BugReporter.cpp revision d3d0dcfbf784c828c2f07384fd6a3401b0cd4e9e
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "BugReporter"
16
17#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Analysis/CFG.h"
26#include "clang/Analysis/ProgramPoint.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
29#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
30#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include "llvm/ADT/OwningPtr.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/Support/raw_ostream.h"
38#include <queue>
39
40using namespace clang;
41using namespace ento;
42
43STATISTIC(MaxBugClassSize,
44          "The maximum number of bug reports in the same equivalence class");
45STATISTIC(MaxValidBugClassSize,
46          "The maximum number of bug reports in the same equivalence class "
47          "where at least one report is valid (not suppressed)");
48
49BugReporterVisitor::~BugReporterVisitor() {}
50
51void BugReporterContext::anchor() {}
52
53//===----------------------------------------------------------------------===//
54// Helper routines for walking the ExplodedGraph and fetching statements.
55//===----------------------------------------------------------------------===//
56
57static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
58  for (N = N->getFirstPred(); N; N = N->getFirstPred())
59    if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
60      return S;
61
62  return 0;
63}
64
65static inline const Stmt*
66GetCurrentOrPreviousStmt(const ExplodedNode *N) {
67  if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
68    return S;
69
70  return GetPreviousStmt(N);
71}
72
73//===----------------------------------------------------------------------===//
74// Diagnostic cleanup.
75//===----------------------------------------------------------------------===//
76
77static PathDiagnosticEventPiece *
78eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
79                            PathDiagnosticEventPiece *Y) {
80  // Prefer diagnostics that come from ConditionBRVisitor over
81  // those that came from TrackConstraintBRVisitor.
82  const void *tagPreferred = ConditionBRVisitor::getTag();
83  const void *tagLesser = TrackConstraintBRVisitor::getTag();
84
85  if (X->getLocation() != Y->getLocation())
86    return 0;
87
88  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
89    return X;
90
91  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
92    return Y;
93
94  return 0;
95}
96
97/// An optimization pass over PathPieces that removes redundant diagnostics
98/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
99/// BugReporterVisitors use different methods to generate diagnostics, with
100/// one capable of emitting diagnostics in some cases but not in others.  This
101/// can lead to redundant diagnostic pieces at the same point in a path.
102static void removeRedundantMsgs(PathPieces &path) {
103  unsigned N = path.size();
104  if (N < 2)
105    return;
106  // NOTE: this loop intentionally is not using an iterator.  Instead, we
107  // are streaming the path and modifying it in place.  This is done by
108  // grabbing the front, processing it, and if we decide to keep it append
109  // it to the end of the path.  The entire path is processed in this way.
110  for (unsigned i = 0; i < N; ++i) {
111    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
112    path.pop_front();
113
114    switch (piece->getKind()) {
115      case clang::ento::PathDiagnosticPiece::Call:
116        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
117        break;
118      case clang::ento::PathDiagnosticPiece::Macro:
119        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
120        break;
121      case clang::ento::PathDiagnosticPiece::ControlFlow:
122        break;
123      case clang::ento::PathDiagnosticPiece::Event: {
124        if (i == N-1)
125          break;
126
127        if (PathDiagnosticEventPiece *nextEvent =
128            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
129          PathDiagnosticEventPiece *event =
130            cast<PathDiagnosticEventPiece>(piece);
131          // Check to see if we should keep one of the two pieces.  If we
132          // come up with a preference, record which piece to keep, and consume
133          // another piece from the path.
134          if (PathDiagnosticEventPiece *pieceToKeep =
135              eventsDescribeSameCondition(event, nextEvent)) {
136            piece = pieceToKeep;
137            path.pop_front();
138            ++i;
139          }
140        }
141        break;
142      }
143    }
144    path.push_back(piece);
145  }
146}
147
148/// A map from PathDiagnosticPiece to the LocationContext of the inlined
149/// function call it represents.
150typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
151        LocationContextMap;
152
153/// Recursively scan through a path and prune out calls and macros pieces
154/// that aren't needed.  Return true if afterwards the path contains
155/// "interesting stuff" which means it shouldn't be pruned from the parent path.
156static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
157                                LocationContextMap &LCM) {
158  bool containsSomethingInteresting = false;
159  const unsigned N = pieces.size();
160
161  for (unsigned i = 0 ; i < N ; ++i) {
162    // Remove the front piece from the path.  If it is still something we
163    // want to keep once we are done, we will push it back on the end.
164    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
165    pieces.pop_front();
166
167    switch (piece->getKind()) {
168      case PathDiagnosticPiece::Call: {
169        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
170        // Check if the location context is interesting.
171        assert(LCM.count(&call->path));
172        if (R->isInteresting(LCM[&call->path])) {
173          containsSomethingInteresting = true;
174          break;
175        }
176
177        if (!removeUnneededCalls(call->path, R, LCM))
178          continue;
179
180        containsSomethingInteresting = true;
181        break;
182      }
183      case PathDiagnosticPiece::Macro: {
184        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
185        if (!removeUnneededCalls(macro->subPieces, R, LCM))
186          continue;
187        containsSomethingInteresting = true;
188        break;
189      }
190      case PathDiagnosticPiece::Event: {
191        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
192
193        // We never throw away an event, but we do throw it away wholesale
194        // as part of a path if we throw the entire path away.
195        containsSomethingInteresting |= !event->isPrunable();
196        break;
197      }
198      case PathDiagnosticPiece::ControlFlow:
199        break;
200    }
201
202    pieces.push_back(piece);
203  }
204
205  return containsSomethingInteresting;
206}
207
208/// Returns true if the given decl has been implicitly given a body, either by
209/// the analyzer or by the compiler proper.
210static bool hasImplicitBody(const Decl *D) {
211  assert(D);
212  return D->isImplicit() || !D->hasBody();
213}
214
215/// Recursively scan through a path and make sure that all call pieces have
216/// valid locations.
217static void adjustCallLocations(PathPieces &Pieces,
218                                PathDiagnosticLocation *LastCallLocation = 0) {
219  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
220    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
221
222    if (!Call) {
223      assert((*I)->getLocation().asLocation().isValid());
224      continue;
225    }
226
227    if (LastCallLocation) {
228      bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
229      if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
230        Call->callEnter = *LastCallLocation;
231      if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
232        Call->callReturn = *LastCallLocation;
233    }
234
235    // Recursively clean out the subclass.  Keep this call around if
236    // it contains any informative diagnostics.
237    PathDiagnosticLocation *ThisCallLocation;
238    if (Call->callEnterWithin.asLocation().isValid() &&
239        !hasImplicitBody(Call->getCallee()))
240      ThisCallLocation = &Call->callEnterWithin;
241    else
242      ThisCallLocation = &Call->callEnter;
243
244    assert(ThisCallLocation && "Outermost call has an invalid location");
245    adjustCallLocations(Call->path, ThisCallLocation);
246  }
247}
248
249/// Remove edges in and out of C++ default initializer expressions. These are
250/// for fields that have in-class initializers, as opposed to being initialized
251/// explicitly in a constructor or braced list.
252static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
253  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
254    if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
255      removeEdgesToDefaultInitializers(C->path);
256
257    if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
258      removeEdgesToDefaultInitializers(M->subPieces);
259
260    if (PathDiagnosticControlFlowPiece *CF =
261          dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
262      const Stmt *Start = CF->getStartLocation().asStmt();
263      const Stmt *End = CF->getEndLocation().asStmt();
264      if (Start && isa<CXXDefaultInitExpr>(Start)) {
265        I = Pieces.erase(I);
266        continue;
267      } else if (End && isa<CXXDefaultInitExpr>(End)) {
268        PathPieces::iterator Next = llvm::next(I);
269        if (Next != E) {
270          if (PathDiagnosticControlFlowPiece *NextCF =
271                dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
272            NextCF->setStartLocation(CF->getStartLocation());
273          }
274        }
275        I = Pieces.erase(I);
276        continue;
277      }
278    }
279
280    I++;
281  }
282}
283
284/// Remove all pieces with invalid locations as these cannot be serialized.
285/// We might have pieces with invalid locations as a result of inlining Body
286/// Farm generated functions.
287static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
288  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
289    if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
290      removePiecesWithInvalidLocations(C->path);
291
292    if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
293      removePiecesWithInvalidLocations(M->subPieces);
294
295    if (!(*I)->getLocation().isValid() ||
296        !(*I)->getLocation().asLocation().isValid()) {
297      I = Pieces.erase(I);
298      continue;
299    }
300    I++;
301  }
302}
303
304//===----------------------------------------------------------------------===//
305// PathDiagnosticBuilder and its associated routines and helper objects.
306//===----------------------------------------------------------------------===//
307
308namespace {
309class NodeMapClosure : public BugReport::NodeResolver {
310  InterExplodedGraphMap &M;
311public:
312  NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
313
314  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
315    return M.lookup(N);
316  }
317};
318
319class PathDiagnosticBuilder : public BugReporterContext {
320  BugReport *R;
321  PathDiagnosticConsumer *PDC;
322  NodeMapClosure NMC;
323public:
324  const LocationContext *LC;
325
326  PathDiagnosticBuilder(GRBugReporter &br,
327                        BugReport *r, InterExplodedGraphMap &Backmap,
328                        PathDiagnosticConsumer *pdc)
329    : BugReporterContext(br),
330      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
331  {}
332
333  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
334
335  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
336                                            const ExplodedNode *N);
337
338  BugReport *getBugReport() { return R; }
339
340  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
341
342  ParentMap& getParentMap() { return LC->getParentMap(); }
343
344  const Stmt *getParent(const Stmt *S) {
345    return getParentMap().getParent(S);
346  }
347
348  virtual NodeMapClosure& getNodeResolver() { return NMC; }
349
350  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
351
352  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
353    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
354  }
355
356  bool supportsLogicalOpControlFlow() const {
357    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
358  }
359};
360} // end anonymous namespace
361
362PathDiagnosticLocation
363PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
364  if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
365    return PathDiagnosticLocation(S, getSourceManager(), LC);
366
367  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
368                                               getSourceManager());
369}
370
371PathDiagnosticLocation
372PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
373                                          const ExplodedNode *N) {
374
375  // Slow, but probably doesn't matter.
376  if (os.str().empty())
377    os << ' ';
378
379  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
380
381  if (Loc.asStmt())
382    os << "Execution continues on line "
383       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
384       << '.';
385  else {
386    os << "Execution jumps to the end of the ";
387    const Decl *D = N->getLocationContext()->getDecl();
388    if (isa<ObjCMethodDecl>(D))
389      os << "method";
390    else if (isa<FunctionDecl>(D))
391      os << "function";
392    else {
393      assert(isa<BlockDecl>(D));
394      os << "anonymous block";
395    }
396    os << '.';
397  }
398
399  return Loc;
400}
401
402static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
403  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
404    return PM.getParentIgnoreParens(S);
405
406  const Stmt *Parent = PM.getParentIgnoreParens(S);
407  if (!Parent)
408    return 0;
409
410  switch (Parent->getStmtClass()) {
411  case Stmt::ForStmtClass:
412  case Stmt::DoStmtClass:
413  case Stmt::WhileStmtClass:
414  case Stmt::ObjCForCollectionStmtClass:
415  case Stmt::CXXForRangeStmtClass:
416    return Parent;
417  default:
418    break;
419  }
420
421  return 0;
422}
423
424static PathDiagnosticLocation
425getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
426                         const LocationContext *LC, bool allowNestedContexts) {
427  if (!S)
428    return PathDiagnosticLocation();
429
430  while (const Stmt *Parent = getEnclosingParent(S, P)) {
431    switch (Parent->getStmtClass()) {
432      case Stmt::BinaryOperatorClass: {
433        const BinaryOperator *B = cast<BinaryOperator>(Parent);
434        if (B->isLogicalOp())
435          return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
436        break;
437      }
438      case Stmt::CompoundStmtClass:
439      case Stmt::StmtExprClass:
440        return PathDiagnosticLocation(S, SMgr, LC);
441      case Stmt::ChooseExprClass:
442        // Similar to '?' if we are referring to condition, just have the edge
443        // point to the entire choose expression.
444        if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
445          return PathDiagnosticLocation(Parent, SMgr, LC);
446        else
447          return PathDiagnosticLocation(S, SMgr, LC);
448      case Stmt::BinaryConditionalOperatorClass:
449      case Stmt::ConditionalOperatorClass:
450        // For '?', if we are referring to condition, just have the edge point
451        // to the entire '?' expression.
452        if (allowNestedContexts ||
453            cast<AbstractConditionalOperator>(Parent)->getCond() == S)
454          return PathDiagnosticLocation(Parent, SMgr, LC);
455        else
456          return PathDiagnosticLocation(S, SMgr, LC);
457      case Stmt::CXXForRangeStmtClass:
458        if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
459          return PathDiagnosticLocation(S, SMgr, LC);
460        break;
461      case Stmt::DoStmtClass:
462          return PathDiagnosticLocation(S, SMgr, LC);
463      case Stmt::ForStmtClass:
464        if (cast<ForStmt>(Parent)->getBody() == S)
465          return PathDiagnosticLocation(S, SMgr, LC);
466        break;
467      case Stmt::IfStmtClass:
468        if (cast<IfStmt>(Parent)->getCond() != S)
469          return PathDiagnosticLocation(S, SMgr, LC);
470        break;
471      case Stmt::ObjCForCollectionStmtClass:
472        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
473          return PathDiagnosticLocation(S, SMgr, LC);
474        break;
475      case Stmt::WhileStmtClass:
476        if (cast<WhileStmt>(Parent)->getCond() != S)
477          return PathDiagnosticLocation(S, SMgr, LC);
478        break;
479      default:
480        break;
481    }
482
483    S = Parent;
484  }
485
486  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
487
488  return PathDiagnosticLocation(S, SMgr, LC);
489}
490
491PathDiagnosticLocation
492PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
493  assert(S && "Null Stmt passed to getEnclosingStmtLocation");
494  return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
495                                    /*allowNestedContexts=*/false);
496}
497
498//===----------------------------------------------------------------------===//
499// "Visitors only" path diagnostic generation algorithm.
500//===----------------------------------------------------------------------===//
501static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
502                                               PathDiagnosticBuilder &PDB,
503                                               const ExplodedNode *N,
504                                      ArrayRef<BugReporterVisitor *> visitors) {
505  // All path generation skips the very first node (the error node).
506  // This is because there is special handling for the end-of-path note.
507  N = N->getFirstPred();
508  if (!N)
509    return true;
510
511  BugReport *R = PDB.getBugReport();
512  while (const ExplodedNode *Pred = N->getFirstPred()) {
513    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
514                                                  E = visitors.end();
515         I != E; ++I) {
516      // Visit all the node pairs, but throw the path pieces away.
517      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
518      delete Piece;
519    }
520
521    N = Pred;
522  }
523
524  return R->isValid();
525}
526
527//===----------------------------------------------------------------------===//
528// "Minimal" path diagnostic generation algorithm.
529//===----------------------------------------------------------------------===//
530typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
531typedef SmallVector<StackDiagPair, 6> StackDiagVector;
532
533static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
534                                         StackDiagVector &CallStack) {
535  // If the piece contains a special message, add it to all the call
536  // pieces on the active stack.
537  if (PathDiagnosticEventPiece *ep =
538        dyn_cast<PathDiagnosticEventPiece>(P)) {
539
540    if (ep->hasCallStackHint())
541      for (StackDiagVector::iterator I = CallStack.begin(),
542                                     E = CallStack.end(); I != E; ++I) {
543        PathDiagnosticCallPiece *CP = I->first;
544        const ExplodedNode *N = I->second;
545        std::string stackMsg = ep->getCallStackMessage(N);
546
547        // The last message on the path to final bug is the most important
548        // one. Since we traverse the path backwards, do not add the message
549        // if one has been previously added.
550        if  (!CP->hasCallStackMessage())
551          CP->setCallStackMessage(stackMsg);
552      }
553  }
554}
555
556static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
557
558static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
559                                          PathDiagnosticBuilder &PDB,
560                                          const ExplodedNode *N,
561                                          LocationContextMap &LCM,
562                                      ArrayRef<BugReporterVisitor *> visitors) {
563
564  SourceManager& SMgr = PDB.getSourceManager();
565  const LocationContext *LC = PDB.LC;
566  const ExplodedNode *NextNode = N->pred_empty()
567                                        ? NULL : *(N->pred_begin());
568
569  StackDiagVector CallStack;
570
571  while (NextNode) {
572    N = NextNode;
573    PDB.LC = N->getLocationContext();
574    NextNode = N->getFirstPred();
575
576    ProgramPoint P = N->getLocation();
577
578    do {
579      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
580        PathDiagnosticCallPiece *C =
581            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
582        // Record the mapping from call piece to LocationContext.
583        LCM[&C->path] = CE->getCalleeContext();
584        PD.getActivePath().push_front(C);
585        PD.pushActivePath(&C->path);
586        CallStack.push_back(StackDiagPair(C, N));
587        break;
588      }
589
590      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
591        // Flush all locations, and pop the active path.
592        bool VisitedEntireCall = PD.isWithinCall();
593        PD.popActivePath();
594
595        // Either we just added a bunch of stuff to the top-level path, or
596        // we have a previous CallExitEnd.  If the former, it means that the
597        // path terminated within a function call.  We must then take the
598        // current contents of the active path and place it within
599        // a new PathDiagnosticCallPiece.
600        PathDiagnosticCallPiece *C;
601        if (VisitedEntireCall) {
602          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
603        } else {
604          const Decl *Caller = CE->getLocationContext()->getDecl();
605          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
606          // Record the mapping from call piece to LocationContext.
607          LCM[&C->path] = CE->getCalleeContext();
608        }
609
610        C->setCallee(*CE, SMgr);
611        if (!CallStack.empty()) {
612          assert(CallStack.back().first == C);
613          CallStack.pop_back();
614        }
615        break;
616      }
617
618      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
619        const CFGBlock *Src = BE->getSrc();
620        const CFGBlock *Dst = BE->getDst();
621        const Stmt *T = Src->getTerminator();
622
623        if (!T)
624          break;
625
626        PathDiagnosticLocation Start =
627            PathDiagnosticLocation::createBegin(T, SMgr,
628                N->getLocationContext());
629
630        switch (T->getStmtClass()) {
631        default:
632          break;
633
634        case Stmt::GotoStmtClass:
635        case Stmt::IndirectGotoStmtClass: {
636          const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
637
638          if (!S)
639            break;
640
641          std::string sbuf;
642          llvm::raw_string_ostream os(sbuf);
643          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
644
645          os << "Control jumps to line "
646              << End.asLocation().getExpansionLineNumber();
647          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
648              Start, End, os.str()));
649          break;
650        }
651
652        case Stmt::SwitchStmtClass: {
653          // Figure out what case arm we took.
654          std::string sbuf;
655          llvm::raw_string_ostream os(sbuf);
656
657          if (const Stmt *S = Dst->getLabel()) {
658            PathDiagnosticLocation End(S, SMgr, LC);
659
660            switch (S->getStmtClass()) {
661            default:
662              os << "No cases match in the switch statement. "
663              "Control jumps to line "
664              << End.asLocation().getExpansionLineNumber();
665              break;
666            case Stmt::DefaultStmtClass:
667              os << "Control jumps to the 'default' case at line "
668              << End.asLocation().getExpansionLineNumber();
669              break;
670
671            case Stmt::CaseStmtClass: {
672              os << "Control jumps to 'case ";
673              const CaseStmt *Case = cast<CaseStmt>(S);
674              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
675
676              // Determine if it is an enum.
677              bool GetRawInt = true;
678
679              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
680                // FIXME: Maybe this should be an assertion.  Are there cases
681                // were it is not an EnumConstantDecl?
682                const EnumConstantDecl *D =
683                    dyn_cast<EnumConstantDecl>(DR->getDecl());
684
685                if (D) {
686                  GetRawInt = false;
687                  os << *D;
688                }
689              }
690
691              if (GetRawInt)
692                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
693
694              os << ":'  at line "
695                  << End.asLocation().getExpansionLineNumber();
696              break;
697            }
698            }
699            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
700                Start, End, os.str()));
701          }
702          else {
703            os << "'Default' branch taken. ";
704            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
705            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
706                Start, End, os.str()));
707          }
708
709          break;
710        }
711
712        case Stmt::BreakStmtClass:
713        case Stmt::ContinueStmtClass: {
714          std::string sbuf;
715          llvm::raw_string_ostream os(sbuf);
716          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
717          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
718              Start, End, os.str()));
719          break;
720        }
721
722        // Determine control-flow for ternary '?'.
723        case Stmt::BinaryConditionalOperatorClass:
724        case Stmt::ConditionalOperatorClass: {
725          std::string sbuf;
726          llvm::raw_string_ostream os(sbuf);
727          os << "'?' condition is ";
728
729          if (*(Src->succ_begin()+1) == Dst)
730            os << "false";
731          else
732            os << "true";
733
734          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
735
736          if (const Stmt *S = End.asStmt())
737            End = PDB.getEnclosingStmtLocation(S);
738
739          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
740              Start, End, os.str()));
741          break;
742        }
743
744        // Determine control-flow for short-circuited '&&' and '||'.
745        case Stmt::BinaryOperatorClass: {
746          if (!PDB.supportsLogicalOpControlFlow())
747            break;
748
749          const BinaryOperator *B = cast<BinaryOperator>(T);
750          std::string sbuf;
751          llvm::raw_string_ostream os(sbuf);
752          os << "Left side of '";
753
754          if (B->getOpcode() == BO_LAnd) {
755            os << "&&" << "' is ";
756
757            if (*(Src->succ_begin()+1) == Dst) {
758              os << "false";
759              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
760              PathDiagnosticLocation Start =
761                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
762              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
763                  Start, End, os.str()));
764            }
765            else {
766              os << "true";
767              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
768              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
769              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
770                  Start, End, os.str()));
771            }
772          }
773          else {
774            assert(B->getOpcode() == BO_LOr);
775            os << "||" << "' is ";
776
777            if (*(Src->succ_begin()+1) == Dst) {
778              os << "false";
779              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
780              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
781              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
782                  Start, End, os.str()));
783            }
784            else {
785              os << "true";
786              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
787              PathDiagnosticLocation Start =
788                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
789              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
790                  Start, End, os.str()));
791            }
792          }
793
794          break;
795        }
796
797        case Stmt::DoStmtClass:  {
798          if (*(Src->succ_begin()) == Dst) {
799            std::string sbuf;
800            llvm::raw_string_ostream os(sbuf);
801
802            os << "Loop condition is true. ";
803            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
804
805            if (const Stmt *S = End.asStmt())
806              End = PDB.getEnclosingStmtLocation(S);
807
808            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
809                Start, End, os.str()));
810          }
811          else {
812            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
813
814            if (const Stmt *S = End.asStmt())
815              End = PDB.getEnclosingStmtLocation(S);
816
817            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
818                Start, End, "Loop condition is false.  Exiting loop"));
819          }
820
821          break;
822        }
823
824        case Stmt::WhileStmtClass:
825        case Stmt::ForStmtClass: {
826          if (*(Src->succ_begin()+1) == Dst) {
827            std::string sbuf;
828            llvm::raw_string_ostream os(sbuf);
829
830            os << "Loop condition is false. ";
831            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
832            if (const Stmt *S = End.asStmt())
833              End = PDB.getEnclosingStmtLocation(S);
834
835            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
836                Start, End, os.str()));
837          }
838          else {
839            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
840            if (const Stmt *S = End.asStmt())
841              End = PDB.getEnclosingStmtLocation(S);
842
843            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
844                Start, End, "Loop condition is true.  Entering loop body"));
845          }
846
847          break;
848        }
849
850        case Stmt::IfStmtClass: {
851          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
852
853          if (const Stmt *S = End.asStmt())
854            End = PDB.getEnclosingStmtLocation(S);
855
856          if (*(Src->succ_begin()+1) == Dst)
857            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
858                Start, End, "Taking false branch"));
859          else
860            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
861                Start, End, "Taking true branch"));
862
863          break;
864        }
865        }
866      }
867    } while(0);
868
869    if (NextNode) {
870      // Add diagnostic pieces from custom visitors.
871      BugReport *R = PDB.getBugReport();
872      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
873                                                    E = visitors.end();
874           I != E; ++I) {
875        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
876          PD.getActivePath().push_front(p);
877          updateStackPiecesWithMessage(p, CallStack);
878        }
879      }
880    }
881  }
882
883  if (!PDB.getBugReport()->isValid())
884    return false;
885
886  // After constructing the full PathDiagnostic, do a pass over it to compact
887  // PathDiagnosticPieces that occur within a macro.
888  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
889  return true;
890}
891
892//===----------------------------------------------------------------------===//
893// "Extensive" PathDiagnostic generation.
894//===----------------------------------------------------------------------===//
895
896static bool IsControlFlowExpr(const Stmt *S) {
897  const Expr *E = dyn_cast<Expr>(S);
898
899  if (!E)
900    return false;
901
902  E = E->IgnoreParenCasts();
903
904  if (isa<AbstractConditionalOperator>(E))
905    return true;
906
907  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
908    if (B->isLogicalOp())
909      return true;
910
911  return false;
912}
913
914namespace {
915class ContextLocation : public PathDiagnosticLocation {
916  bool IsDead;
917public:
918  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
919    : PathDiagnosticLocation(L), IsDead(isdead) {}
920
921  void markDead() { IsDead = true; }
922  bool isDead() const { return IsDead; }
923};
924
925static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
926                                              const LocationContext *LC,
927                                              bool firstCharOnly = false) {
928  if (const Stmt *S = L.asStmt()) {
929    const Stmt *Original = S;
930    while (1) {
931      // Adjust the location for some expressions that are best referenced
932      // by one of their subexpressions.
933      switch (S->getStmtClass()) {
934        default:
935          break;
936        case Stmt::ParenExprClass:
937        case Stmt::GenericSelectionExprClass:
938          S = cast<Expr>(S)->IgnoreParens();
939          firstCharOnly = true;
940          continue;
941        case Stmt::BinaryConditionalOperatorClass:
942        case Stmt::ConditionalOperatorClass:
943          S = cast<AbstractConditionalOperator>(S)->getCond();
944          firstCharOnly = true;
945          continue;
946        case Stmt::ChooseExprClass:
947          S = cast<ChooseExpr>(S)->getCond();
948          firstCharOnly = true;
949          continue;
950        case Stmt::BinaryOperatorClass:
951          S = cast<BinaryOperator>(S)->getLHS();
952          firstCharOnly = true;
953          continue;
954      }
955
956      break;
957    }
958
959    if (S != Original)
960      L = PathDiagnosticLocation(S, L.getManager(), LC);
961  }
962
963  if (firstCharOnly)
964    L  = PathDiagnosticLocation::createSingleLocation(L);
965
966  return L;
967}
968
969class EdgeBuilder {
970  std::vector<ContextLocation> CLocs;
971  typedef std::vector<ContextLocation>::iterator iterator;
972  PathDiagnostic &PD;
973  PathDiagnosticBuilder &PDB;
974  PathDiagnosticLocation PrevLoc;
975
976  bool IsConsumedExpr(const PathDiagnosticLocation &L);
977
978  bool containsLocation(const PathDiagnosticLocation &Container,
979                        const PathDiagnosticLocation &Containee);
980
981  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
982
983
984
985  void popLocation() {
986    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
987      // For contexts, we only one the first character as the range.
988      rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
989    }
990    CLocs.pop_back();
991  }
992
993public:
994  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
995    : PD(pd), PDB(pdb) {
996
997      // If the PathDiagnostic already has pieces, add the enclosing statement
998      // of the first piece as a context as well.
999      if (!PD.path.empty()) {
1000        PrevLoc = (*PD.path.begin())->getLocation();
1001
1002        if (const Stmt *S = PrevLoc.asStmt())
1003          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1004      }
1005  }
1006
1007  ~EdgeBuilder() {
1008    while (!CLocs.empty()) popLocation();
1009
1010    // Finally, add an initial edge from the start location of the first
1011    // statement (if it doesn't already exist).
1012    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1013                                                       PDB.LC,
1014                                                       PDB.getSourceManager());
1015    if (L.isValid())
1016      rawAddEdge(L);
1017  }
1018
1019  void flushLocations() {
1020    while (!CLocs.empty())
1021      popLocation();
1022    PrevLoc = PathDiagnosticLocation();
1023  }
1024
1025  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
1026               bool IsPostJump = false);
1027
1028  void rawAddEdge(PathDiagnosticLocation NewLoc);
1029
1030  void addContext(const Stmt *S);
1031  void addContext(const PathDiagnosticLocation &L);
1032  void addExtendedContext(const Stmt *S);
1033};
1034} // end anonymous namespace
1035
1036
1037PathDiagnosticLocation
1038EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1039  if (const Stmt *S = L.asStmt()) {
1040    if (IsControlFlowExpr(S))
1041      return L;
1042
1043    return PDB.getEnclosingStmtLocation(S);
1044  }
1045
1046  return L;
1047}
1048
1049bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1050                                   const PathDiagnosticLocation &Containee) {
1051
1052  if (Container == Containee)
1053    return true;
1054
1055  if (Container.asDecl())
1056    return true;
1057
1058  if (const Stmt *S = Containee.asStmt())
1059    if (const Stmt *ContainerS = Container.asStmt()) {
1060      while (S) {
1061        if (S == ContainerS)
1062          return true;
1063        S = PDB.getParent(S);
1064      }
1065      return false;
1066    }
1067
1068  // Less accurate: compare using source ranges.
1069  SourceRange ContainerR = Container.asRange();
1070  SourceRange ContaineeR = Containee.asRange();
1071
1072  SourceManager &SM = PDB.getSourceManager();
1073  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1074  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1075  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1076  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1077
1078  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1079  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1080  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1081  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1082
1083  assert(ContainerBegLine <= ContainerEndLine);
1084  assert(ContaineeBegLine <= ContaineeEndLine);
1085
1086  return (ContainerBegLine <= ContaineeBegLine &&
1087          ContainerEndLine >= ContaineeEndLine &&
1088          (ContainerBegLine != ContaineeBegLine ||
1089           SM.getExpansionColumnNumber(ContainerRBeg) <=
1090           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1091          (ContainerEndLine != ContaineeEndLine ||
1092           SM.getExpansionColumnNumber(ContainerREnd) >=
1093           SM.getExpansionColumnNumber(ContaineeREnd)));
1094}
1095
1096void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1097  if (!PrevLoc.isValid()) {
1098    PrevLoc = NewLoc;
1099    return;
1100  }
1101
1102  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1103  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1104
1105  if (PrevLocClean.asLocation().isInvalid()) {
1106    PrevLoc = NewLoc;
1107    return;
1108  }
1109
1110  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1111    return;
1112
1113  // FIXME: Ignore intra-macro edges for now.
1114  if (NewLocClean.asLocation().getExpansionLoc() ==
1115      PrevLocClean.asLocation().getExpansionLoc())
1116    return;
1117
1118  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1119  PrevLoc = NewLoc;
1120}
1121
1122void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1123                          bool IsPostJump) {
1124
1125  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1126    return;
1127
1128  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1129
1130  while (!CLocs.empty()) {
1131    ContextLocation &TopContextLoc = CLocs.back();
1132
1133    // Is the top location context the same as the one for the new location?
1134    if (TopContextLoc == CLoc) {
1135      if (alwaysAdd) {
1136        if (IsConsumedExpr(TopContextLoc))
1137          TopContextLoc.markDead();
1138
1139        rawAddEdge(NewLoc);
1140      }
1141
1142      if (IsPostJump)
1143        TopContextLoc.markDead();
1144      return;
1145    }
1146
1147    if (containsLocation(TopContextLoc, CLoc)) {
1148      if (alwaysAdd) {
1149        rawAddEdge(NewLoc);
1150
1151        if (IsConsumedExpr(CLoc)) {
1152          CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1153          return;
1154        }
1155      }
1156
1157      CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1158      return;
1159    }
1160
1161    // Context does not contain the location.  Flush it.
1162    popLocation();
1163  }
1164
1165  // If we reach here, there is no enclosing context.  Just add the edge.
1166  rawAddEdge(NewLoc);
1167}
1168
1169bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1170  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1171    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1172
1173  return false;
1174}
1175
1176void EdgeBuilder::addExtendedContext(const Stmt *S) {
1177  if (!S)
1178    return;
1179
1180  const Stmt *Parent = PDB.getParent(S);
1181  while (Parent) {
1182    if (isa<CompoundStmt>(Parent))
1183      Parent = PDB.getParent(Parent);
1184    else
1185      break;
1186  }
1187
1188  if (Parent) {
1189    switch (Parent->getStmtClass()) {
1190      case Stmt::DoStmtClass:
1191      case Stmt::ObjCAtSynchronizedStmtClass:
1192        addContext(Parent);
1193      default:
1194        break;
1195    }
1196  }
1197
1198  addContext(S);
1199}
1200
1201void EdgeBuilder::addContext(const Stmt *S) {
1202  if (!S)
1203    return;
1204
1205  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1206  addContext(L);
1207}
1208
1209void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1210  while (!CLocs.empty()) {
1211    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1212
1213    // Is the top location context the same as the one for the new location?
1214    if (TopContextLoc == L)
1215      return;
1216
1217    if (containsLocation(TopContextLoc, L)) {
1218      CLocs.push_back(L);
1219      return;
1220    }
1221
1222    // Context does not contain the location.  Flush it.
1223    popLocation();
1224  }
1225
1226  CLocs.push_back(L);
1227}
1228
1229// Cone-of-influence: support the reverse propagation of "interesting" symbols
1230// and values by tracing interesting calculations backwards through evaluated
1231// expressions along a path.  This is probably overly complicated, but the idea
1232// is that if an expression computed an "interesting" value, the child
1233// expressions are are also likely to be "interesting" as well (which then
1234// propagates to the values they in turn compute).  This reverse propagation
1235// is needed to track interesting correlations across function call boundaries,
1236// where formal arguments bind to actual arguments, etc.  This is also needed
1237// because the constraint solver sometimes simplifies certain symbolic values
1238// into constants when appropriate, and this complicates reasoning about
1239// interesting values.
1240typedef llvm::DenseSet<const Expr *> InterestingExprs;
1241
1242static void reversePropagateIntererstingSymbols(BugReport &R,
1243                                                InterestingExprs &IE,
1244                                                const ProgramState *State,
1245                                                const Expr *Ex,
1246                                                const LocationContext *LCtx) {
1247  SVal V = State->getSVal(Ex, LCtx);
1248  if (!(R.isInteresting(V) || IE.count(Ex)))
1249    return;
1250
1251  switch (Ex->getStmtClass()) {
1252    default:
1253      if (!isa<CastExpr>(Ex))
1254        break;
1255      // Fall through.
1256    case Stmt::BinaryOperatorClass:
1257    case Stmt::UnaryOperatorClass: {
1258      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1259            CE = Ex->child_end();
1260            CI != CE; ++CI) {
1261        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1262          IE.insert(child);
1263          SVal ChildV = State->getSVal(child, LCtx);
1264          R.markInteresting(ChildV);
1265        }
1266        break;
1267      }
1268    }
1269  }
1270
1271  R.markInteresting(V);
1272}
1273
1274static void reversePropagateInterestingSymbols(BugReport &R,
1275                                               InterestingExprs &IE,
1276                                               const ProgramState *State,
1277                                               const LocationContext *CalleeCtx,
1278                                               const LocationContext *CallerCtx)
1279{
1280  // FIXME: Handle non-CallExpr-based CallEvents.
1281  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1282  const Stmt *CallSite = Callee->getCallSite();
1283  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1284    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1285      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1286                                         PE = FD->param_end();
1287      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1288      for (; AI != AE && PI != PE; ++AI, ++PI) {
1289        if (const Expr *ArgE = *AI) {
1290          if (const ParmVarDecl *PD = *PI) {
1291            Loc LV = State->getLValue(PD, CalleeCtx);
1292            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1293              IE.insert(ArgE);
1294          }
1295        }
1296      }
1297    }
1298  }
1299}
1300
1301//===----------------------------------------------------------------------===//
1302// Functions for determining if a loop was executed 0 times.
1303//===----------------------------------------------------------------------===//
1304
1305static bool isLoop(const Stmt *Term) {
1306  switch (Term->getStmtClass()) {
1307    case Stmt::ForStmtClass:
1308    case Stmt::WhileStmtClass:
1309    case Stmt::ObjCForCollectionStmtClass:
1310    case Stmt::CXXForRangeStmtClass:
1311      return true;
1312    default:
1313      // Note that we intentionally do not include do..while here.
1314      return false;
1315  }
1316}
1317
1318static bool isJumpToFalseBranch(const BlockEdge *BE) {
1319  const CFGBlock *Src = BE->getSrc();
1320  assert(Src->succ_size() == 2);
1321  return (*(Src->succ_begin()+1) == BE->getDst());
1322}
1323
1324/// Return true if the terminator is a loop and the destination is the
1325/// false branch.
1326static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1327  if (!isLoop(Term))
1328    return false;
1329
1330  // Did we take the false branch?
1331  return isJumpToFalseBranch(BE);
1332}
1333
1334static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1335  while (SubS) {
1336    if (SubS == S)
1337      return true;
1338    SubS = PM.getParent(SubS);
1339  }
1340  return false;
1341}
1342
1343static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1344                                     const ExplodedNode *N) {
1345  while (N) {
1346    Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1347    if (SP) {
1348      const Stmt *S = SP->getStmt();
1349      if (!isContainedByStmt(PM, Term, S))
1350        return S;
1351    }
1352    N = N->getFirstPred();
1353  }
1354  return 0;
1355}
1356
1357static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1358  const Stmt *LoopBody = 0;
1359  switch (Term->getStmtClass()) {
1360    case Stmt::CXXForRangeStmtClass: {
1361      const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
1362      if (isContainedByStmt(PM, FR->getInc(), S))
1363        return true;
1364      if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1365        return true;
1366      LoopBody = FR->getBody();
1367      break;
1368    }
1369    case Stmt::ForStmtClass: {
1370      const ForStmt *FS = cast<ForStmt>(Term);
1371      if (isContainedByStmt(PM, FS->getInc(), S))
1372        return true;
1373      LoopBody = FS->getBody();
1374      break;
1375    }
1376    case Stmt::ObjCForCollectionStmtClass: {
1377      const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1378      LoopBody = FC->getBody();
1379      break;
1380    }
1381    case Stmt::WhileStmtClass:
1382      LoopBody = cast<WhileStmt>(Term)->getBody();
1383      break;
1384    default:
1385      return false;
1386  }
1387  return isContainedByStmt(PM, LoopBody, S);
1388}
1389
1390//===----------------------------------------------------------------------===//
1391// Top-level logic for generating extensive path diagnostics.
1392//===----------------------------------------------------------------------===//
1393
1394static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1395                                            PathDiagnosticBuilder &PDB,
1396                                            const ExplodedNode *N,
1397                                            LocationContextMap &LCM,
1398                                      ArrayRef<BugReporterVisitor *> visitors) {
1399  EdgeBuilder EB(PD, PDB);
1400  const SourceManager& SM = PDB.getSourceManager();
1401  StackDiagVector CallStack;
1402  InterestingExprs IE;
1403
1404  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1405  while (NextNode) {
1406    N = NextNode;
1407    NextNode = N->getFirstPred();
1408    ProgramPoint P = N->getLocation();
1409
1410    do {
1411      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1412        if (const Expr *Ex = PS->getStmtAs<Expr>())
1413          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1414                                              N->getState().getPtr(), Ex,
1415                                              N->getLocationContext());
1416      }
1417
1418      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1419        const Stmt *S = CE->getCalleeContext()->getCallSite();
1420        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1421            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1422                                                N->getState().getPtr(), Ex,
1423                                                N->getLocationContext());
1424        }
1425
1426        PathDiagnosticCallPiece *C =
1427          PathDiagnosticCallPiece::construct(N, *CE, SM);
1428        LCM[&C->path] = CE->getCalleeContext();
1429
1430        EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1431        EB.flushLocations();
1432
1433        PD.getActivePath().push_front(C);
1434        PD.pushActivePath(&C->path);
1435        CallStack.push_back(StackDiagPair(C, N));
1436        break;
1437      }
1438
1439      // Pop the call hierarchy if we are done walking the contents
1440      // of a function call.
1441      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1442        // Add an edge to the start of the function.
1443        const Decl *D = CE->getCalleeContext()->getDecl();
1444        PathDiagnosticLocation pos =
1445          PathDiagnosticLocation::createBegin(D, SM);
1446        EB.addEdge(pos);
1447
1448        // Flush all locations, and pop the active path.
1449        bool VisitedEntireCall = PD.isWithinCall();
1450        EB.flushLocations();
1451        PD.popActivePath();
1452        PDB.LC = N->getLocationContext();
1453
1454        // Either we just added a bunch of stuff to the top-level path, or
1455        // we have a previous CallExitEnd.  If the former, it means that the
1456        // path terminated within a function call.  We must then take the
1457        // current contents of the active path and place it within
1458        // a new PathDiagnosticCallPiece.
1459        PathDiagnosticCallPiece *C;
1460        if (VisitedEntireCall) {
1461          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1462        } else {
1463          const Decl *Caller = CE->getLocationContext()->getDecl();
1464          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1465          LCM[&C->path] = CE->getCalleeContext();
1466        }
1467
1468        C->setCallee(*CE, SM);
1469        EB.addContext(C->getLocation());
1470
1471        if (!CallStack.empty()) {
1472          assert(CallStack.back().first == C);
1473          CallStack.pop_back();
1474        }
1475        break;
1476      }
1477
1478      // Note that is important that we update the LocationContext
1479      // after looking at CallExits.  CallExit basically adds an
1480      // edge in the *caller*, so we don't want to update the LocationContext
1481      // too soon.
1482      PDB.LC = N->getLocationContext();
1483
1484      // Block edges.
1485      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1486        // Does this represent entering a call?  If so, look at propagating
1487        // interesting symbols across call boundaries.
1488        if (NextNode) {
1489          const LocationContext *CallerCtx = NextNode->getLocationContext();
1490          const LocationContext *CalleeCtx = PDB.LC;
1491          if (CallerCtx != CalleeCtx) {
1492            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1493                                               N->getState().getPtr(),
1494                                               CalleeCtx, CallerCtx);
1495          }
1496        }
1497
1498        // Are we jumping to the head of a loop?  Add a special diagnostic.
1499        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1500          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1501          const CompoundStmt *CS = NULL;
1502
1503          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1504            CS = dyn_cast<CompoundStmt>(FS->getBody());
1505          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1506            CS = dyn_cast<CompoundStmt>(WS->getBody());
1507
1508          PathDiagnosticEventPiece *p =
1509            new PathDiagnosticEventPiece(L,
1510                                        "Looping back to the head of the loop");
1511          p->setPrunable(true);
1512
1513          EB.addEdge(p->getLocation(), true);
1514          PD.getActivePath().push_front(p);
1515
1516          if (CS) {
1517            PathDiagnosticLocation BL =
1518              PathDiagnosticLocation::createEndBrace(CS, SM);
1519            EB.addEdge(BL);
1520          }
1521        }
1522
1523        const CFGBlock *BSrc = BE->getSrc();
1524        ParentMap &PM = PDB.getParentMap();
1525
1526        if (const Stmt *Term = BSrc->getTerminator()) {
1527          // Are we jumping past the loop body without ever executing the
1528          // loop (because the condition was false)?
1529          if (isLoopJumpPastBody(Term, &*BE) &&
1530              !isInLoopBody(PM,
1531                            getStmtBeforeCond(PM,
1532                                              BSrc->getTerminatorCondition(),
1533                                              N),
1534                            Term)) {
1535            PathDiagnosticLocation L(Term, SM, PDB.LC);
1536            PathDiagnosticEventPiece *PE =
1537                new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1538            PE->setPrunable(true);
1539
1540            EB.addEdge(PE->getLocation(), true);
1541            PD.getActivePath().push_front(PE);
1542          }
1543
1544          // In any case, add the terminator as the current statement
1545          // context for control edges.
1546          EB.addContext(Term);
1547        }
1548
1549        break;
1550      }
1551
1552      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1553        Optional<CFGElement> First = BE->getFirstElement();
1554        if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1555          const Stmt *stmt = S->getStmt();
1556          if (IsControlFlowExpr(stmt)) {
1557            // Add the proper context for '&&', '||', and '?'.
1558            EB.addContext(stmt);
1559          }
1560          else
1561            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1562        }
1563
1564        break;
1565      }
1566
1567
1568    } while (0);
1569
1570    if (!NextNode)
1571      continue;
1572
1573    // Add pieces from custom visitors.
1574    BugReport *R = PDB.getBugReport();
1575    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1576                                                  E = visitors.end();
1577         I != E; ++I) {
1578      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1579        const PathDiagnosticLocation &Loc = p->getLocation();
1580        EB.addEdge(Loc, true);
1581        PD.getActivePath().push_front(p);
1582        updateStackPiecesWithMessage(p, CallStack);
1583
1584        if (const Stmt *S = Loc.asStmt())
1585          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1586      }
1587    }
1588  }
1589
1590  return PDB.getBugReport()->isValid();
1591}
1592
1593/// \brief Adds a sanitized control-flow diagnostic edge to a path.
1594static void addEdgeToPath(PathPieces &path,
1595                          PathDiagnosticLocation &PrevLoc,
1596                          PathDiagnosticLocation NewLoc,
1597                          const LocationContext *LC) {
1598  if (!NewLoc.isValid())
1599    return;
1600
1601  SourceLocation NewLocL = NewLoc.asLocation();
1602  if (NewLocL.isInvalid())
1603    return;
1604
1605  if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1606    PrevLoc = NewLoc;
1607    return;
1608  }
1609
1610  // Ignore self-edges, which occur when there are multiple nodes at the same
1611  // statement.
1612  if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1613    return;
1614
1615  path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1616                                                     PrevLoc));
1617  PrevLoc = NewLoc;
1618}
1619
1620/// A customized wrapper for CFGBlock::getTerminatorCondition()
1621/// which returns the element for ObjCForCollectionStmts.
1622static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1623  const Stmt *S = B->getTerminatorCondition();
1624  if (const ObjCForCollectionStmt *FS =
1625      dyn_cast_or_null<ObjCForCollectionStmt>(S))
1626    return FS->getElement();
1627  return S;
1628}
1629
1630static const char StrEnteringLoop[] = "Entering loop body";
1631static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1632
1633static bool
1634GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
1635                                         PathDiagnosticBuilder &PDB,
1636                                         const ExplodedNode *N,
1637                                         LocationContextMap &LCM,
1638                                      ArrayRef<BugReporterVisitor *> visitors) {
1639
1640  BugReport *report = PDB.getBugReport();
1641  const SourceManager& SM = PDB.getSourceManager();
1642  StackDiagVector CallStack;
1643  InterestingExprs IE;
1644
1645  PathDiagnosticLocation PrevLoc = PD.getLocation();
1646
1647  const ExplodedNode *NextNode = N->getFirstPred();
1648  while (NextNode) {
1649    N = NextNode;
1650    NextNode = N->getFirstPred();
1651    ProgramPoint P = N->getLocation();
1652
1653    do {
1654      // Have we encountered an entrance to a call?  It may be
1655      // the case that we have not encountered a matching
1656      // call exit before this point.  This means that the path
1657      // terminated within the call itself.
1658      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1659        // Add an edge to the start of the function.
1660        const StackFrameContext *CalleeLC = CE->getCalleeContext();
1661        const Decl *D = CalleeLC->getDecl();
1662        addEdgeToPath(PD.getActivePath(), PrevLoc,
1663                      PathDiagnosticLocation::createBegin(D, SM),
1664                      CalleeLC);
1665
1666        // Did we visit an entire call?
1667        bool VisitedEntireCall = PD.isWithinCall();
1668        PD.popActivePath();
1669
1670        PathDiagnosticCallPiece *C;
1671        if (VisitedEntireCall) {
1672          PathDiagnosticPiece *P = PD.getActivePath().front().getPtr();
1673          C = cast<PathDiagnosticCallPiece>(P);
1674        } else {
1675          const Decl *Caller = CE->getLocationContext()->getDecl();
1676          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1677
1678          // Since we just transferred the path over to the call piece,
1679          // reset the mapping from active to location context.
1680          assert(PD.getActivePath().size() == 1 &&
1681                 PD.getActivePath().front() == C);
1682          LCM[&PD.getActivePath()] = 0;
1683
1684          // Record the location context mapping for the path within
1685          // the call.
1686          assert(LCM[&C->path] == 0 ||
1687                 LCM[&C->path] == CE->getCalleeContext());
1688          LCM[&C->path] = CE->getCalleeContext();
1689
1690          // If this is the first item in the active path, record
1691          // the new mapping from active path to location context.
1692          const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1693          if (!NewLC)
1694            NewLC = N->getLocationContext();
1695
1696          PDB.LC = NewLC;
1697        }
1698        C->setCallee(*CE, SM);
1699
1700        // Update the previous location in the active path.
1701        PrevLoc = C->getLocation();
1702
1703        if (!CallStack.empty()) {
1704          assert(CallStack.back().first == C);
1705          CallStack.pop_back();
1706        }
1707        break;
1708      }
1709
1710      // Query the location context here and the previous location
1711      // as processing CallEnter may change the active path.
1712      PDB.LC = N->getLocationContext();
1713
1714      // Record the mapping from the active path to the location
1715      // context.
1716      assert(!LCM[&PD.getActivePath()] ||
1717             LCM[&PD.getActivePath()] == PDB.LC);
1718      LCM[&PD.getActivePath()] = PDB.LC;
1719
1720      // Have we encountered an exit from a function call?
1721      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1722        const Stmt *S = CE->getCalleeContext()->getCallSite();
1723        // Propagate the interesting symbols accordingly.
1724        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1725          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1726                                              N->getState().getPtr(), Ex,
1727                                              N->getLocationContext());
1728        }
1729
1730        // We are descending into a call (backwards).  Construct
1731        // a new call piece to contain the path pieces for that call.
1732        PathDiagnosticCallPiece *C =
1733          PathDiagnosticCallPiece::construct(N, *CE, SM);
1734
1735        // Record the location context for this call piece.
1736        LCM[&C->path] = CE->getCalleeContext();
1737
1738        // Add the edge to the return site.
1739        addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1740        PD.getActivePath().push_front(C);
1741        PrevLoc.invalidate();
1742
1743        // Make the contents of the call the active path for now.
1744        PD.pushActivePath(&C->path);
1745        CallStack.push_back(StackDiagPair(C, N));
1746        break;
1747      }
1748
1749      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1750        // For expressions, make sure we propagate the
1751        // interesting symbols correctly.
1752        if (const Expr *Ex = PS->getStmtAs<Expr>())
1753          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1754                                              N->getState().getPtr(), Ex,
1755                                              N->getLocationContext());
1756
1757        // Add an edge.  If this is an ObjCForCollectionStmt do
1758        // not add an edge here as it appears in the CFG both
1759        // as a terminator and as a terminator condition.
1760        if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1761          PathDiagnosticLocation L =
1762            PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1763          addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1764        }
1765        break;
1766      }
1767
1768      // Block edges.
1769      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1770        // Does this represent entering a call?  If so, look at propagating
1771        // interesting symbols across call boundaries.
1772        if (NextNode) {
1773          const LocationContext *CallerCtx = NextNode->getLocationContext();
1774          const LocationContext *CalleeCtx = PDB.LC;
1775          if (CallerCtx != CalleeCtx) {
1776            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1777                                               N->getState().getPtr(),
1778                                               CalleeCtx, CallerCtx);
1779          }
1780        }
1781
1782        // Are we jumping to the head of a loop?  Add a special diagnostic.
1783        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1784          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1785          const Stmt *Body = NULL;
1786
1787          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1788            Body = FS->getBody();
1789          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1790            Body = WS->getBody();
1791          else if (const ObjCForCollectionStmt *OFS =
1792                     dyn_cast<ObjCForCollectionStmt>(Loop)) {
1793            Body = OFS->getBody();
1794          } else if (const CXXForRangeStmt *FRS =
1795                       dyn_cast<CXXForRangeStmt>(Loop)) {
1796            Body = FRS->getBody();
1797          }
1798          // do-while statements are explicitly excluded here
1799
1800          PathDiagnosticEventPiece *p =
1801            new PathDiagnosticEventPiece(L, "Looping back to the head "
1802                                            "of the loop");
1803          p->setPrunable(true);
1804
1805          addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1806          PD.getActivePath().push_front(p);
1807
1808          if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1809            addEdgeToPath(PD.getActivePath(), PrevLoc,
1810                          PathDiagnosticLocation::createEndBrace(CS, SM),
1811                          PDB.LC);
1812          }
1813        }
1814
1815        const CFGBlock *BSrc = BE->getSrc();
1816        ParentMap &PM = PDB.getParentMap();
1817
1818        if (const Stmt *Term = BSrc->getTerminator()) {
1819          // Are we jumping past the loop body without ever executing the
1820          // loop (because the condition was false)?
1821          if (isLoop(Term)) {
1822            const Stmt *TermCond = getTerminatorCondition(BSrc);
1823            bool IsInLoopBody =
1824              isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1825
1826            const char *str = 0;
1827
1828            if (isJumpToFalseBranch(&*BE)) {
1829              if (!IsInLoopBody) {
1830                str = StrLoopBodyZero;
1831              }
1832            } else {
1833              str = StrEnteringLoop;
1834            }
1835
1836            if (str) {
1837              PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1838              PathDiagnosticEventPiece *PE =
1839                new PathDiagnosticEventPiece(L, str);
1840              PE->setPrunable(true);
1841              addEdgeToPath(PD.getActivePath(), PrevLoc,
1842                            PE->getLocation(), PDB.LC);
1843              PD.getActivePath().push_front(PE);
1844            }
1845          } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1846                     isa<GotoStmt>(Term)) {
1847            PathDiagnosticLocation L(Term, SM, PDB.LC);
1848            addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1849          }
1850        }
1851        break;
1852      }
1853    } while (0);
1854
1855    if (!NextNode)
1856      continue;
1857
1858    // Add pieces from custom visitors.
1859    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1860         E = visitors.end();
1861         I != E; ++I) {
1862      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
1863        addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1864        PD.getActivePath().push_front(p);
1865        updateStackPiecesWithMessage(p, CallStack);
1866      }
1867    }
1868  }
1869
1870  // Add an edge to the start of the function.
1871  // We'll prune it out later, but it helps make diagnostics more uniform.
1872  const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
1873  const Decl *D = CalleeLC->getDecl();
1874  addEdgeToPath(PD.getActivePath(), PrevLoc,
1875                PathDiagnosticLocation::createBegin(D, SM),
1876                CalleeLC);
1877
1878  return report->isValid();
1879}
1880
1881static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1882  if (!L.isValid())
1883    return 0;
1884  return L.asStmt();
1885}
1886
1887static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1888  if (!S)
1889    return 0;
1890
1891  while (true) {
1892    S = PM.getParentIgnoreParens(S);
1893
1894    if (!S)
1895      break;
1896
1897    if (isa<ExprWithCleanups>(S) ||
1898        isa<CXXBindTemporaryExpr>(S) ||
1899        isa<SubstNonTypeTemplateParmExpr>(S))
1900      continue;
1901
1902    break;
1903  }
1904
1905  return S;
1906}
1907
1908static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1909  switch (S->getStmtClass()) {
1910    case Stmt::BinaryOperatorClass: {
1911      const BinaryOperator *BO = cast<BinaryOperator>(S);
1912      if (!BO->isLogicalOp())
1913        return false;
1914      return BO->getLHS() == Cond || BO->getRHS() == Cond;
1915    }
1916    case Stmt::IfStmtClass:
1917      return cast<IfStmt>(S)->getCond() == Cond;
1918    case Stmt::ForStmtClass:
1919      return cast<ForStmt>(S)->getCond() == Cond;
1920    case Stmt::WhileStmtClass:
1921      return cast<WhileStmt>(S)->getCond() == Cond;
1922    case Stmt::DoStmtClass:
1923      return cast<DoStmt>(S)->getCond() == Cond;
1924    case Stmt::ChooseExprClass:
1925      return cast<ChooseExpr>(S)->getCond() == Cond;
1926    case Stmt::IndirectGotoStmtClass:
1927      return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1928    case Stmt::SwitchStmtClass:
1929      return cast<SwitchStmt>(S)->getCond() == Cond;
1930    case Stmt::BinaryConditionalOperatorClass:
1931      return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1932    case Stmt::ConditionalOperatorClass: {
1933      const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1934      return CO->getCond() == Cond ||
1935             CO->getLHS() == Cond ||
1936             CO->getRHS() == Cond;
1937    }
1938    case Stmt::ObjCForCollectionStmtClass:
1939      return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1940    case Stmt::CXXForRangeStmtClass: {
1941      const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
1942      return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1943    }
1944    default:
1945      return false;
1946  }
1947}
1948
1949static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1950  if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
1951    return FS->getInc() == S || FS->getInit() == S;
1952  if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
1953    return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1954           FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1955  return false;
1956}
1957
1958typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1959        OptimizedCallsSet;
1960
1961/// Adds synthetic edges from top-level statements to their subexpressions.
1962///
1963/// This avoids a "swoosh" effect, where an edge from a top-level statement A
1964/// points to a sub-expression B.1 that's not at the start of B. In these cases,
1965/// we'd like to see an edge from A to B, then another one from B to B.1.
1966static void addContextEdges(PathPieces &pieces, SourceManager &SM,
1967                            const ParentMap &PM, const LocationContext *LCtx) {
1968  PathPieces::iterator Prev = pieces.end();
1969  for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1970       Prev = I, ++I) {
1971    PathDiagnosticControlFlowPiece *Piece =
1972      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1973
1974    if (!Piece)
1975      continue;
1976
1977    PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1978    SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1979
1980    PathDiagnosticLocation NextSrcContext = SrcLoc;
1981    const Stmt *InnerStmt = 0;
1982    while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1983      SrcContexts.push_back(NextSrcContext);
1984      InnerStmt = NextSrcContext.asStmt();
1985      NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
1986                                                /*allowNested=*/true);
1987    }
1988
1989    // Repeatedly split the edge as necessary.
1990    // This is important for nested logical expressions (||, &&, ?:) where we
1991    // want to show all the levels of context.
1992    while (true) {
1993      const Stmt *Dst = getLocStmt(Piece->getEndLocation());
1994
1995      // We are looking at an edge. Is the destination within a larger
1996      // expression?
1997      PathDiagnosticLocation DstContext =
1998        getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
1999      if (!DstContext.isValid() || DstContext.asStmt() == Dst)
2000        break;
2001
2002      // If the source is in the same context, we're already good.
2003      if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
2004          SrcContexts.end())
2005        break;
2006
2007      // Update the subexpression node to point to the context edge.
2008      Piece->setStartLocation(DstContext);
2009
2010      // Try to extend the previous edge if it's at the same level as the source
2011      // context.
2012      if (Prev != E) {
2013        PathDiagnosticControlFlowPiece *PrevPiece =
2014          dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
2015
2016        if (PrevPiece) {
2017          if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
2018            const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2019            if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
2020              PrevPiece->setEndLocation(DstContext);
2021              break;
2022            }
2023          }
2024        }
2025      }
2026
2027      // Otherwise, split the current edge into a context edge and a
2028      // subexpression edge. Note that the context statement may itself have
2029      // context.
2030      Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
2031      I = pieces.insert(I, Piece);
2032    }
2033  }
2034}
2035
2036/// \brief Move edges from a branch condition to a branch target
2037///        when the condition is simple.
2038///
2039/// This restructures some of the work of addContextEdges.  That function
2040/// creates edges this may destroy, but they work together to create a more
2041/// aesthetically set of edges around branches.  After the call to
2042/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
2043/// the branch to the branch condition, and (3) an edge from the branch
2044/// condition to the branch target.  We keep (1), but may wish to remove (2)
2045/// and move the source of (3) to the branch if the branch condition is simple.
2046///
2047static void simplifySimpleBranches(PathPieces &pieces) {
2048  for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
2049
2050    PathDiagnosticControlFlowPiece *PieceI =
2051      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2052
2053    if (!PieceI)
2054      continue;
2055
2056    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2057    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2058
2059    if (!s1Start || !s1End)
2060      continue;
2061
2062    PathPieces::iterator NextI = I; ++NextI;
2063    if (NextI == E)
2064      break;
2065
2066    PathDiagnosticControlFlowPiece *PieceNextI = 0;
2067
2068    while (true) {
2069      if (NextI == E)
2070        break;
2071
2072      PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
2073      if (EV) {
2074        StringRef S = EV->getString();
2075        if (S == StrEnteringLoop || S == StrLoopBodyZero) {
2076          ++NextI;
2077          continue;
2078        }
2079        break;
2080      }
2081
2082      PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2083      break;
2084    }
2085
2086    if (!PieceNextI)
2087      continue;
2088
2089    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2090    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2091
2092    if (!s2Start || !s2End || s1End != s2Start)
2093      continue;
2094
2095    // We only perform this transformation for specific branch kinds.
2096    // We don't want to do this for do..while, for example.
2097    if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
2098          isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
2099          isa<CXXForRangeStmt>(s1Start)))
2100      continue;
2101
2102    // Is s1End the branch condition?
2103    if (!isConditionForTerminator(s1Start, s1End))
2104      continue;
2105
2106    // Perform the hoisting by eliminating (2) and changing the start
2107    // location of (3).
2108    PieceNextI->setStartLocation(PieceI->getStartLocation());
2109    I = pieces.erase(I);
2110  }
2111}
2112
2113/// Returns the number of bytes in the given (character-based) SourceRange.
2114///
2115/// If the locations in the range are not on the same line, returns None.
2116///
2117/// Note that this does not do a precise user-visible character or column count.
2118static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2119                                              SourceRange Range) {
2120  SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
2121                             SM.getExpansionRange(Range.getEnd()).second);
2122
2123  FileID FID = SM.getFileID(ExpansionRange.getBegin());
2124  if (FID != SM.getFileID(ExpansionRange.getEnd()))
2125    return None;
2126
2127  bool Invalid;
2128  const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
2129  if (Invalid)
2130    return None;
2131
2132  unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
2133  unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
2134  StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
2135
2136  // We're searching the raw bytes of the buffer here, which might include
2137  // escaped newlines and such. That's okay; we're trying to decide whether the
2138  // SourceRange is covering a large or small amount of space in the user's
2139  // editor.
2140  if (Snippet.find_first_of("\r\n") != StringRef::npos)
2141    return None;
2142
2143  // This isn't Unicode-aware, but it doesn't need to be.
2144  return Snippet.size();
2145}
2146
2147/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
2148static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2149                                              const Stmt *S) {
2150  return getLengthOnSingleLine(SM, S->getSourceRange());
2151}
2152
2153/// Eliminate two-edge cycles created by addContextEdges().
2154///
2155/// Once all the context edges are in place, there are plenty of cases where
2156/// there's a single edge from a top-level statement to a subexpression,
2157/// followed by a single path note, and then a reverse edge to get back out to
2158/// the top level. If the statement is simple enough, the subexpression edges
2159/// just add noise and make it harder to understand what's going on.
2160///
2161/// This function only removes edges in pairs, because removing only one edge
2162/// might leave other edges dangling.
2163///
2164/// This will not remove edges in more complicated situations:
2165/// - if there is more than one "hop" leading to or from a subexpression.
2166/// - if there is an inlined call between the edges instead of a single event.
2167/// - if the whole statement is large enough that having subexpression arrows
2168///   might be helpful.
2169static void removeContextCycles(PathPieces &Path, SourceManager &SM,
2170                                ParentMap &PM) {
2171  for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
2172    // Pattern match the current piece and its successor.
2173    PathDiagnosticControlFlowPiece *PieceI =
2174      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2175
2176    if (!PieceI) {
2177      ++I;
2178      continue;
2179    }
2180
2181    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2182    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2183
2184    PathPieces::iterator NextI = I; ++NextI;
2185    if (NextI == E)
2186      break;
2187
2188    PathDiagnosticControlFlowPiece *PieceNextI =
2189      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2190
2191    if (!PieceNextI) {
2192      if (isa<PathDiagnosticEventPiece>(*NextI)) {
2193        ++NextI;
2194        if (NextI == E)
2195          break;
2196        PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2197      }
2198
2199      if (!PieceNextI) {
2200        ++I;
2201        continue;
2202      }
2203    }
2204
2205    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2206    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2207
2208    if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
2209      const size_t MAX_SHORT_LINE_LENGTH = 80;
2210      Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
2211      if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
2212        Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
2213        if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
2214          Path.erase(I);
2215          I = Path.erase(NextI);
2216          continue;
2217        }
2218      }
2219    }
2220
2221    ++I;
2222  }
2223}
2224
2225/// \brief Return true if X is contained by Y.
2226static bool lexicalContains(ParentMap &PM,
2227                            const Stmt *X,
2228                            const Stmt *Y) {
2229  while (X) {
2230    if (X == Y)
2231      return true;
2232    X = PM.getParent(X);
2233  }
2234  return false;
2235}
2236
2237// Remove short edges on the same line less than 3 columns in difference.
2238static void removePunyEdges(PathPieces &path,
2239                            SourceManager &SM,
2240                            ParentMap &PM) {
2241
2242  bool erased = false;
2243
2244  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
2245       erased ? I : ++I) {
2246
2247    erased = false;
2248
2249    PathDiagnosticControlFlowPiece *PieceI =
2250      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2251
2252    if (!PieceI)
2253      continue;
2254
2255    const Stmt *start = getLocStmt(PieceI->getStartLocation());
2256    const Stmt *end   = getLocStmt(PieceI->getEndLocation());
2257
2258    if (!start || !end)
2259      continue;
2260
2261    const Stmt *endParent = PM.getParent(end);
2262    if (!endParent)
2263      continue;
2264
2265    if (isConditionForTerminator(end, endParent))
2266      continue;
2267
2268    SourceLocation FirstLoc = start->getLocStart();
2269    SourceLocation SecondLoc = end->getLocStart();
2270
2271    if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
2272      continue;
2273    if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
2274      std::swap(SecondLoc, FirstLoc);
2275
2276    SourceRange EdgeRange(FirstLoc, SecondLoc);
2277    Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
2278
2279    // If the statements are on different lines, continue.
2280    if (!ByteWidth)
2281      continue;
2282
2283    const size_t MAX_PUNY_EDGE_LENGTH = 2;
2284    if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
2285      // FIXME: There are enough /bytes/ between the endpoints of the edge, but
2286      // there might not be enough /columns/. A proper user-visible column count
2287      // is probably too expensive, though.
2288      I = path.erase(I);
2289      erased = true;
2290      continue;
2291    }
2292  }
2293}
2294
2295static void removeIdenticalEvents(PathPieces &path) {
2296  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2297    PathDiagnosticEventPiece *PieceI =
2298      dyn_cast<PathDiagnosticEventPiece>(*I);
2299
2300    if (!PieceI)
2301      continue;
2302
2303    PathPieces::iterator NextI = I; ++NextI;
2304    if (NextI == E)
2305      return;
2306
2307    PathDiagnosticEventPiece *PieceNextI =
2308      dyn_cast<PathDiagnosticEventPiece>(*NextI);
2309
2310    if (!PieceNextI)
2311      continue;
2312
2313    // Erase the second piece if it has the same exact message text.
2314    if (PieceI->getString() == PieceNextI->getString()) {
2315      path.erase(NextI);
2316    }
2317  }
2318}
2319
2320static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2321                          OptimizedCallsSet &OCS,
2322                          LocationContextMap &LCM) {
2323  bool hasChanges = false;
2324  const LocationContext *LC = LCM[&path];
2325  assert(LC);
2326  ParentMap &PM = LC->getParentMap();
2327
2328  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2329    // Optimize subpaths.
2330    if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
2331      // Record the fact that a call has been optimized so we only do the
2332      // effort once.
2333      if (!OCS.count(CallI)) {
2334        while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2335        OCS.insert(CallI);
2336      }
2337      ++I;
2338      continue;
2339    }
2340
2341    // Pattern match the current piece and its successor.
2342    PathDiagnosticControlFlowPiece *PieceI =
2343      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2344
2345    if (!PieceI) {
2346      ++I;
2347      continue;
2348    }
2349
2350    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2351    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2352    const Stmt *level1 = getStmtParent(s1Start, PM);
2353    const Stmt *level2 = getStmtParent(s1End, PM);
2354
2355    PathPieces::iterator NextI = I; ++NextI;
2356    if (NextI == E)
2357      break;
2358
2359    PathDiagnosticControlFlowPiece *PieceNextI =
2360      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2361
2362    if (!PieceNextI) {
2363      ++I;
2364      continue;
2365    }
2366
2367    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2368    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2369    const Stmt *level3 = getStmtParent(s2Start, PM);
2370    const Stmt *level4 = getStmtParent(s2End, PM);
2371
2372    // Rule I.
2373    //
2374    // If we have two consecutive control edges whose end/begin locations
2375    // are at the same level (e.g. statements or top-level expressions within
2376    // a compound statement, or siblings share a single ancestor expression),
2377    // then merge them if they have no interesting intermediate event.
2378    //
2379    // For example:
2380    //
2381    // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2382    // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2383    //
2384    // NOTE: this will be limited later in cases where we add barriers
2385    // to prevent this optimization.
2386    //
2387    if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2388      PieceI->setEndLocation(PieceNextI->getEndLocation());
2389      path.erase(NextI);
2390      hasChanges = true;
2391      continue;
2392    }
2393
2394    // Rule II.
2395    //
2396    // Eliminate edges between subexpressions and parent expressions
2397    // when the subexpression is consumed.
2398    //
2399    // NOTE: this will be limited later in cases where we add barriers
2400    // to prevent this optimization.
2401    //
2402    if (s1End && s1End == s2Start && level2) {
2403      bool removeEdge = false;
2404      // Remove edges into the increment or initialization of a
2405      // loop that have no interleaving event.  This means that
2406      // they aren't interesting.
2407      if (isIncrementOrInitInForLoop(s1End, level2))
2408        removeEdge = true;
2409      // Next only consider edges that are not anchored on
2410      // the condition of a terminator.  This are intermediate edges
2411      // that we might want to trim.
2412      else if (!isConditionForTerminator(level2, s1End)) {
2413        // Trim edges on expressions that are consumed by
2414        // the parent expression.
2415        if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2416          removeEdge = true;
2417        }
2418        // Trim edges where a lexical containment doesn't exist.
2419        // For example:
2420        //
2421        //  X -> Y -> Z
2422        //
2423        // If 'Z' lexically contains Y (it is an ancestor) and
2424        // 'X' does not lexically contain Y (it is a descendant OR
2425        // it has no lexical relationship at all) then trim.
2426        //
2427        // This can eliminate edges where we dive into a subexpression
2428        // and then pop back out, etc.
2429        else if (s1Start && s2End &&
2430                 lexicalContains(PM, s2Start, s2End) &&
2431                 !lexicalContains(PM, s1End, s1Start)) {
2432          removeEdge = true;
2433        }
2434        // Trim edges from a subexpression back to the top level if the
2435        // subexpression is on a different line.
2436        //
2437        // A.1 -> A -> B
2438        // becomes
2439        // A.1 -> B
2440        //
2441        // These edges just look ugly and don't usually add anything.
2442        else if (s1Start && s2End &&
2443                 lexicalContains(PM, s1Start, s1End)) {
2444          SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
2445                                PieceI->getStartLocation().asLocation());
2446          if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
2447            removeEdge = true;
2448        }
2449      }
2450
2451      if (removeEdge) {
2452        PieceI->setEndLocation(PieceNextI->getEndLocation());
2453        path.erase(NextI);
2454        hasChanges = true;
2455        continue;
2456      }
2457    }
2458
2459    // Optimize edges for ObjC fast-enumeration loops.
2460    //
2461    // (X -> collection) -> (collection -> element)
2462    //
2463    // becomes:
2464    //
2465    // (X -> element)
2466    if (s1End == s2Start) {
2467      const ObjCForCollectionStmt *FS =
2468        dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2469      if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2470          s2End == FS->getElement()) {
2471        PieceI->setEndLocation(PieceNextI->getEndLocation());
2472        path.erase(NextI);
2473        hasChanges = true;
2474        continue;
2475      }
2476    }
2477
2478    // No changes at this index?  Move to the next one.
2479    ++I;
2480  }
2481
2482  if (!hasChanges) {
2483    // Adjust edges into subexpressions to make them more uniform
2484    // and aesthetically pleasing.
2485    addContextEdges(path, SM, PM, LC);
2486    // Remove "cyclical" edges that include one or more context edges.
2487    removeContextCycles(path, SM, PM);
2488    // Hoist edges originating from branch conditions to branches
2489    // for simple branches.
2490    simplifySimpleBranches(path);
2491    // Remove any puny edges left over after primary optimization pass.
2492    removePunyEdges(path, SM, PM);
2493    // Remove identical events.
2494    removeIdenticalEvents(path);
2495  }
2496
2497  return hasChanges;
2498}
2499
2500/// Drop the very first edge in a path, which should be a function entry edge.
2501///
2502/// If the first edge is not a function entry edge (say, because the first
2503/// statement had an invalid source location), this function does nothing.
2504// FIXME: We should just generate invalid edges anyway and have the optimizer
2505// deal with them.
2506static void dropFunctionEntryEdge(PathPieces &Path,
2507                                  LocationContextMap &LCM,
2508                                  SourceManager &SM) {
2509  const PathDiagnosticControlFlowPiece *FirstEdge =
2510    dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
2511  if (!FirstEdge)
2512    return;
2513
2514  const Decl *D = LCM[&Path]->getDecl();
2515  PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
2516  if (FirstEdge->getStartLocation() != EntryLoc)
2517    return;
2518
2519  Path.pop_front();
2520}
2521
2522
2523//===----------------------------------------------------------------------===//
2524// Methods for BugType and subclasses.
2525//===----------------------------------------------------------------------===//
2526void BugType::anchor() { }
2527
2528void BugType::FlushReports(BugReporter &BR) {}
2529
2530void BuiltinBug::anchor() {}
2531
2532//===----------------------------------------------------------------------===//
2533// Methods for BugReport and subclasses.
2534//===----------------------------------------------------------------------===//
2535
2536void BugReport::NodeResolver::anchor() {}
2537
2538void BugReport::addVisitor(BugReporterVisitor* visitor) {
2539  if (!visitor)
2540    return;
2541
2542  llvm::FoldingSetNodeID ID;
2543  visitor->Profile(ID);
2544  void *InsertPos;
2545
2546  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2547    delete visitor;
2548    return;
2549  }
2550
2551  CallbacksSet.InsertNode(visitor, InsertPos);
2552  Callbacks.push_back(visitor);
2553  ++ConfigurationChangeToken;
2554}
2555
2556BugReport::~BugReport() {
2557  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
2558    delete *I;
2559  }
2560  while (!interestingSymbols.empty()) {
2561    popInterestingSymbolsAndRegions();
2562  }
2563}
2564
2565const Decl *BugReport::getDeclWithIssue() const {
2566  if (DeclWithIssue)
2567    return DeclWithIssue;
2568
2569  const ExplodedNode *N = getErrorNode();
2570  if (!N)
2571    return 0;
2572
2573  const LocationContext *LC = N->getLocationContext();
2574  return LC->getCurrentStackFrame()->getDecl();
2575}
2576
2577void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2578  hash.AddPointer(&BT);
2579  hash.AddString(Description);
2580  PathDiagnosticLocation UL = getUniqueingLocation();
2581  if (UL.isValid()) {
2582    UL.Profile(hash);
2583  } else if (Location.isValid()) {
2584    Location.Profile(hash);
2585  } else {
2586    assert(ErrorNode);
2587    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2588  }
2589
2590  for (SmallVectorImpl<SourceRange>::const_iterator I =
2591      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2592    const SourceRange range = *I;
2593    if (!range.isValid())
2594      continue;
2595    hash.AddInteger(range.getBegin().getRawEncoding());
2596    hash.AddInteger(range.getEnd().getRawEncoding());
2597  }
2598}
2599
2600void BugReport::markInteresting(SymbolRef sym) {
2601  if (!sym)
2602    return;
2603
2604  // If the symbol wasn't already in our set, note a configuration change.
2605  if (getInterestingSymbols().insert(sym).second)
2606    ++ConfigurationChangeToken;
2607
2608  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2609    getInterestingRegions().insert(meta->getRegion());
2610}
2611
2612void BugReport::markInteresting(const MemRegion *R) {
2613  if (!R)
2614    return;
2615
2616  // If the base region wasn't already in our set, note a configuration change.
2617  R = R->getBaseRegion();
2618  if (getInterestingRegions().insert(R).second)
2619    ++ConfigurationChangeToken;
2620
2621  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2622    getInterestingSymbols().insert(SR->getSymbol());
2623}
2624
2625void BugReport::markInteresting(SVal V) {
2626  markInteresting(V.getAsRegion());
2627  markInteresting(V.getAsSymbol());
2628}
2629
2630void BugReport::markInteresting(const LocationContext *LC) {
2631  if (!LC)
2632    return;
2633  InterestingLocationContexts.insert(LC);
2634}
2635
2636bool BugReport::isInteresting(SVal V) {
2637  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2638}
2639
2640bool BugReport::isInteresting(SymbolRef sym) {
2641  if (!sym)
2642    return false;
2643  // We don't currently consider metadata symbols to be interesting
2644  // even if we know their region is interesting. Is that correct behavior?
2645  return getInterestingSymbols().count(sym);
2646}
2647
2648bool BugReport::isInteresting(const MemRegion *R) {
2649  if (!R)
2650    return false;
2651  R = R->getBaseRegion();
2652  bool b = getInterestingRegions().count(R);
2653  if (b)
2654    return true;
2655  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2656    return getInterestingSymbols().count(SR->getSymbol());
2657  return false;
2658}
2659
2660bool BugReport::isInteresting(const LocationContext *LC) {
2661  if (!LC)
2662    return false;
2663  return InterestingLocationContexts.count(LC);
2664}
2665
2666void BugReport::lazyInitializeInterestingSets() {
2667  if (interestingSymbols.empty()) {
2668    interestingSymbols.push_back(new Symbols());
2669    interestingRegions.push_back(new Regions());
2670  }
2671}
2672
2673BugReport::Symbols &BugReport::getInterestingSymbols() {
2674  lazyInitializeInterestingSets();
2675  return *interestingSymbols.back();
2676}
2677
2678BugReport::Regions &BugReport::getInterestingRegions() {
2679  lazyInitializeInterestingSets();
2680  return *interestingRegions.back();
2681}
2682
2683void BugReport::pushInterestingSymbolsAndRegions() {
2684  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2685  interestingRegions.push_back(new Regions(getInterestingRegions()));
2686}
2687
2688void BugReport::popInterestingSymbolsAndRegions() {
2689  delete interestingSymbols.pop_back_val();
2690  delete interestingRegions.pop_back_val();
2691}
2692
2693const Stmt *BugReport::getStmt() const {
2694  if (!ErrorNode)
2695    return 0;
2696
2697  ProgramPoint ProgP = ErrorNode->getLocation();
2698  const Stmt *S = NULL;
2699
2700  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2701    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2702    if (BE->getBlock() == &Exit)
2703      S = GetPreviousStmt(ErrorNode);
2704  }
2705  if (!S)
2706    S = PathDiagnosticLocation::getStmt(ErrorNode);
2707
2708  return S;
2709}
2710
2711std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
2712BugReport::getRanges() {
2713    // If no custom ranges, add the range of the statement corresponding to
2714    // the error node.
2715    if (Ranges.empty()) {
2716      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2717        addRange(E->getSourceRange());
2718      else
2719        return std::make_pair(ranges_iterator(), ranges_iterator());
2720    }
2721
2722    // User-specified absence of range info.
2723    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2724      return std::make_pair(ranges_iterator(), ranges_iterator());
2725
2726    return std::make_pair(Ranges.begin(), Ranges.end());
2727}
2728
2729PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2730  if (ErrorNode) {
2731    assert(!Location.isValid() &&
2732     "Either Location or ErrorNode should be specified but not both.");
2733    return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2734  } else {
2735    assert(Location.isValid());
2736    return Location;
2737  }
2738
2739  return PathDiagnosticLocation();
2740}
2741
2742//===----------------------------------------------------------------------===//
2743// Methods for BugReporter and subclasses.
2744//===----------------------------------------------------------------------===//
2745
2746BugReportEquivClass::~BugReportEquivClass() { }
2747GRBugReporter::~GRBugReporter() { }
2748BugReporterData::~BugReporterData() {}
2749
2750ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2751
2752ProgramStateManager&
2753GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2754
2755BugReporter::~BugReporter() {
2756  FlushReports();
2757
2758  // Free the bug reports we are tracking.
2759  typedef std::vector<BugReportEquivClass *> ContTy;
2760  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2761       I != E; ++I) {
2762    delete *I;
2763  }
2764}
2765
2766void BugReporter::FlushReports() {
2767  if (BugTypes.isEmpty())
2768    return;
2769
2770  // First flush the warnings for each BugType.  This may end up creating new
2771  // warnings and new BugTypes.
2772  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2773  // Turn NSErrorChecker into a proper checker and remove this.
2774  SmallVector<const BugType*, 16> bugTypes;
2775  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
2776    bugTypes.push_back(*I);
2777  for (SmallVectorImpl<const BugType *>::iterator
2778         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2779    const_cast<BugType*>(*I)->FlushReports(*this);
2780
2781  // We need to flush reports in deterministic order to ensure the order
2782  // of the reports is consistent between runs.
2783  typedef std::vector<BugReportEquivClass *> ContVecTy;
2784  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2785       EI != EE; ++EI){
2786    BugReportEquivClass& EQ = **EI;
2787    FlushReport(EQ);
2788  }
2789
2790  // BugReporter owns and deletes only BugTypes created implicitly through
2791  // EmitBasicReport.
2792  // FIXME: There are leaks from checkers that assume that the BugTypes they
2793  // create will be destroyed by the BugReporter.
2794  for (llvm::StringMap<BugType*>::iterator
2795         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
2796    delete I->second;
2797
2798  // Remove all references to the BugType objects.
2799  BugTypes = F.getEmptySet();
2800}
2801
2802//===----------------------------------------------------------------------===//
2803// PathDiagnostics generation.
2804//===----------------------------------------------------------------------===//
2805
2806namespace {
2807/// A wrapper around a report graph, which contains only a single path, and its
2808/// node maps.
2809class ReportGraph {
2810public:
2811  InterExplodedGraphMap BackMap;
2812  OwningPtr<ExplodedGraph> Graph;
2813  const ExplodedNode *ErrorNode;
2814  size_t Index;
2815};
2816
2817/// A wrapper around a trimmed graph and its node maps.
2818class TrimmedGraph {
2819  InterExplodedGraphMap InverseMap;
2820
2821  typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2822  PriorityMapTy PriorityMap;
2823
2824  typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2825  SmallVector<NodeIndexPair, 32> ReportNodes;
2826
2827  OwningPtr<ExplodedGraph> G;
2828
2829  /// A helper class for sorting ExplodedNodes by priority.
2830  template <bool Descending>
2831  class PriorityCompare {
2832    const PriorityMapTy &PriorityMap;
2833
2834  public:
2835    PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2836
2837    bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2838      PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2839      PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2840      PriorityMapTy::const_iterator E = PriorityMap.end();
2841
2842      if (LI == E)
2843        return Descending;
2844      if (RI == E)
2845        return !Descending;
2846
2847      return Descending ? LI->second > RI->second
2848                        : LI->second < RI->second;
2849    }
2850
2851    bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2852      return (*this)(LHS.first, RHS.first);
2853    }
2854  };
2855
2856public:
2857  TrimmedGraph(const ExplodedGraph *OriginalGraph,
2858               ArrayRef<const ExplodedNode *> Nodes);
2859
2860  bool popNextReportGraph(ReportGraph &GraphWrapper);
2861};
2862}
2863
2864TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2865                           ArrayRef<const ExplodedNode *> Nodes) {
2866  // The trimmed graph is created in the body of the constructor to ensure
2867  // that the DenseMaps have been initialized already.
2868  InterExplodedGraphMap ForwardMap;
2869  G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
2870
2871  // Find the (first) error node in the trimmed graph.  We just need to consult
2872  // the node map which maps from nodes in the original graph to nodes
2873  // in the new graph.
2874  llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2875
2876  for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2877    if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2878      ReportNodes.push_back(std::make_pair(NewNode, i));
2879      RemainingNodes.insert(NewNode);
2880    }
2881  }
2882
2883  assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2884
2885  // Perform a forward BFS to find all the shortest paths.
2886  std::queue<const ExplodedNode *> WS;
2887
2888  assert(G->num_roots() == 1);
2889  WS.push(*G->roots_begin());
2890  unsigned Priority = 0;
2891
2892  while (!WS.empty()) {
2893    const ExplodedNode *Node = WS.front();
2894    WS.pop();
2895
2896    PriorityMapTy::iterator PriorityEntry;
2897    bool IsNew;
2898    llvm::tie(PriorityEntry, IsNew) =
2899      PriorityMap.insert(std::make_pair(Node, Priority));
2900    ++Priority;
2901
2902    if (!IsNew) {
2903      assert(PriorityEntry->second <= Priority);
2904      continue;
2905    }
2906
2907    if (RemainingNodes.erase(Node))
2908      if (RemainingNodes.empty())
2909        break;
2910
2911    for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2912                                           E = Node->succ_end();
2913         I != E; ++I)
2914      WS.push(*I);
2915  }
2916
2917  // Sort the error paths from longest to shortest.
2918  std::sort(ReportNodes.begin(), ReportNodes.end(),
2919            PriorityCompare<true>(PriorityMap));
2920}
2921
2922bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2923  if (ReportNodes.empty())
2924    return false;
2925
2926  const ExplodedNode *OrigN;
2927  llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2928  assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2929         "error node not accessible from root");
2930
2931  // Create a new graph with a single path.  This is the graph
2932  // that will be returned to the caller.
2933  ExplodedGraph *GNew = new ExplodedGraph();
2934  GraphWrapper.Graph.reset(GNew);
2935  GraphWrapper.BackMap.clear();
2936
2937  // Now walk from the error node up the BFS path, always taking the
2938  // predeccessor with the lowest number.
2939  ExplodedNode *Succ = 0;
2940  while (true) {
2941    // Create the equivalent node in the new graph with the same state
2942    // and location.
2943    ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2944                                       OrigN->isSink());
2945
2946    // Store the mapping to the original node.
2947    InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2948    assert(IMitr != InverseMap.end() && "No mapping to original node.");
2949    GraphWrapper.BackMap[NewN] = IMitr->second;
2950
2951    // Link up the new node with the previous node.
2952    if (Succ)
2953      Succ->addPredecessor(NewN, *GNew);
2954    else
2955      GraphWrapper.ErrorNode = NewN;
2956
2957    Succ = NewN;
2958
2959    // Are we at the final node?
2960    if (OrigN->pred_empty()) {
2961      GNew->addRoot(NewN);
2962      break;
2963    }
2964
2965    // Find the next predeccessor node.  We choose the node that is marked
2966    // with the lowest BFS number.
2967    OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2968                          PriorityCompare<false>(PriorityMap));
2969  }
2970
2971  return true;
2972}
2973
2974
2975/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2976///  and collapses PathDiagosticPieces that are expanded by macros.
2977static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2978  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2979                                SourceLocation> > MacroStackTy;
2980
2981  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2982          PiecesTy;
2983
2984  MacroStackTy MacroStack;
2985  PiecesTy Pieces;
2986
2987  for (PathPieces::const_iterator I = path.begin(), E = path.end();
2988       I!=E; ++I) {
2989
2990    PathDiagnosticPiece *piece = I->getPtr();
2991
2992    // Recursively compact calls.
2993    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2994      CompactPathDiagnostic(call->path, SM);
2995    }
2996
2997    // Get the location of the PathDiagnosticPiece.
2998    const FullSourceLoc Loc = piece->getLocation().asLocation();
2999
3000    // Determine the instantiation location, which is the location we group
3001    // related PathDiagnosticPieces.
3002    SourceLocation InstantiationLoc = Loc.isMacroID() ?
3003                                      SM.getExpansionLoc(Loc) :
3004                                      SourceLocation();
3005
3006    if (Loc.isFileID()) {
3007      MacroStack.clear();
3008      Pieces.push_back(piece);
3009      continue;
3010    }
3011
3012    assert(Loc.isMacroID());
3013
3014    // Is the PathDiagnosticPiece within the same macro group?
3015    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
3016      MacroStack.back().first->subPieces.push_back(piece);
3017      continue;
3018    }
3019
3020    // We aren't in the same group.  Are we descending into a new macro
3021    // or are part of an old one?
3022    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
3023
3024    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
3025                                          SM.getExpansionLoc(Loc) :
3026                                          SourceLocation();
3027
3028    // Walk the entire macro stack.
3029    while (!MacroStack.empty()) {
3030      if (InstantiationLoc == MacroStack.back().second) {
3031        MacroGroup = MacroStack.back().first;
3032        break;
3033      }
3034
3035      if (ParentInstantiationLoc == MacroStack.back().second) {
3036        MacroGroup = MacroStack.back().first;
3037        break;
3038      }
3039
3040      MacroStack.pop_back();
3041    }
3042
3043    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
3044      // Create a new macro group and add it to the stack.
3045      PathDiagnosticMacroPiece *NewGroup =
3046        new PathDiagnosticMacroPiece(
3047          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
3048
3049      if (MacroGroup)
3050        MacroGroup->subPieces.push_back(NewGroup);
3051      else {
3052        assert(InstantiationLoc.isFileID());
3053        Pieces.push_back(NewGroup);
3054      }
3055
3056      MacroGroup = NewGroup;
3057      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
3058    }
3059
3060    // Finally, add the PathDiagnosticPiece to the group.
3061    MacroGroup->subPieces.push_back(piece);
3062  }
3063
3064  // Now take the pieces and construct a new PathDiagnostic.
3065  path.clear();
3066
3067  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
3068    path.push_back(*I);
3069}
3070
3071bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
3072                                           PathDiagnosticConsumer &PC,
3073                                           ArrayRef<BugReport *> &bugReports) {
3074  assert(!bugReports.empty());
3075
3076  bool HasValid = false;
3077  bool HasInvalid = false;
3078  SmallVector<const ExplodedNode *, 32> errorNodes;
3079  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
3080                                      E = bugReports.end(); I != E; ++I) {
3081    if ((*I)->isValid()) {
3082      HasValid = true;
3083      errorNodes.push_back((*I)->getErrorNode());
3084    } else {
3085      // Keep the errorNodes list in sync with the bugReports list.
3086      HasInvalid = true;
3087      errorNodes.push_back(0);
3088    }
3089  }
3090
3091  // If all the reports have been marked invalid by a previous path generation,
3092  // we're done.
3093  if (!HasValid)
3094    return false;
3095
3096  typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
3097  PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
3098
3099  if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
3100    AnalyzerOptions &options = getAnalyzerOptions();
3101    if (options.getBooleanOption("path-diagnostics-alternate", true)) {
3102      ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
3103    }
3104  }
3105
3106  TrimmedGraph TrimG(&getGraph(), errorNodes);
3107  ReportGraph ErrorGraph;
3108
3109  while (TrimG.popNextReportGraph(ErrorGraph)) {
3110    // Find the BugReport with the original location.
3111    assert(ErrorGraph.Index < bugReports.size());
3112    BugReport *R = bugReports[ErrorGraph.Index];
3113    assert(R && "No original report found for sliced graph.");
3114    assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
3115
3116    // Start building the path diagnostic...
3117    PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
3118    const ExplodedNode *N = ErrorGraph.ErrorNode;
3119
3120    // Register additional node visitors.
3121    R->addVisitor(new NilReceiverBRVisitor());
3122    R->addVisitor(new ConditionBRVisitor());
3123    R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
3124
3125    BugReport::VisitorList visitors;
3126    unsigned origReportConfigToken, finalReportConfigToken;
3127    LocationContextMap LCM;
3128
3129    // While generating diagnostics, it's possible the visitors will decide
3130    // new symbols and regions are interesting, or add other visitors based on
3131    // the information they find. If they do, we need to regenerate the path
3132    // based on our new report configuration.
3133    do {
3134      // Get a clean copy of all the visitors.
3135      for (BugReport::visitor_iterator I = R->visitor_begin(),
3136                                       E = R->visitor_end(); I != E; ++I)
3137        visitors.push_back((*I)->clone());
3138
3139      // Clear out the active path from any previous work.
3140      PD.resetPath();
3141      origReportConfigToken = R->getConfigurationChangeToken();
3142
3143      // Generate the very last diagnostic piece - the piece is visible before
3144      // the trace is expanded.
3145      PathDiagnosticPiece *LastPiece = 0;
3146      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
3147          I != E; ++I) {
3148        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
3149          assert (!LastPiece &&
3150              "There can only be one final piece in a diagnostic.");
3151          LastPiece = Piece;
3152        }
3153      }
3154
3155      if (ActiveScheme != PathDiagnosticConsumer::None) {
3156        if (!LastPiece)
3157          LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
3158        assert(LastPiece);
3159        PD.setEndOfPath(LastPiece);
3160      }
3161
3162      // Make sure we get a clean location context map so we don't
3163      // hold onto old mappings.
3164      LCM.clear();
3165
3166      switch (ActiveScheme) {
3167      case PathDiagnosticConsumer::AlternateExtensive:
3168        GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3169        break;
3170      case PathDiagnosticConsumer::Extensive:
3171        GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3172        break;
3173      case PathDiagnosticConsumer::Minimal:
3174        GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
3175        break;
3176      case PathDiagnosticConsumer::None:
3177        GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
3178        break;
3179      }
3180
3181      // Clean up the visitors we used.
3182      llvm::DeleteContainerPointers(visitors);
3183
3184      // Did anything change while generating this path?
3185      finalReportConfigToken = R->getConfigurationChangeToken();
3186    } while (finalReportConfigToken != origReportConfigToken);
3187
3188    if (!R->isValid())
3189      continue;
3190
3191    // Finally, prune the diagnostic path of uninteresting stuff.
3192    if (!PD.path.empty()) {
3193      if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3194        bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3195        assert(stillHasNotes);
3196        (void)stillHasNotes;
3197      }
3198
3199      // Redirect all call pieces to have valid locations.
3200      adjustCallLocations(PD.getMutablePieces());
3201      removePiecesWithInvalidLocations(PD.getMutablePieces());
3202
3203      if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3204        SourceManager &SM = getSourceManager();
3205
3206        // Reduce the number of edges from a very conservative set
3207        // to an aesthetically pleasing subset that conveys the
3208        // necessary information.
3209        OptimizedCallsSet OCS;
3210        while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3211
3212        // Drop the very first function-entry edge. It's not really necessary
3213        // for top-level functions.
3214        dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
3215      }
3216
3217      // Remove messages that are basically the same, and edges that may not
3218      // make sense.
3219      // We have to do this after edge optimization in the Extensive mode.
3220      removeRedundantMsgs(PD.getMutablePieces());
3221      removeEdgesToDefaultInitializers(PD.getMutablePieces());
3222    }
3223
3224    // We found a report and didn't suppress it.
3225    return true;
3226  }
3227
3228  // We suppressed all the reports in this equivalence class.
3229  assert(!HasInvalid && "Inconsistent suppression");
3230  (void)HasInvalid;
3231  return false;
3232}
3233
3234void BugReporter::Register(BugType *BT) {
3235  BugTypes = F.add(BugTypes, BT);
3236}
3237
3238void BugReporter::emitReport(BugReport* R) {
3239  // Defensive checking: throw the bug away if it comes from a BodyFarm-
3240  // generated body. We do this very early because report processing relies
3241  // on the report's location being valid.
3242  // FIXME: Valid bugs can occur in BodyFarm-generated bodies, so really we
3243  // need to just find a reasonable location like we do later on with the path
3244  // pieces.
3245  if (const ExplodedNode *E = R->getErrorNode()) {
3246    const LocationContext *LCtx = E->getLocationContext();
3247    if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized())
3248      return;
3249  }
3250
3251  bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
3252  assert(ValidSourceLoc);
3253  // If we mess up in a release build, we'd still prefer to just drop the bug
3254  // instead of trying to go on.
3255  if (!ValidSourceLoc)
3256    return;
3257
3258  // Compute the bug report's hash to determine its equivalence class.
3259  llvm::FoldingSetNodeID ID;
3260  R->Profile(ID);
3261
3262  // Lookup the equivance class.  If there isn't one, create it.
3263  BugType& BT = R->getBugType();
3264  Register(&BT);
3265  void *InsertPos;
3266  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3267
3268  if (!EQ) {
3269    EQ = new BugReportEquivClass(R);
3270    EQClasses.InsertNode(EQ, InsertPos);
3271    EQClassesVector.push_back(EQ);
3272  }
3273  else
3274    EQ->AddReport(R);
3275}
3276
3277
3278//===----------------------------------------------------------------------===//
3279// Emitting reports in equivalence classes.
3280//===----------------------------------------------------------------------===//
3281
3282namespace {
3283struct FRIEC_WLItem {
3284  const ExplodedNode *N;
3285  ExplodedNode::const_succ_iterator I, E;
3286
3287  FRIEC_WLItem(const ExplodedNode *n)
3288  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3289};
3290}
3291
3292static BugReport *
3293FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3294                             SmallVectorImpl<BugReport*> &bugReports) {
3295
3296  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3297  assert(I != E);
3298  BugType& BT = I->getBugType();
3299
3300  // If we don't need to suppress any of the nodes because they are
3301  // post-dominated by a sink, simply add all the nodes in the equivalence class
3302  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3303  if (!BT.isSuppressOnSink()) {
3304    BugReport *R = I;
3305    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3306      const ExplodedNode *N = I->getErrorNode();
3307      if (N) {
3308        R = I;
3309        bugReports.push_back(R);
3310      }
3311    }
3312    return R;
3313  }
3314
3315  // For bug reports that should be suppressed when all paths are post-dominated
3316  // by a sink node, iterate through the reports in the equivalence class
3317  // until we find one that isn't post-dominated (if one exists).  We use a
3318  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3319  // this as a recursive function, but we don't want to risk blowing out the
3320  // stack for very long paths.
3321  BugReport *exampleReport = 0;
3322
3323  for (; I != E; ++I) {
3324    const ExplodedNode *errorNode = I->getErrorNode();
3325
3326    if (!errorNode)
3327      continue;
3328    if (errorNode->isSink()) {
3329      llvm_unreachable(
3330           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3331    }
3332    // No successors?  By definition this nodes isn't post-dominated by a sink.
3333    if (errorNode->succ_empty()) {
3334      bugReports.push_back(I);
3335      if (!exampleReport)
3336        exampleReport = I;
3337      continue;
3338    }
3339
3340    // At this point we know that 'N' is not a sink and it has at least one
3341    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3342    typedef FRIEC_WLItem WLItem;
3343    typedef SmallVector<WLItem, 10> DFSWorkList;
3344    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3345
3346    DFSWorkList WL;
3347    WL.push_back(errorNode);
3348    Visited[errorNode] = 1;
3349
3350    while (!WL.empty()) {
3351      WLItem &WI = WL.back();
3352      assert(!WI.N->succ_empty());
3353
3354      for (; WI.I != WI.E; ++WI.I) {
3355        const ExplodedNode *Succ = *WI.I;
3356        // End-of-path node?
3357        if (Succ->succ_empty()) {
3358          // If we found an end-of-path node that is not a sink.
3359          if (!Succ->isSink()) {
3360            bugReports.push_back(I);
3361            if (!exampleReport)
3362              exampleReport = I;
3363            WL.clear();
3364            break;
3365          }
3366          // Found a sink?  Continue on to the next successor.
3367          continue;
3368        }
3369        // Mark the successor as visited.  If it hasn't been explored,
3370        // enqueue it to the DFS worklist.
3371        unsigned &mark = Visited[Succ];
3372        if (!mark) {
3373          mark = 1;
3374          WL.push_back(Succ);
3375          break;
3376        }
3377      }
3378
3379      // The worklist may have been cleared at this point.  First
3380      // check if it is empty before checking the last item.
3381      if (!WL.empty() && &WL.back() == &WI)
3382        WL.pop_back();
3383    }
3384  }
3385
3386  // ExampleReport will be NULL if all the nodes in the equivalence class
3387  // were post-dominated by sinks.
3388  return exampleReport;
3389}
3390
3391void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3392  SmallVector<BugReport*, 10> bugReports;
3393  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3394  if (exampleReport) {
3395    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
3396    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
3397                                                 E=C.end(); I != E; ++I) {
3398      FlushReport(exampleReport, **I, bugReports);
3399    }
3400  }
3401}
3402
3403void BugReporter::FlushReport(BugReport *exampleReport,
3404                              PathDiagnosticConsumer &PD,
3405                              ArrayRef<BugReport*> bugReports) {
3406
3407  // FIXME: Make sure we use the 'R' for the path that was actually used.
3408  // Probably doesn't make a difference in practice.
3409  BugType& BT = exampleReport->getBugType();
3410
3411  OwningPtr<PathDiagnostic>
3412    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
3413                         exampleReport->getBugType().getName(),
3414                         exampleReport->getDescription(),
3415                         exampleReport->getShortDescription(/*Fallback=*/false),
3416                         BT.getCategory(),
3417                         exampleReport->getUniqueingLocation(),
3418                         exampleReport->getUniqueingDecl()));
3419
3420  MaxBugClassSize = std::max(bugReports.size(),
3421                             static_cast<size_t>(MaxBugClassSize));
3422
3423  // Generate the full path diagnostic, using the generation scheme
3424  // specified by the PathDiagnosticConsumer. Note that we have to generate
3425  // path diagnostics even for consumers which do not support paths, because
3426  // the BugReporterVisitors may mark this bug as a false positive.
3427  if (!bugReports.empty())
3428    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3429      return;
3430
3431  MaxValidBugClassSize = std::max(bugReports.size(),
3432                                  static_cast<size_t>(MaxValidBugClassSize));
3433
3434  // Examine the report and see if the last piece is in a header. Reset the
3435  // report location to the last piece in the main source file.
3436  AnalyzerOptions& Opts = getAnalyzerOptions();
3437  if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3438    D->resetDiagnosticLocationToMainFile();
3439
3440  // If the path is empty, generate a single step path with the location
3441  // of the issue.
3442  if (D->path.empty()) {
3443    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3444    PathDiagnosticPiece *piece =
3445      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
3446    BugReport::ranges_iterator Beg, End;
3447    llvm::tie(Beg, End) = exampleReport->getRanges();
3448    for ( ; Beg != End; ++Beg)
3449      piece->addRange(*Beg);
3450    D->setEndOfPath(piece);
3451  }
3452
3453  // Get the meta data.
3454  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3455  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3456                                                e = Meta.end(); i != e; ++i) {
3457    D->addMeta(*i);
3458  }
3459
3460  PD.HandlePathDiagnostic(D.take());
3461}
3462
3463void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3464                                  StringRef name,
3465                                  StringRef category,
3466                                  StringRef str, PathDiagnosticLocation Loc,
3467                                  ArrayRef<SourceRange> Ranges) {
3468
3469  // 'BT' is owned by BugReporter.
3470  BugType *BT = getBugTypeForName(name, category);
3471  BugReport *R = new BugReport(*BT, str, Loc);
3472  R->setDeclWithIssue(DeclWithIssue);
3473  for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3474       I != E; ++I)
3475    R->addRange(*I);
3476  emitReport(R);
3477}
3478
3479BugType *BugReporter::getBugTypeForName(StringRef name,
3480                                        StringRef category) {
3481  SmallString<136> fullDesc;
3482  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
3483  llvm::StringMapEntry<BugType *> &
3484      entry = StrBugTypes.GetOrCreateValue(fullDesc);
3485  BugType *BT = entry.getValue();
3486  if (!BT) {
3487    BT = new BugType(name, category);
3488    entry.setValue(BT);
3489  }
3490  return BT;
3491}
3492
3493
3494void PathPieces::dump() const {
3495  unsigned index = 0;
3496  for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
3497    llvm::errs() << "[" << index++ << "]  ";
3498    (*I)->dump();
3499    llvm::errs() << "\n";
3500  }
3501}
3502
3503void PathDiagnosticCallPiece::dump() const {
3504  llvm::errs() << "CALL\n--------------\n";
3505
3506  if (const Stmt *SLoc = getLocStmt(getLocation()))
3507    SLoc->dump();
3508  else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
3509    llvm::errs() << *ND << "\n";
3510  else
3511    getLocation().dump();
3512}
3513
3514void PathDiagnosticEventPiece::dump() const {
3515  llvm::errs() << "EVENT\n--------------\n";
3516  llvm::errs() << getString() << "\n";
3517  llvm::errs() << " ---- at ----\n";
3518  getLocation().dump();
3519}
3520
3521void PathDiagnosticControlFlowPiece::dump() const {
3522  llvm::errs() << "CONTROL\n--------------\n";
3523  getStartLocation().dump();
3524  llvm::errs() << " ---- to ----\n";
3525  getEndLocation().dump();
3526}
3527
3528void PathDiagnosticMacroPiece::dump() const {
3529  llvm::errs() << "MACRO\n--------------\n";
3530  // FIXME: Print which macro is being invoked.
3531}
3532
3533void PathDiagnosticLocation::dump() const {
3534  if (!isValid()) {
3535    llvm::errs() << "<INVALID>\n";
3536    return;
3537  }
3538
3539  switch (K) {
3540  case RangeK:
3541    // FIXME: actually print the range.
3542    llvm::errs() << "<range>\n";
3543    break;
3544  case SingleLocK:
3545    asLocation().dump();
3546    llvm::errs() << "\n";
3547    break;
3548  case StmtK:
3549    if (S)
3550      S->dump();
3551    else
3552      llvm::errs() << "<NULL STMT>\n";
3553    break;
3554  case DeclK:
3555    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
3556      llvm::errs() << *ND << "\n";
3557    else if (isa<BlockDecl>(D))
3558      // FIXME: Make this nicer.
3559      llvm::errs() << "<block>\n";
3560    else if (D)
3561      llvm::errs() << "<unknown decl>\n";
3562    else
3563      llvm::errs() << "<NULL DECL>\n";
3564    break;
3565  }
3566}
3567