CallEvent.cpp revision 00b4f64ecb26b031c1f4888f39be6c706156356a
1//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/Analysis/ProgramPoint.h"
18#include "clang/AST/ParentMap.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/StringExtras.h"
21
22using namespace clang;
23using namespace ento;
24
25QualType CallEvent::getResultType() const {
26  const Expr *E = getOriginExpr();
27  assert(E && "Calls without origin expressions do not have results");
28  QualType ResultTy = E->getType();
29
30  ASTContext &Ctx = getState()->getStateManager().getContext();
31
32  // A function that returns a reference to 'int' will have a result type
33  // of simply 'int'. Check the origin expr's value kind to recover the
34  // proper type.
35  switch (E->getValueKind()) {
36  case VK_LValue:
37    ResultTy = Ctx.getLValueReferenceType(ResultTy);
38    break;
39  case VK_XValue:
40    ResultTy = Ctx.getRValueReferenceType(ResultTy);
41    break;
42  case VK_RValue:
43    // No adjustment is necessary.
44    break;
45  }
46
47  return ResultTy;
48}
49
50static bool isCallbackArg(SVal V, QualType T) {
51  // If the parameter is 0, it's harmless.
52  if (V.isZeroConstant())
53    return false;
54
55  // If a parameter is a block or a callback, assume it can modify pointer.
56  if (T->isBlockPointerType() ||
57      T->isFunctionPointerType() ||
58      T->isObjCSelType())
59    return true;
60
61  // Check if a callback is passed inside a struct (for both, struct passed by
62  // reference and by value). Dig just one level into the struct for now.
63
64  if (T->isAnyPointerType() || T->isReferenceType())
65    T = T->getPointeeType();
66
67  if (const RecordType *RT = T->getAsStructureType()) {
68    const RecordDecl *RD = RT->getDecl();
69    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
70         I != E; ++I) {
71      QualType FieldT = I->getType();
72      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
73        return true;
74    }
75  }
76
77  return false;
78}
79
80bool CallEvent::hasNonZeroCallbackArg() const {
81  unsigned NumOfArgs = getNumArgs();
82
83  // If calling using a function pointer, assume the function does not
84  // have a callback. TODO: We could check the types of the arguments here.
85  if (!getDecl())
86    return false;
87
88  unsigned Idx = 0;
89  for (CallEvent::param_type_iterator I = param_type_begin(),
90                                       E = param_type_end();
91       I != E && Idx < NumOfArgs; ++I, ++Idx) {
92    if (NumOfArgs <= Idx)
93      break;
94
95    if (isCallbackArg(getArgSVal(Idx), *I))
96      return true;
97  }
98
99  return false;
100}
101
102/// \brief Returns true if a type is a pointer-to-const or reference-to-const
103/// with no further indirection.
104static bool isPointerToConst(QualType Ty) {
105  QualType PointeeTy = Ty->getPointeeType();
106  if (PointeeTy == QualType())
107    return false;
108  if (!PointeeTy.isConstQualified())
109    return false;
110  if (PointeeTy->isAnyPointerType())
111    return false;
112  return true;
113}
114
115// Try to retrieve the function declaration and find the function parameter
116// types which are pointers/references to a non-pointer const.
117// We will not invalidate the corresponding argument regions.
118static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
119                                 const CallEvent &Call) {
120  unsigned Idx = 0;
121  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
122                                      E = Call.param_type_end();
123       I != E; ++I, ++Idx) {
124    if (isPointerToConst(*I))
125      PreserveArgs.insert(Idx);
126  }
127}
128
129ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
130                                              ProgramStateRef Orig) const {
131  ProgramStateRef Result = (Orig ? Orig : getState());
132
133  SmallVector<const MemRegion *, 8> RegionsToInvalidate;
134  getExtraInvalidatedRegions(RegionsToInvalidate);
135
136  // Indexes of arguments whose values will be preserved by the call.
137  llvm::SmallSet<unsigned, 1> PreserveArgs;
138  if (!argumentsMayEscape())
139    findPtrToConstParams(PreserveArgs, *this);
140
141  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
142    if (PreserveArgs.count(Idx))
143      continue;
144
145    SVal V = getArgSVal(Idx);
146
147    // If we are passing a location wrapped as an integer, unwrap it and
148    // invalidate the values referred by the location.
149    if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
150      V = Wrapped->getLoc();
151    else if (!isa<Loc>(V))
152      continue;
153
154    if (const MemRegion *R = V.getAsRegion()) {
155      // Invalidate the value of the variable passed by reference.
156
157      // Are we dealing with an ElementRegion?  If the element type is
158      // a basic integer type (e.g., char, int) and the underlying region
159      // is a variable region then strip off the ElementRegion.
160      // FIXME: We really need to think about this for the general case
161      //   as sometimes we are reasoning about arrays and other times
162      //   about (char*), etc., is just a form of passing raw bytes.
163      //   e.g., void *p = alloca(); foo((char*)p);
164      if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
165        // Checking for 'integral type' is probably too promiscuous, but
166        // we'll leave it in for now until we have a systematic way of
167        // handling all of these cases.  Eventually we need to come up
168        // with an interface to StoreManager so that this logic can be
169        // appropriately delegated to the respective StoreManagers while
170        // still allowing us to do checker-specific logic (e.g.,
171        // invalidating reference counts), probably via callbacks.
172        if (ER->getElementType()->isIntegralOrEnumerationType()) {
173          const MemRegion *superReg = ER->getSuperRegion();
174          if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
175              isa<ObjCIvarRegion>(superReg))
176            R = cast<TypedRegion>(superReg);
177        }
178        // FIXME: What about layers of ElementRegions?
179      }
180
181      // Mark this region for invalidation.  We batch invalidate regions
182      // below for efficiency.
183      RegionsToInvalidate.push_back(R);
184    }
185  }
186
187  // Invalidate designated regions using the batch invalidation API.
188  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
189  //  global variables.
190  return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(),
191                                   BlockCount, getLocationContext(),
192                                   /*Symbols=*/0, this);
193}
194
195ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
196                                        const ProgramPointTag *Tag) const {
197  if (const Expr *E = getOriginExpr()) {
198    if (IsPreVisit)
199      return PreStmt(E, getLocationContext(), Tag);
200    return PostStmt(E, getLocationContext(), Tag);
201  }
202
203  const Decl *D = getDecl();
204  assert(D && "Cannot get a program point without a statement or decl");
205
206  SourceLocation Loc = getSourceRange().getBegin();
207  if (IsPreVisit)
208    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
209  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
210}
211
212SVal CallEvent::getArgSVal(unsigned Index) const {
213  const Expr *ArgE = getArgExpr(Index);
214  if (!ArgE)
215    return UnknownVal();
216  return getSVal(ArgE);
217}
218
219SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
220  const Expr *ArgE = getArgExpr(Index);
221  if (!ArgE)
222    return SourceRange();
223  return ArgE->getSourceRange();
224}
225
226void CallEvent::dump() const {
227  dump(llvm::errs());
228}
229
230void CallEvent::dump(raw_ostream &Out) const {
231  ASTContext &Ctx = getState()->getStateManager().getContext();
232  if (const Expr *E = getOriginExpr()) {
233    E->printPretty(Out, 0, Ctx.getPrintingPolicy());
234    Out << "\n";
235    return;
236  }
237
238  if (const Decl *D = getDecl()) {
239    Out << "Call to ";
240    D->print(Out, Ctx.getPrintingPolicy());
241    return;
242  }
243
244  // FIXME: a string representation of the kind would be nice.
245  Out << "Unknown call (type " << getKind() << ")";
246}
247
248
249bool CallEvent::isCallStmt(const Stmt *S) {
250  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
251                          || isa<CXXConstructExpr>(S)
252                          || isa<CXXNewExpr>(S);
253}
254
255static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
256                                         CallEvent::BindingsTy &Bindings,
257                                         SValBuilder &SVB,
258                                         const CallEvent &Call,
259                                         CallEvent::param_iterator I,
260                                         CallEvent::param_iterator E) {
261  MemRegionManager &MRMgr = SVB.getRegionManager();
262
263  unsigned Idx = 0;
264  for (; I != E; ++I, ++Idx) {
265    const ParmVarDecl *ParamDecl = *I;
266    assert(ParamDecl && "Formal parameter has no decl?");
267
268    SVal ArgVal = Call.getArgSVal(Idx);
269    if (!ArgVal.isUnknown()) {
270      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
271      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
272    }
273  }
274
275  // FIXME: Variadic arguments are not handled at all right now.
276}
277
278
279CallEvent::param_iterator AnyFunctionCall::param_begin() const {
280  const FunctionDecl *D = getDecl();
281  if (!D)
282    return 0;
283
284  return D->param_begin();
285}
286
287CallEvent::param_iterator AnyFunctionCall::param_end() const {
288  const FunctionDecl *D = getDecl();
289  if (!D)
290    return 0;
291
292  return D->param_end();
293}
294
295void AnyFunctionCall::getInitialStackFrameContents(
296                                        const StackFrameContext *CalleeCtx,
297                                        BindingsTy &Bindings) const {
298  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
299  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
300  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
301                               D->param_begin(), D->param_end());
302}
303
304bool AnyFunctionCall::argumentsMayEscape() const {
305  if (hasNonZeroCallbackArg())
306    return true;
307
308  const FunctionDecl *D = getDecl();
309  if (!D)
310    return true;
311
312  const IdentifierInfo *II = D->getIdentifier();
313  if (!II)
314    return true;
315
316  // This set of "escaping" APIs is
317
318  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
319  //   value into thread local storage. The value can later be retrieved with
320  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
321  //   parameter is 'const void *', the region escapes through the call.
322  if (II->isStr("pthread_setspecific"))
323    return true;
324
325  // - xpc_connection_set_context stores a value which can be retrieved later
326  //   with xpc_connection_get_context.
327  if (II->isStr("xpc_connection_set_context"))
328    return true;
329
330  // - funopen - sets a buffer for future IO calls.
331  if (II->isStr("funopen"))
332    return true;
333
334  StringRef FName = II->getName();
335
336  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
337  //   buffer even if it is const.
338  if (FName.endswith("NoCopy"))
339    return true;
340
341  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
342  //   be deallocated by NSMapRemove.
343  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
344    return true;
345
346  // - Many CF containers allow objects to escape through custom
347  //   allocators/deallocators upon container construction. (PR12101)
348  if (FName.startswith("CF") || FName.startswith("CG")) {
349    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
350           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
351           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
352           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
353           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
354           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
355  }
356
357  return false;
358}
359
360
361const FunctionDecl *SimpleCall::getDecl() const {
362  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
363  if (D)
364    return D;
365
366  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
367}
368
369
370const FunctionDecl *CXXInstanceCall::getDecl() const {
371  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
372  if (!CE)
373    return AnyFunctionCall::getDecl();
374
375  const FunctionDecl *D = CE->getDirectCallee();
376  if (D)
377    return D;
378
379  return getSVal(CE->getCallee()).getAsFunctionDecl();
380}
381
382void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const {
383  if (const MemRegion *R = getCXXThisVal().getAsRegion())
384    Regions.push_back(R);
385}
386
387SVal CXXInstanceCall::getCXXThisVal() const {
388  const Expr *Base = getCXXThisExpr();
389  // FIXME: This doesn't handle an overloaded ->* operator.
390  if (!Base)
391    return UnknownVal();
392
393  SVal ThisVal = getSVal(Base);
394
395  // FIXME: This is only necessary because we can call member functions on
396  // struct rvalues, which do not have regions we can use for a 'this' pointer.
397  // Ideally this should eventually be changed to an assert, i.e. all
398  // non-Unknown, non-null 'this' values should be loc::MemRegionVals.
399  if (isa<DefinedSVal>(ThisVal))
400    if (!ThisVal.getAsRegion() && !ThisVal.isConstant())
401      return UnknownVal();
402
403  return ThisVal;
404}
405
406
407RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
408  // Do we have a decl at all?
409  const Decl *D = getDecl();
410  if (!D)
411    return RuntimeDefinition();
412
413  // If the method is non-virtual, we know we can inline it.
414  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
415  if (!MD->isVirtual())
416    return AnyFunctionCall::getRuntimeDefinition();
417
418  // Do we know the implicit 'this' object being called?
419  const MemRegion *R = getCXXThisVal().getAsRegion();
420  if (!R)
421    return RuntimeDefinition();
422
423  // Do we know anything about the type of 'this'?
424  DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
425  if (!DynType.isValid())
426    return RuntimeDefinition();
427
428  // Is the type a C++ class? (This is mostly a defensive check.)
429  QualType RegionType = DynType.getType()->getPointeeType();
430  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
431
432  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
433  if (!RD || !RD->hasDefinition())
434    return RuntimeDefinition();
435
436  // Find the decl for this method in that class.
437  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
438  if (!Result) {
439    // We might not even get the original statically-resolved method due to
440    // some particularly nasty casting (e.g. casts to sister classes).
441    // However, we should at least be able to search up and down our own class
442    // hierarchy, and some real bugs have been caught by checking this.
443    assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
444    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
445    return RuntimeDefinition();
446  }
447
448  // Does the decl that we found have an implementation?
449  const FunctionDecl *Definition;
450  if (!Result->hasBody(Definition))
451    return RuntimeDefinition();
452
453  // We found a definition. If we're not sure that this devirtualization is
454  // actually what will happen at runtime, make sure to provide the region so
455  // that ExprEngine can decide what to do with it.
456  if (DynType.canBeASubClass())
457    return RuntimeDefinition(Definition, R->StripCasts());
458  return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
459}
460
461void CXXInstanceCall::getInitialStackFrameContents(
462                                            const StackFrameContext *CalleeCtx,
463                                            BindingsTy &Bindings) const {
464  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
465
466  // Handle the binding of 'this' in the new stack frame.
467  SVal ThisVal = getCXXThisVal();
468  if (!ThisVal.isUnknown()) {
469    ProgramStateManager &StateMgr = getState()->getStateManager();
470    SValBuilder &SVB = StateMgr.getSValBuilder();
471
472    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
473    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
474
475    // If we devirtualized to a different member function, we need to make sure
476    // we have the proper layering of CXXBaseObjectRegions.
477    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
478      ASTContext &Ctx = SVB.getContext();
479      const CXXRecordDecl *Class = MD->getParent();
480      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
481
482      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
483      bool Failed;
484      ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
485      assert(!Failed && "Calling an incorrectly devirtualized method");
486    }
487
488    if (!ThisVal.isUnknown())
489      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
490  }
491}
492
493
494
495const Expr *CXXMemberCall::getCXXThisExpr() const {
496  return getOriginExpr()->getImplicitObjectArgument();
497}
498
499RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
500  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
501  // id-expression in the class member access expression is a qualified-id,
502  // that function is called. Otherwise, its final overrider in the dynamic type
503  // of the object expression is called.
504  if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
505    if (ME->hasQualifier())
506      return AnyFunctionCall::getRuntimeDefinition();
507
508  return CXXInstanceCall::getRuntimeDefinition();
509}
510
511
512const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
513  return getOriginExpr()->getArg(0);
514}
515
516
517const BlockDataRegion *BlockCall::getBlockRegion() const {
518  const Expr *Callee = getOriginExpr()->getCallee();
519  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
520
521  return dyn_cast_or_null<BlockDataRegion>(DataReg);
522}
523
524CallEvent::param_iterator BlockCall::param_begin() const {
525  const BlockDecl *D = getBlockDecl();
526  if (!D)
527    return 0;
528  return D->param_begin();
529}
530
531CallEvent::param_iterator BlockCall::param_end() const {
532  const BlockDecl *D = getBlockDecl();
533  if (!D)
534    return 0;
535  return D->param_end();
536}
537
538void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const {
539  // FIXME: This also needs to invalidate captured globals.
540  if (const MemRegion *R = getBlockRegion())
541    Regions.push_back(R);
542}
543
544void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
545                                             BindingsTy &Bindings) const {
546  const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
547  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
548  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
549                               D->param_begin(), D->param_end());
550}
551
552
553SVal CXXConstructorCall::getCXXThisVal() const {
554  if (Data)
555    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
556  return UnknownVal();
557}
558
559void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
560  if (Data)
561    Regions.push_back(static_cast<const MemRegion *>(Data));
562}
563
564void CXXConstructorCall::getInitialStackFrameContents(
565                                             const StackFrameContext *CalleeCtx,
566                                             BindingsTy &Bindings) const {
567  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
568
569  SVal ThisVal = getCXXThisVal();
570  if (!ThisVal.isUnknown()) {
571    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
572    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
573    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
574    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
575  }
576}
577
578
579
580SVal CXXDestructorCall::getCXXThisVal() const {
581  if (Data)
582    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
583  return UnknownVal();
584}
585
586RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
587  // Base destructors are always called non-virtually.
588  // Skip CXXInstanceCall's devirtualization logic in this case.
589  if (isBaseDestructor())
590    return AnyFunctionCall::getRuntimeDefinition();
591
592  return CXXInstanceCall::getRuntimeDefinition();
593}
594
595
596CallEvent::param_iterator ObjCMethodCall::param_begin() const {
597  const ObjCMethodDecl *D = getDecl();
598  if (!D)
599    return 0;
600
601  return D->param_begin();
602}
603
604CallEvent::param_iterator ObjCMethodCall::param_end() const {
605  const ObjCMethodDecl *D = getDecl();
606  if (!D)
607    return 0;
608
609  return D->param_end();
610}
611
612void
613ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const {
614  if (const MemRegion *R = getReceiverSVal().getAsRegion())
615    Regions.push_back(R);
616}
617
618SVal ObjCMethodCall::getSelfSVal() const {
619  const LocationContext *LCtx = getLocationContext();
620  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
621  if (!SelfDecl)
622    return SVal();
623  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
624}
625
626SVal ObjCMethodCall::getReceiverSVal() const {
627  // FIXME: Is this the best way to handle class receivers?
628  if (!isInstanceMessage())
629    return UnknownVal();
630
631  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
632    return getSVal(RecE);
633
634  // An instance message with no expression means we are sending to super.
635  // In this case the object reference is the same as 'self'.
636  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
637  SVal SelfVal = getSelfSVal();
638  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
639  return SelfVal;
640}
641
642bool ObjCMethodCall::isReceiverSelfOrSuper() const {
643  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
644      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
645      return true;
646
647  if (!isInstanceMessage())
648    return false;
649
650  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
651
652  return (RecVal == getSelfSVal());
653}
654
655SourceRange ObjCMethodCall::getSourceRange() const {
656  switch (getMessageKind()) {
657  case OCM_Message:
658    return getOriginExpr()->getSourceRange();
659  case OCM_PropertyAccess:
660  case OCM_Subscript:
661    return getContainingPseudoObjectExpr()->getSourceRange();
662  }
663  llvm_unreachable("unknown message kind");
664}
665
666typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
667
668const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
669  assert(Data != 0 && "Lazy lookup not yet performed.");
670  assert(getMessageKind() != OCM_Message && "Explicit message send.");
671  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
672}
673
674ObjCMessageKind ObjCMethodCall::getMessageKind() const {
675  if (Data == 0) {
676    ParentMap &PM = getLocationContext()->getParentMap();
677    const Stmt *S = PM.getParent(getOriginExpr());
678    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
679      const Expr *Syntactic = POE->getSyntacticForm();
680
681      // This handles the funny case of assigning to the result of a getter.
682      // This can happen if the getter returns a non-const reference.
683      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
684        Syntactic = BO->getLHS();
685
686      ObjCMessageKind K;
687      switch (Syntactic->getStmtClass()) {
688      case Stmt::ObjCPropertyRefExprClass:
689        K = OCM_PropertyAccess;
690        break;
691      case Stmt::ObjCSubscriptRefExprClass:
692        K = OCM_Subscript;
693        break;
694      default:
695        // FIXME: Can this ever happen?
696        K = OCM_Message;
697        break;
698      }
699
700      if (K != OCM_Message) {
701        const_cast<ObjCMethodCall *>(this)->Data
702          = ObjCMessageDataTy(POE, K).getOpaqueValue();
703        assert(getMessageKind() == K);
704        return K;
705      }
706    }
707
708    const_cast<ObjCMethodCall *>(this)->Data
709      = ObjCMessageDataTy(0, 1).getOpaqueValue();
710    assert(getMessageKind() == OCM_Message);
711    return OCM_Message;
712  }
713
714  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
715  if (!Info.getPointer())
716    return OCM_Message;
717  return static_cast<ObjCMessageKind>(Info.getInt());
718}
719
720
721bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
722                                             Selector Sel) const {
723  assert(IDecl);
724  const SourceManager &SM =
725    getState()->getStateManager().getContext().getSourceManager();
726
727  // If the class interface is declared inside the main file, assume it is not
728  // subcassed.
729  // TODO: It could actually be subclassed if the subclass is private as well.
730  // This is probably very rare.
731  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
732  if (InterfLoc.isValid() && SM.isFromMainFile(InterfLoc))
733    return false;
734
735  // Assume that property accessors are not overridden.
736  if (getMessageKind() == OCM_PropertyAccess)
737    return false;
738
739  // We assume that if the method is public (declared outside of main file) or
740  // has a parent which publicly declares the method, the method could be
741  // overridden in a subclass.
742
743  // Find the first declaration in the class hierarchy that declares
744  // the selector.
745  ObjCMethodDecl *D = 0;
746  while (true) {
747    D = IDecl->lookupMethod(Sel, true);
748
749    // Cannot find a public definition.
750    if (!D)
751      return false;
752
753    // If outside the main file,
754    if (D->getLocation().isValid() && !SM.isFromMainFile(D->getLocation()))
755      return true;
756
757    if (D->isOverriding()) {
758      // Search in the superclass on the next iteration.
759      IDecl = D->getClassInterface();
760      if (!IDecl)
761        return false;
762
763      IDecl = IDecl->getSuperClass();
764      if (!IDecl)
765        return false;
766
767      continue;
768    }
769
770    return false;
771  };
772
773  llvm_unreachable("The while loop should always terminate.");
774}
775
776RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
777  const ObjCMessageExpr *E = getOriginExpr();
778  assert(E);
779  Selector Sel = E->getSelector();
780
781  if (E->isInstanceMessage()) {
782
783    // Find the the receiver type.
784    const ObjCObjectPointerType *ReceiverT = 0;
785    bool CanBeSubClassed = false;
786    QualType SupersType = E->getSuperType();
787    const MemRegion *Receiver = 0;
788
789    if (!SupersType.isNull()) {
790      // Super always means the type of immediate predecessor to the method
791      // where the call occurs.
792      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
793    } else {
794      Receiver = getReceiverSVal().getAsRegion();
795      if (!Receiver)
796        return RuntimeDefinition();
797
798      DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
799      QualType DynType = DTI.getType();
800      CanBeSubClassed = DTI.canBeASubClass();
801      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
802
803      if (ReceiverT && CanBeSubClassed)
804        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
805          if (!canBeOverridenInSubclass(IDecl, Sel))
806            CanBeSubClassed = false;
807    }
808
809    // Lookup the method implementation.
810    if (ReceiverT)
811      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
812        const ObjCMethodDecl *MD = IDecl->lookupPrivateMethod(Sel);
813        if (CanBeSubClassed)
814          return RuntimeDefinition(MD, Receiver);
815        else
816          return RuntimeDefinition(MD, 0);
817      }
818
819  } else {
820    // This is a class method.
821    // If we have type info for the receiver class, we are calling via
822    // class name.
823    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
824      // Find/Return the method implementation.
825      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
826    }
827  }
828
829  return RuntimeDefinition();
830}
831
832void ObjCMethodCall::getInitialStackFrameContents(
833                                             const StackFrameContext *CalleeCtx,
834                                             BindingsTy &Bindings) const {
835  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
836  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
837  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
838                               D->param_begin(), D->param_end());
839
840  SVal SelfVal = getReceiverSVal();
841  if (!SelfVal.isUnknown()) {
842    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
843    MemRegionManager &MRMgr = SVB.getRegionManager();
844    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
845    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
846  }
847}
848
849CallEventRef<>
850CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
851                                const LocationContext *LCtx) {
852  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
853    return create<CXXMemberCall>(MCE, State, LCtx);
854
855  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
856    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
857    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
858      if (MD->isInstance())
859        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
860
861  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
862    return create<BlockCall>(CE, State, LCtx);
863  }
864
865  // Otherwise, it's a normal function call, static member function call, or
866  // something we can't reason about.
867  return create<FunctionCall>(CE, State, LCtx);
868}
869
870
871CallEventRef<>
872CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
873                            ProgramStateRef State) {
874  const LocationContext *ParentCtx = CalleeCtx->getParent();
875  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
876  assert(CallerCtx && "This should not be used for top-level stack frames");
877
878  const Stmt *CallSite = CalleeCtx->getCallSite();
879
880  if (CallSite) {
881    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
882      return getSimpleCall(CE, State, CallerCtx);
883
884    switch (CallSite->getStmtClass()) {
885    case Stmt::CXXConstructExprClass:
886    case Stmt::CXXTemporaryObjectExprClass: {
887      SValBuilder &SVB = State->getStateManager().getSValBuilder();
888      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
889      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
890      SVal ThisVal = State->getSVal(ThisPtr);
891
892      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
893                                   ThisVal.getAsRegion(), State, CallerCtx);
894    }
895    case Stmt::CXXNewExprClass:
896      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
897    case Stmt::ObjCMessageExprClass:
898      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
899                               State, CallerCtx);
900    default:
901      llvm_unreachable("This is not an inlineable statement.");
902    }
903  }
904
905  // Fall back to the CFG. The only thing we haven't handled yet is
906  // destructors, though this could change in the future.
907  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
908  CFGElement E = (*B)[CalleeCtx->getIndex()];
909  assert(isa<CFGImplicitDtor>(E) && "All other CFG elements should have exprs");
910  assert(!isa<CFGTemporaryDtor>(E) && "We don't handle temporaries yet");
911
912  SValBuilder &SVB = State->getStateManager().getSValBuilder();
913  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
914  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
915  SVal ThisVal = State->getSVal(ThisPtr);
916
917  const Stmt *Trigger;
918  if (const CFGAutomaticObjDtor *AutoDtor = dyn_cast<CFGAutomaticObjDtor>(&E))
919    Trigger = AutoDtor->getTriggerStmt();
920  else
921    Trigger = Dtor->getBody();
922
923  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
924                              isa<CFGBaseDtor>(E), State, CallerCtx);
925}
926