    BugReportEquivClass& EQ = **EI;
2361    FlushReport(EQ);
2362  }
2363
2364  // BugReporter owns and deletes only BugTypes created implicitly through
2365  // EmitBasicReport.
2366  // FIXME: There are leaks from checkers that assume that the BugTypes they
2367  // create will be destroyed by the BugReporter.
2368  for (llvm::StringMap<BugType*>::iterator
2369         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
2370    delete I->second;
2371
2372  // Remove all references to the BugType objects.
2373  BugTypes = F.getEmptySet();
2374}
2375
2376//===----------------------------------------------------------------------===//
2377// PathDiagnostics generation.
2378//===----------------------------------------------------------------------===//
2379
2380namespace {
2381/// A wrapper around a report graph, which contains only a single path, and its
2382/// node maps.
2383class ReportGraph {
2384public:
2385  InterExplodedGraphMap BackMap;
2386  OwningPtr<ExplodedGraph> Graph;
2387  const ExplodedNode *ErrorNode;
2388  size_t Index;
2389};
2390
2391/// A wrapper around a trimmed graph and its node maps.
2392class TrimmedGraph {
2393  InterExplodedGraphMap InverseMap;
2394
2395  typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2396  PriorityMapTy PriorityMap;
2397
2398  typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2399  SmallVector<NodeIndexPair, 32> ReportNodes;
2400
2401  OwningPtr<ExplodedGraph> G;
2402
2403  /// A helper class for sorting ExplodedNodes by priority.
2404  template <bool Descending>
2405  class PriorityCompare {
2406    const PriorityMapTy &PriorityMap;
2407
2408  public:
2409    PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2410
2411    bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2412      PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2413      PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2414      PriorityMapTy::const_iterator E = PriorityMap.end();
2415
2416      if (LI == E)
2417        return Descending;
2418      if (RI == E)
2419        return !Descending;
2420
2421      return Descending ? LI->second > RI->second
2422                        : LI->second < RI->second;
2423    }
2424
2425    bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2426      return (*this)(LHS.first, RHS.first);
2427    }
2428  };
2429
2430public:
2431  TrimmedGraph(const ExplodedGraph *OriginalGraph,
2432               ArrayRef<const ExplodedNode *> Nodes);
2433
2434  bool popNextReportGraph(ReportGraph &GraphWrapper);
2435};
2436}
2437
2438TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2439                           ArrayRef<const ExplodedNode *> Nodes) {
2440  // The trimmed graph is created in the body of the constructor to ensure
2441  // that the DenseMaps have been initialized already.
2442  InterExplodedGraphMap ForwardMap;
2443  G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
2444
2445  // Find the (first) error node in the trimmed graph.  We just need to consult
2446  // the node map which maps from nodes in the original graph to nodes
2447  // in the new graph.
2448  llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2449
2450  for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2451    if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2452      ReportNodes.push_back(std::make_pair(NewNode, i));
2453      RemainingNodes.insert(NewNode);
2454    }
2455  }
2456
2457  assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2458
2459  // Perform a forward BFS to find all the shortest paths.
2460  std::queue<const ExplodedNode *> WS;
2461
2462  assert(G->num_roots() == 1);
2463  WS.push(*G->roots_begin());
2464  unsigned Priority = 0;
2465
2466  while (!WS.empty()) {
2467    const ExplodedNode *Node = WS.front();
2468    WS.pop();
2469
2470    PriorityMapTy::iterator PriorityEntry;
2471    bool IsNew;
2472    llvm::tie(PriorityEntry, IsNew) =
2473      PriorityMap.insert(std::make_pair(Node, Priority));
2474    ++Priority;
2475
2476    if (!IsNew) {
2477      assert(PriorityEntry->second <= Priority);
2478      continue;
2479    }
2480
2481    if (RemainingNodes.erase(Node))
2482      if (RemainingNodes.empty())
2483        break;
2484
2485    for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2486                                           E = Node->succ_end();
2487         I != E; ++I)
2488      WS.push(*I);
2489  }
2490
2491  // Sort the error paths from longest to shortest.
2492  std::sort(ReportNodes.begin(), ReportNodes.end(),
2493            PriorityCompare<true>(PriorityMap));
2494}
2495
2496bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2497  if (ReportNodes.empty())
2498    return false;
2499
2500  const ExplodedNode *OrigN;
2501  llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2502  assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2503         "error node not accessible from root");
2504
2505  // Create a new graph with a single path.  This is the graph
2506  // that will be returned to the caller.
2507  ExplodedGraph *GNew = new ExplodedGraph();
2508  GraphWrapper.Graph.reset(GNew);
2509  GraphWrapper.BackMap.clear();
2510
2511  // Now walk from the error node up the BFS path, always taking the
2512  // predeccessor with the lowest number.
2513  ExplodedNode *Succ = 0;
2514  while (true) {
2515    // Create the equivalent node in the new graph with the same state
2516    // and location.
2517    ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2518                                       OrigN->isSink());
2519
2520    // Store the mapping to the original node.
2521    InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2522    assert(IMitr != InverseMap.end() && "No mapping to original node.");
2523    GraphWrapper.BackMap[NewN] = IMitr->second;
2524
2525    // Link up the new node with the previous node.
2526    if (Succ)
2527      Succ->addPredecessor(NewN, *GNew);
2528    else
2529      GraphWrapper.ErrorNode = NewN;
2530
2531    Succ = NewN;
2532
2533    // Are we at the final node?
2534    if (OrigN->pred_empty()) {
2535      GNew->addRoot(NewN);
2536      break;
2537    }
2538
2539    // Find the next predeccessor node.  We choose the node that is marked
2540    // with the lowest BFS number.
2541    OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2542                          PriorityCompare<false>(PriorityMap));
2543  }
2544
2545  return true;
2546}
2547
2548
2549/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2550///  and collapses PathDiagosticPieces that are expanded by macros.
2551static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2552  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2553                                SourceLocation> > MacroStackTy;
2554
2555  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2556          PiecesTy;
2557
2558  MacroStackTy MacroStack;
2559  PiecesTy Pieces;
2560
2561  for (PathPieces::const_iterator I = path.begin(), E = path.end();
2562       I!=E; ++I) {
2563
2564    PathDiagnosticPiece *piece = I->getPtr();
2565
2566    // Recursively compact calls.
2567    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2568      CompactPathDiagnostic(call->path, SM);
2569    }
2570
2571    // Get the location of the PathDiagnosticPiece.
2572    const FullSourceLoc Loc = piece->getLocation().asLocation();
2573
2574    // Determine the instantiation location, which is the location we group
2575    // related PathDiagnosticPieces.
2576    SourceLocation InstantiationLoc = Loc.isMacroID() ?
2577                                      SM.getExpansionLoc(Loc) :
2578                                      SourceLocation();
2579
2580    if (Loc.isFileID()) {
2581      MacroStack.clear();
2582      Pieces.push_back(piece);
2583      continue;
2584    }
2585
2586    assert(Loc.isMacroID());
2587
2588    // Is the PathDiagnosticPiece within the same macro group?
2589    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2590      MacroStack.back().first->subPieces.push_back(piece);
2591      continue;
2592    }
2593
2594    // We aren't in the same group.  Are we descending into a new macro
2595    // or are part of an old one?
2596    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
2597
2598    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2599                                          SM.getExpansionLoc(Loc) :
2600                                          SourceLocation();
2601
2602    // Walk the entire macro stack.
2603    while (!MacroStack.empty()) {
2604      if (InstantiationLoc == MacroStack.back().second) {
2605        MacroGroup = MacroStack.back().first;
2606        break;
2607      }
2608
2609      if (ParentInstantiationLoc == MacroStack.back().second) {
2610        MacroGroup = MacroStack.back().first;
2611        break;
2612      }
2613
2614      MacroStack.pop_back();
2615    }
2616
2617    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2618      // Create a new macro group and add it to the stack.
2619      PathDiagnosticMacroPiece *NewGroup =
2620        new PathDiagnosticMacroPiece(
2621          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2622
2623      if (MacroGroup)
2624        MacroGroup->subPieces.push_back(NewGroup);
2625      else {
2626        assert(InstantiationLoc.isFileID());
2627        Pieces.push_back(NewGroup);
2628      }
2629
2630      MacroGroup = NewGroup;
2631      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2632    }
2633
2634    // Finally, add the PathDiagnosticPiece to the group.
2635    MacroGroup->subPieces.push_back(piece);
2636  }
2637
2638  // Now take the pieces and construct a new PathDiagnostic.
2639  path.clear();
2640
2641  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
2642    path.push_back(*I);
2643}
2644
2645bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
2646                                           PathDiagnosticConsumer &PC,
2647                                           ArrayRef<BugReport *> &bugReports) {
2648  assert(!bugReports.empty());
2649
2650  bool HasValid = false;
2651  bool HasInvalid = false;
2652  SmallVector<const ExplodedNode *, 32> errorNodes;
2653  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
2654                                      E = bugReports.end(); I != E; ++I) {
2655    if ((*I)->isValid()) {
2656      HasValid = true;
2657      errorNodes.push_back((*I)->getErrorNode());
2658    } else {
2659      // Keep the errorNodes list in sync with the bugReports list.
2660      HasInvalid = true;
2661      errorNodes.push_back(0);
2662    }
2663  }
2664
2665  // If all the reports have been marked invalid by a previous path generation,
2666  // we're done.
2667  if (!HasValid)
2668    return false;
2669
2670  typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
2671  PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
2672
2673  if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
2674    AnalyzerOptions &options = getAnalyzerOptions();
2675    if (options.getBooleanOption("path-diagnostics-alternate", false)) {
2676      ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
2677    }
2678  }
2679
2680  TrimmedGraph TrimG(&getGraph(), errorNodes);
2681  ReportGraph ErrorGraph;
2682
2683  while (TrimG.popNextReportGraph(ErrorGraph)) {
2684    // Find the BugReport with the original location.
2685    assert(ErrorGraph.Index < bugReports.size());
2686    BugReport *R = bugReports[ErrorGraph.Index];
2687    assert(R && "No original report found for sliced graph.");
2688    assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2689
2690    // Start building the path diagnostic...
2691    PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
2692    const ExplodedNode *N = ErrorGraph.ErrorNode;
2693
2694    // Register additional node visitors.
2695    R->addVisitor(new NilReceiverBRVisitor());
2696    R->addVisitor(new ConditionBRVisitor());
2697    R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
2698
2699    BugReport::VisitorList visitors;
2700    unsigned origReportConfigToken, finalReportConfigToken;
2701    LocationContextMap LCM;
2702
2703    // While generating diagnostics, it's possible the visitors will decide
2704    // new symbols and regions are interesting, or add other visitors based on
2705    // the information they find. If they do, we need to regenerate the path
2706    // based on our new report configuration.
2707    do {
2708      // Get a clean copy of all the visitors.
2709      for (BugReport::visitor_iterator I = R->visitor_begin(),
2710                                       E = R->visitor_end(); I != E; ++I)
2711        visitors.push_back((*I)->clone());
2712
2713      // Clear out the active path from any previous work.
2714      PD.resetPath();
2715      origReportConfigToken = R->getConfigurationChangeToken();
2716
2717      // Generate the very last diagnostic piece - the piece is visible before
2718      // the trace is expanded.
2719      PathDiagnosticPiece *LastPiece = 0;
2720      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2721          I != E; ++I) {
2722        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2723          assert (!LastPiece &&
2724              "There can only be one final piece in a diagnostic.");
2725          LastPiece = Piece;
2726        }
2727      }
2728
2729      if (ActiveScheme != PathDiagnosticConsumer::None) {
2730        if (!LastPiece)
2731          LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2732        assert(LastPiece);
2733        PD.setEndOfPath(LastPiece);
2734      }
2735
2736      // Make sure we get a clean location context map so we don't
2737      // hold onto old mappings.
2738      LCM.clear();
2739
2740      switch (ActiveScheme) {
2741      case PathDiagnosticConsumer::AlternateExtensive:
2742        GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2743        break;
2744      case PathDiagnosticConsumer::Extensive:
2745        GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
2746        break;
2747      case PathDiagnosticConsumer::Minimal:
2748        GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
2749        break;
2750      case PathDiagnosticConsumer::None:
2751        GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
2752        break;
2753      }
2754
2755      // Clean up the visitors we used.
2756      llvm::DeleteContainerPointers(visitors);
2757
2758      // Did anything change while generating this path?
2759      finalReportConfigToken = R->getConfigurationChangeToken();
2760    } while (finalReportConfigToken != origReportConfigToken);
2761
2762    if (!R->isValid())
2763      continue;
2764
2765    // Finally, prune the diagnostic path of uninteresting stuff.
2766    if (!PD.path.empty()) {
2767      // Remove messages that are basically the same.
2768      removeRedundantMsgs(PD.getMutablePieces());
2769
2770      if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
2771        bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
2772        assert(stillHasNotes);
2773        (void)stillHasNotes;
2774      }
2775
2776      adjustCallLocations(PD.getMutablePieces());
2777
2778      if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
2779        SourceManager &SM = getSourceManager();
2780
2781        // Reduce the number of edges from a very conservative set
2782        // to an aesthetically pleasing subset that conveys the
2783        // necessary information.
2784        OptimizedCallsSet OCS;
2785        while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
2786
2787        // Adjust edges into loop conditions to make them more uniform
2788        // and aesthetically pleasing.
2789        adjustBranchEdges(PD.getMutablePieces(), LCM, SM);
2790      }
2791    }
2792
2793    // We found a report and didn't suppress it.
2794    return true;
2795  }
2796
2797  // We suppressed all the reports in this equivalence class.
2798  assert(!HasInvalid && "Inconsistent suppression");
2799  (void)HasInvalid;
2800  return false;
2801}
2802
2803void BugReporter::Register(BugType *BT) {
2804  BugTypes = F.add(BugTypes, BT);
2805}
2806
2807void BugReporter::emitReport(BugReport* R) {
2808  // Compute the bug report's hash to determine its equivalence class.
2809  llvm::FoldingSetNodeID ID;
2810  R->Profile(ID);
2811
2812  // Lookup the equivance class.  If there isn't one, create it.
2813  BugType& BT = R->getBugType();
2814  Register(&BT);
2815  void *InsertPos;
2816  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2817
2818  if (!EQ) {
2819    EQ = new BugReportEquivClass(R);
2820    EQClasses.InsertNode(EQ, InsertPos);
2821    EQClassesVector.push_back(EQ);
2822  }
2823  else
2824    EQ->AddReport(R);
2825}
2826
2827
2828//===----------------------------------------------------------------------===//
2829// Emitting reports in equivalence classes.
2830//===----------------------------------------------------------------------===//
2831
2832namespace {
2833struct FRIEC_WLItem {
2834  const ExplodedNode *N;
2835  ExplodedNode::const_succ_iterator I, E;
2836
2837  FRIEC_WLItem(const ExplodedNode *n)
2838  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2839};
2840}
2841
2842static BugReport *
2843FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2844                             SmallVectorImpl<BugReport*> &bugReports) {
2845
2846  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2847  assert(I != E);
2848  BugType& BT = I->getBugType();
2849
2850  // If we don't need to suppress any of the nodes because they are
2851  // post-dominated by a sink, simply add all the nodes in the equivalence class
2852  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2853  if (!BT.isSuppressOnSink()) {
2854    BugReport *R = I;
2855    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2856      const ExplodedNode *N = I->getErrorNode();
2857      if (N) {
2858        R = I;
2859        bugReports.push_back(R);
2860      }
2861    }
2862    return R;
2863  }
2864
2865  // For bug reports that should be suppressed when all paths are post-dominated
2866  // by a sink node, iterate through the reports in the equivalence class
2867  // until we find one that isn't post-dominated (if one exists).  We use a
2868  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2869  // this as a recursive function, but we don't want to risk blowing out the
2870  // stack for very long paths.
2871  BugReport *exampleReport = 0;
2872
2873  for (; I != E; ++I) {
2874    const ExplodedNode *errorNode = I->getErrorNode();
2875
2876    if (!errorNode)
2877      continue;
2878    if (errorNode->isSink()) {
2879      llvm_unreachable(
2880           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2881    }
2882    // No successors?  By definition this nodes isn't post-dominated by a sink.
2883    if (errorNode->succ_empty()) {
2884      bugReports.push_back(I);
2885      if (!exampleReport)
2886        exampleReport = I;
2887      continue;
2888    }
2889
2890    // At this point we know that 'N' is not a sink and it has at least one
2891    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2892    typedef FRIEC_WLItem WLItem;
2893    typedef SmallVector<WLItem, 10> DFSWorkList;
2894    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2895
2896    DFSWorkList WL;
2897    WL.push_back(errorNode);
2898    Visited[errorNode] = 1;
2899
2900    while (!WL.empty()) {
2901      WLItem &WI = WL.back();
2902      assert(!WI.N->succ_empty());
2903
2904      for (; WI.I != WI.E; ++WI.I) {
2905        const ExplodedNode *Succ = *WI.I;
2906        // End-of-path node?
2907        if (Succ->succ_empty()) {
2908          // If we found an end-of-path node that is not a sink.
2909          if (!Succ->isSink()) {
2910            bugReports.push_back(I);
2911            if (!exampleReport)
2912              exampleReport = I;
2913            WL.clear();
2914            break;
2915          }
2916          // Found a sink?  Continue on to the next successor.
2917          continue;
2918        }
2919        // Mark the successor as visited.  If it hasn't been explored,
2920        // enqueue it to the DFS worklist.
2921        unsigned &mark = Visited[Succ];
2922        if (!mark) {
2923          mark = 1;
2924          WL.push_back(Succ);
2925          break;
2926        }
2927      }
2928
2929      // The worklist may have been cleared at this point.  First
2930      // check if it is empty before checking the last item.
2931      if (!WL.empty() && &WL.back() == &WI)
2932        WL.pop_back();
2933    }
2934  }
2935
2936  // ExampleReport will be NULL if all the nodes in the equivalence class
2937  // were post-dominated by sinks.
2938  return exampleReport;
2939}
2940
2941void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2942  SmallVector<BugReport*, 10> bugReports;
2943  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2944  if (exampleReport) {
2945    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2946    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2947                                                 E=C.end(); I != E; ++I) {
2948      FlushReport(exampleReport, **I, bugReports);
2949    }
2950  }
2951}
2952
2953void BugReporter::FlushReport(BugReport *exampleReport,
2954                              PathDiagnosticConsumer &PD,
2955                              ArrayRef<BugReport*> bugReports) {
2956
2957  // FIXME: Make sure we use the 'R' for the path that was actually used.
2958  // Probably doesn't make a difference in practice.
2959  BugType& BT = exampleReport->getBugType();
2960
2961  OwningPtr<PathDiagnostic>
2962    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2963                         exampleReport->getBugType().getName(),
2964                         exampleReport->getDescription(),
2965                         exampleReport->getShortDescription(/*Fallback=*/false),
2966                         BT.getCategory(),
2967                         exampleReport->getUniqueingLocation(),
2968                         exampleReport->getUniqueingDecl()));
2969
2970  MaxBugClassSize = std::max(bugReports.size(),
2971                             static_cast<size_t>(MaxBugClassSize));
2972
2973  // Generate the full path diagnostic, using the generation scheme
2974  // specified by the PathDiagnosticConsumer. Note that we have to generate
2975  // path diagnostics even for consumers which do not support paths, because
2976  // the BugReporterVisitors may mark this bug as a false positive.
2977  if (!bugReports.empty())
2978    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2979      return;
2980
2981  MaxValidBugClassSize = std::max(bugReports.size(),
2982                                  static_cast<size_t>(MaxValidBugClassSize));
2983
2984  // Examine the report and see if the last piece is in a header. Reset the
2985  // report location to the last piece in the main source file.
2986  AnalyzerOptions& Opts = getAnalyzerOptions();
2987  if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
2988    D->resetDiagnosticLocationToMainFile();
2989
2990  // If the path is empty, generate a single step path with the location
2991  // of the issue.
2992  if (D->path.empty()) {
2993    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2994    PathDiagnosticPiece *piece =
2995      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2996    BugReport::ranges_iterator Beg, End;
2997    llvm::tie(Beg, End) = exampleReport->getRanges();
2998    for ( ; Beg != End; ++Beg)
2999      piece->addRange(*Beg);
3000    D->setEndOfPath(piece);
3001  }
3002
3003  // Get the meta data.
3004  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3005  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3006                                                e = Meta.end(); i != e; ++i) {
3007    D->addMeta(*i);
3008  }
3009
3010  PD.HandlePathDiagnostic(D.take());
3011}
3012
3013void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3014                                  StringRef name,
3015                                  StringRef category,
3016                                  StringRef str, PathDiagnosticLocation Loc,
3017                                  SourceRange* RBeg, unsigned NumRanges) {
3018
3019  // 'BT' is owned by BugReporter.
3020  BugType *BT = getBugTypeForName(name, category);
3021  BugReport *R = new BugReport(*BT, str, Loc);
3022  R->setDeclWithIssue(DeclWithIssue);
3023  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
3024  emitReport(R);
3025}
3026
3027BugType *BugReporter::getBugTypeForName(StringRef name,
3028                                        StringRef category) {
3029  SmallString<136> fullDesc;
3030  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
3031  llvm::StringMapEntry<BugType *> &
3032      entry = StrBugTypes.GetOrCreateValue(fullDesc);
3033  BugType *BT = entry.getValue();
3034  if (!BT) {
3035    BT = new BugType(name, category);
3036    entry.setValue(BT);
3037  }
3038  return BT;
3039}
3040