CallEvent.cpp revision 7c98f9f5c3202a0b11eda7f30b4edd8cb4d1139c
1//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/AST/ParentMap.h"
18#include "clang/Analysis/ProgramPoint.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23
24using namespace clang;
25using namespace ento;
26
27QualType CallEvent::getResultType() const {
28  const Expr *E = getOriginExpr();
29  assert(E && "Calls without origin expressions do not have results");
30  QualType ResultTy = E->getType();
31
32  ASTContext &Ctx = getState()->getStateManager().getContext();
33
34  // A function that returns a reference to 'int' will have a result type
35  // of simply 'int'. Check the origin expr's value kind to recover the
36  // proper type.
37  switch (E->getValueKind()) {
38  case VK_LValue:
39    ResultTy = Ctx.getLValueReferenceType(ResultTy);
40    break;
41  case VK_XValue:
42    ResultTy = Ctx.getRValueReferenceType(ResultTy);
43    break;
44  case VK_RValue:
45    // No adjustment is necessary.
46    break;
47  }
48
49  return ResultTy;
50}
51
52static bool isCallbackArg(SVal V, QualType T) {
53  // If the parameter is 0, it's harmless.
54  if (V.isZeroConstant())
55    return false;
56
57  // If a parameter is a block or a callback, assume it can modify pointer.
58  if (T->isBlockPointerType() ||
59      T->isFunctionPointerType() ||
60      T->isObjCSelType())
61    return true;
62
63  // Check if a callback is passed inside a struct (for both, struct passed by
64  // reference and by value). Dig just one level into the struct for now.
65
66  if (T->isAnyPointerType() || T->isReferenceType())
67    T = T->getPointeeType();
68
69  if (const RecordType *RT = T->getAsStructureType()) {
70    const RecordDecl *RD = RT->getDecl();
71    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
72         I != E; ++I) {
73      QualType FieldT = I->getType();
74      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
75        return true;
76    }
77  }
78
79  return false;
80}
81
82bool CallEvent::hasNonZeroCallbackArg() const {
83  unsigned NumOfArgs = getNumArgs();
84
85  // If calling using a function pointer, assume the function does not
86  // have a callback. TODO: We could check the types of the arguments here.
87  if (!getDecl())
88    return false;
89
90  unsigned Idx = 0;
91  for (CallEvent::param_type_iterator I = param_type_begin(),
92                                       E = param_type_end();
93       I != E && Idx < NumOfArgs; ++I, ++Idx) {
94    if (NumOfArgs <= Idx)
95      break;
96
97    if (isCallbackArg(getArgSVal(Idx), *I))
98      return true;
99  }
100
101  return false;
102}
103
104bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
105  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
106  if (!FD)
107    return false;
108
109  return CheckerContext::isCLibraryFunction(FD, FunctionName);
110}
111
112/// \brief Returns true if a type is a pointer-to-const or reference-to-const
113/// with no further indirection.
114static bool isPointerToConst(QualType Ty) {
115  QualType PointeeTy = Ty->getPointeeType();
116  if (PointeeTy == QualType())
117    return false;
118  if (!PointeeTy.isConstQualified())
119    return false;
120  if (PointeeTy->isAnyPointerType())
121    return false;
122  return true;
123}
124
125// Try to retrieve the function declaration and find the function parameter
126// types which are pointers/references to a non-pointer const.
127// We will not invalidate the corresponding argument regions.
128static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
129                                 const CallEvent &Call) {
130  unsigned Idx = 0;
131  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
132                                      E = Call.param_type_end();
133       I != E; ++I, ++Idx) {
134    if (isPointerToConst(*I))
135      PreserveArgs.insert(Idx);
136  }
137}
138
139ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
140                                             ProgramStateRef Orig) const {
141  ProgramStateRef Result = (Orig ? Orig : getState());
142
143  SmallVector<SVal, 8> ConstValues;
144  SmallVector<SVal, 8> ValuesToInvalidate;
145
146  getExtraInvalidatedValues(ValuesToInvalidate);
147
148  // Indexes of arguments whose values will be preserved by the call.
149  llvm::SmallSet<unsigned, 4> PreserveArgs;
150  if (!argumentsMayEscape())
151    findPtrToConstParams(PreserveArgs, *this);
152
153  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
154    // Mark this region for invalidation.  We batch invalidate regions
155    // below for efficiency.
156    if (PreserveArgs.count(Idx))
157      ConstValues.push_back(getArgSVal(Idx));
158    else
159      ValuesToInvalidate.push_back(getArgSVal(Idx));
160  }
161
162  // Invalidate designated regions using the batch invalidation API.
163  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
164  //  global variables.
165  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
166                                   BlockCount, getLocationContext(),
167                                   /*CausedByPointerEscape*/ true,
168                                   /*Symbols=*/0, this, ConstValues);
169}
170
171ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
172                                        const ProgramPointTag *Tag) const {
173  if (const Expr *E = getOriginExpr()) {
174    if (IsPreVisit)
175      return PreStmt(E, getLocationContext(), Tag);
176    return PostStmt(E, getLocationContext(), Tag);
177  }
178
179  const Decl *D = getDecl();
180  assert(D && "Cannot get a program point without a statement or decl");
181
182  SourceLocation Loc = getSourceRange().getBegin();
183  if (IsPreVisit)
184    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
185  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
186}
187
188SVal CallEvent::getArgSVal(unsigned Index) const {
189  const Expr *ArgE = getArgExpr(Index);
190  if (!ArgE)
191    return UnknownVal();
192  return getSVal(ArgE);
193}
194
195SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
196  const Expr *ArgE = getArgExpr(Index);
197  if (!ArgE)
198    return SourceRange();
199  return ArgE->getSourceRange();
200}
201
202SVal CallEvent::getReturnValue() const {
203  const Expr *E = getOriginExpr();
204  if (!E)
205    return UndefinedVal();
206  return getSVal(E);
207}
208
209void CallEvent::dump() const {
210  dump(llvm::errs());
211}
212
213void CallEvent::dump(raw_ostream &Out) const {
214  ASTContext &Ctx = getState()->getStateManager().getContext();
215  if (const Expr *E = getOriginExpr()) {
216    E->printPretty(Out, 0, Ctx.getPrintingPolicy());
217    Out << "\n";
218    return;
219  }
220
221  if (const Decl *D = getDecl()) {
222    Out << "Call to ";
223    D->print(Out, Ctx.getPrintingPolicy());
224    return;
225  }
226
227  // FIXME: a string representation of the kind would be nice.
228  Out << "Unknown call (type " << getKind() << ")";
229}
230
231
232bool CallEvent::isCallStmt(const Stmt *S) {
233  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
234                          || isa<CXXConstructExpr>(S)
235                          || isa<CXXNewExpr>(S);
236}
237
238QualType CallEvent::getDeclaredResultType(const Decl *D) {
239  assert(D);
240  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
241    return FD->getResultType();
242  if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
243    return MD->getResultType();
244  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
245    // Blocks are difficult because the return type may not be stored in the
246    // BlockDecl itself. The AST should probably be enhanced, but for now we
247    // just do what we can.
248    // If the block is declared without an explicit argument list, the
249    // signature-as-written just includes the return type, not the entire
250    // function type.
251    // FIXME: All blocks should have signatures-as-written, even if the return
252    // type is inferred. (That's signified with a dependent result type.)
253    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
254      QualType Ty = TSI->getType();
255      if (const FunctionType *FT = Ty->getAs<FunctionType>())
256        Ty = FT->getResultType();
257      if (!Ty->isDependentType())
258        return Ty;
259    }
260
261    return QualType();
262  }
263
264  return QualType();
265}
266
267static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
268                                         CallEvent::BindingsTy &Bindings,
269                                         SValBuilder &SVB,
270                                         const CallEvent &Call,
271                                         CallEvent::param_iterator I,
272                                         CallEvent::param_iterator E) {
273  MemRegionManager &MRMgr = SVB.getRegionManager();
274
275  // If the function has fewer parameters than the call has arguments, we simply
276  // do not bind any values to them.
277  unsigned NumArgs = Call.getNumArgs();
278  unsigned Idx = 0;
279  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
280    const ParmVarDecl *ParamDecl = *I;
281    assert(ParamDecl && "Formal parameter has no decl?");
282
283    SVal ArgVal = Call.getArgSVal(Idx);
284    if (!ArgVal.isUnknown()) {
285      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
286      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
287    }
288  }
289
290  // FIXME: Variadic arguments are not handled at all right now.
291}
292
293
294CallEvent::param_iterator AnyFunctionCall::param_begin() const {
295  const FunctionDecl *D = getDecl();
296  if (!D)
297    return 0;
298
299  return D->param_begin();
300}
301
302CallEvent::param_iterator AnyFunctionCall::param_end() const {
303  const FunctionDecl *D = getDecl();
304  if (!D)
305    return 0;
306
307  return D->param_end();
308}
309
310void AnyFunctionCall::getInitialStackFrameContents(
311                                        const StackFrameContext *CalleeCtx,
312                                        BindingsTy &Bindings) const {
313  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
314  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
315  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
316                               D->param_begin(), D->param_end());
317}
318
319bool AnyFunctionCall::argumentsMayEscape() const {
320  if (hasNonZeroCallbackArg())
321    return true;
322
323  const FunctionDecl *D = getDecl();
324  if (!D)
325    return true;
326
327  const IdentifierInfo *II = D->getIdentifier();
328  if (!II)
329    return false;
330
331  // This set of "escaping" APIs is
332
333  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
334  //   value into thread local storage. The value can later be retrieved with
335  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
336  //   parameter is 'const void *', the region escapes through the call.
337  if (II->isStr("pthread_setspecific"))
338    return true;
339
340  // - xpc_connection_set_context stores a value which can be retrieved later
341  //   with xpc_connection_get_context.
342  if (II->isStr("xpc_connection_set_context"))
343    return true;
344
345  // - funopen - sets a buffer for future IO calls.
346  if (II->isStr("funopen"))
347    return true;
348
349  StringRef FName = II->getName();
350
351  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
352  //   buffer even if it is const.
353  if (FName.endswith("NoCopy"))
354    return true;
355
356  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
357  //   be deallocated by NSMapRemove.
358  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
359    return true;
360
361  // - Many CF containers allow objects to escape through custom
362  //   allocators/deallocators upon container construction. (PR12101)
363  if (FName.startswith("CF") || FName.startswith("CG")) {
364    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
365           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
366           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
367           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
368           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
369           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
370  }
371
372  return false;
373}
374
375
376const FunctionDecl *SimpleCall::getDecl() const {
377  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
378  if (D)
379    return D;
380
381  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
382}
383
384
385const FunctionDecl *CXXInstanceCall::getDecl() const {
386  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
387  if (!CE)
388    return AnyFunctionCall::getDecl();
389
390  const FunctionDecl *D = CE->getDirectCallee();
391  if (D)
392    return D;
393
394  return getSVal(CE->getCallee()).getAsFunctionDecl();
395}
396
397void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
398  Values.push_back(getCXXThisVal());
399}
400
401SVal CXXInstanceCall::getCXXThisVal() const {
402  const Expr *Base = getCXXThisExpr();
403  // FIXME: This doesn't handle an overloaded ->* operator.
404  if (!Base)
405    return UnknownVal();
406
407  SVal ThisVal = getSVal(Base);
408  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
409  return ThisVal;
410}
411
412
413RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
414  // Do we have a decl at all?
415  const Decl *D = getDecl();
416  if (!D)
417    return RuntimeDefinition();
418
419  // If the method is non-virtual, we know we can inline it.
420  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
421  if (!MD->isVirtual())
422    return AnyFunctionCall::getRuntimeDefinition();
423
424  // Do we know the implicit 'this' object being called?
425  const MemRegion *R = getCXXThisVal().getAsRegion();
426  if (!R)
427    return RuntimeDefinition();
428
429  // Do we know anything about the type of 'this'?
430  DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
431  if (!DynType.isValid())
432    return RuntimeDefinition();
433
434  // Is the type a C++ class? (This is mostly a defensive check.)
435  QualType RegionType = DynType.getType()->getPointeeType();
436  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
437
438  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
439  if (!RD || !RD->hasDefinition())
440    return RuntimeDefinition();
441
442  // Find the decl for this method in that class.
443  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
444  if (!Result) {
445    // We might not even get the original statically-resolved method due to
446    // some particularly nasty casting (e.g. casts to sister classes).
447    // However, we should at least be able to search up and down our own class
448    // hierarchy, and some real bugs have been caught by checking this.
449    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
450
451    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
452    // the static type. However, because we currently don't update
453    // DynamicTypeInfo when an object is cast, we can't actually be sure the
454    // DynamicTypeInfo is up to date. This assert should be re-enabled once
455    // this is fixed. <rdar://problem/12287087>
456    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
457
458    return RuntimeDefinition();
459  }
460
461  // Does the decl that we found have an implementation?
462  const FunctionDecl *Definition;
463  if (!Result->hasBody(Definition))
464    return RuntimeDefinition();
465
466  // We found a definition. If we're not sure that this devirtualization is
467  // actually what will happen at runtime, make sure to provide the region so
468  // that ExprEngine can decide what to do with it.
469  if (DynType.canBeASubClass())
470    return RuntimeDefinition(Definition, R->StripCasts());
471  return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
472}
473
474void CXXInstanceCall::getInitialStackFrameContents(
475                                            const StackFrameContext *CalleeCtx,
476                                            BindingsTy &Bindings) const {
477  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
478
479  // Handle the binding of 'this' in the new stack frame.
480  SVal ThisVal = getCXXThisVal();
481  if (!ThisVal.isUnknown()) {
482    ProgramStateManager &StateMgr = getState()->getStateManager();
483    SValBuilder &SVB = StateMgr.getSValBuilder();
484
485    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
486    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
487
488    // If we devirtualized to a different member function, we need to make sure
489    // we have the proper layering of CXXBaseObjectRegions.
490    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
491      ASTContext &Ctx = SVB.getContext();
492      const CXXRecordDecl *Class = MD->getParent();
493      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
494
495      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
496      bool Failed;
497      ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
498      assert(!Failed && "Calling an incorrectly devirtualized method");
499    }
500
501    if (!ThisVal.isUnknown())
502      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
503  }
504}
505
506
507
508const Expr *CXXMemberCall::getCXXThisExpr() const {
509  return getOriginExpr()->getImplicitObjectArgument();
510}
511
512RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
513  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
514  // id-expression in the class member access expression is a qualified-id,
515  // that function is called. Otherwise, its final overrider in the dynamic type
516  // of the object expression is called.
517  if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
518    if (ME->hasQualifier())
519      return AnyFunctionCall::getRuntimeDefinition();
520
521  return CXXInstanceCall::getRuntimeDefinition();
522}
523
524
525const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
526  return getOriginExpr()->getArg(0);
527}
528
529
530const BlockDataRegion *BlockCall::getBlockRegion() const {
531  const Expr *Callee = getOriginExpr()->getCallee();
532  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
533
534  return dyn_cast_or_null<BlockDataRegion>(DataReg);
535}
536
537CallEvent::param_iterator BlockCall::param_begin() const {
538  const BlockDecl *D = getBlockDecl();
539  if (!D)
540    return 0;
541  return D->param_begin();
542}
543
544CallEvent::param_iterator BlockCall::param_end() const {
545  const BlockDecl *D = getBlockDecl();
546  if (!D)
547    return 0;
548  return D->param_end();
549}
550
551void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
552  // FIXME: This also needs to invalidate captured globals.
553  if (const MemRegion *R = getBlockRegion())
554    Values.push_back(loc::MemRegionVal(R));
555}
556
557void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
558                                             BindingsTy &Bindings) const {
559  const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
560  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
561  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
562                               D->param_begin(), D->param_end());
563}
564
565
566SVal CXXConstructorCall::getCXXThisVal() const {
567  if (Data)
568    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
569  return UnknownVal();
570}
571
572void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
573  if (Data)
574    Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
575}
576
577void CXXConstructorCall::getInitialStackFrameContents(
578                                             const StackFrameContext *CalleeCtx,
579                                             BindingsTy &Bindings) const {
580  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
581
582  SVal ThisVal = getCXXThisVal();
583  if (!ThisVal.isUnknown()) {
584    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
585    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
586    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
587    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
588  }
589}
590
591
592
593SVal CXXDestructorCall::getCXXThisVal() const {
594  if (Data)
595    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
596  return UnknownVal();
597}
598
599RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
600  // Base destructors are always called non-virtually.
601  // Skip CXXInstanceCall's devirtualization logic in this case.
602  if (isBaseDestructor())
603    return AnyFunctionCall::getRuntimeDefinition();
604
605  return CXXInstanceCall::getRuntimeDefinition();
606}
607
608
609CallEvent::param_iterator ObjCMethodCall::param_begin() const {
610  const ObjCMethodDecl *D = getDecl();
611  if (!D)
612    return 0;
613
614  return D->param_begin();
615}
616
617CallEvent::param_iterator ObjCMethodCall::param_end() const {
618  const ObjCMethodDecl *D = getDecl();
619  if (!D)
620    return 0;
621
622  return D->param_end();
623}
624
625void
626ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
627  Values.push_back(getReceiverSVal());
628}
629
630SVal ObjCMethodCall::getSelfSVal() const {
631  const LocationContext *LCtx = getLocationContext();
632  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
633  if (!SelfDecl)
634    return SVal();
635  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
636}
637
638SVal ObjCMethodCall::getReceiverSVal() const {
639  // FIXME: Is this the best way to handle class receivers?
640  if (!isInstanceMessage())
641    return UnknownVal();
642
643  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
644    return getSVal(RecE);
645
646  // An instance message with no expression means we are sending to super.
647  // In this case the object reference is the same as 'self'.
648  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
649  SVal SelfVal = getSelfSVal();
650  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
651  return SelfVal;
652}
653
654bool ObjCMethodCall::isReceiverSelfOrSuper() const {
655  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
656      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
657      return true;
658
659  if (!isInstanceMessage())
660    return false;
661
662  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
663
664  return (RecVal == getSelfSVal());
665}
666
667SourceRange ObjCMethodCall::getSourceRange() const {
668  switch (getMessageKind()) {
669  case OCM_Message:
670    return getOriginExpr()->getSourceRange();
671  case OCM_PropertyAccess:
672  case OCM_Subscript:
673    return getContainingPseudoObjectExpr()->getSourceRange();
674  }
675  llvm_unreachable("unknown message kind");
676}
677
678typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
679
680const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
681  assert(Data != 0 && "Lazy lookup not yet performed.");
682  assert(getMessageKind() != OCM_Message && "Explicit message send.");
683  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
684}
685
686ObjCMessageKind ObjCMethodCall::getMessageKind() const {
687  if (Data == 0) {
688
689    // Find the parent, ignoring implicit casts.
690    ParentMap &PM = getLocationContext()->getParentMap();
691    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
692
693    // Check if parent is a PseudoObjectExpr.
694    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
695      const Expr *Syntactic = POE->getSyntacticForm();
696
697      // This handles the funny case of assigning to the result of a getter.
698      // This can happen if the getter returns a non-const reference.
699      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
700        Syntactic = BO->getLHS();
701
702      ObjCMessageKind K;
703      switch (Syntactic->getStmtClass()) {
704      case Stmt::ObjCPropertyRefExprClass:
705        K = OCM_PropertyAccess;
706        break;
707      case Stmt::ObjCSubscriptRefExprClass:
708        K = OCM_Subscript;
709        break;
710      default:
711        // FIXME: Can this ever happen?
712        K = OCM_Message;
713        break;
714      }
715
716      if (K != OCM_Message) {
717        const_cast<ObjCMethodCall *>(this)->Data
718          = ObjCMessageDataTy(POE, K).getOpaqueValue();
719        assert(getMessageKind() == K);
720        return K;
721      }
722    }
723
724    const_cast<ObjCMethodCall *>(this)->Data
725      = ObjCMessageDataTy(0, 1).getOpaqueValue();
726    assert(getMessageKind() == OCM_Message);
727    return OCM_Message;
728  }
729
730  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
731  if (!Info.getPointer())
732    return OCM_Message;
733  return static_cast<ObjCMessageKind>(Info.getInt());
734}
735
736
737bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
738                                             Selector Sel) const {
739  assert(IDecl);
740  const SourceManager &SM =
741    getState()->getStateManager().getContext().getSourceManager();
742
743  // If the class interface is declared inside the main file, assume it is not
744  // subcassed.
745  // TODO: It could actually be subclassed if the subclass is private as well.
746  // This is probably very rare.
747  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
748  if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
749    return false;
750
751  // Assume that property accessors are not overridden.
752  if (getMessageKind() == OCM_PropertyAccess)
753    return false;
754
755  // We assume that if the method is public (declared outside of main file) or
756  // has a parent which publicly declares the method, the method could be
757  // overridden in a subclass.
758
759  // Find the first declaration in the class hierarchy that declares
760  // the selector.
761  ObjCMethodDecl *D = 0;
762  while (true) {
763    D = IDecl->lookupMethod(Sel, true);
764
765    // Cannot find a public definition.
766    if (!D)
767      return false;
768
769    // If outside the main file,
770    if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
771      return true;
772
773    if (D->isOverriding()) {
774      // Search in the superclass on the next iteration.
775      IDecl = D->getClassInterface();
776      if (!IDecl)
777        return false;
778
779      IDecl = IDecl->getSuperClass();
780      if (!IDecl)
781        return false;
782
783      continue;
784    }
785
786    return false;
787  };
788
789  llvm_unreachable("The while loop should always terminate.");
790}
791
792RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
793  const ObjCMessageExpr *E = getOriginExpr();
794  assert(E);
795  Selector Sel = E->getSelector();
796
797  if (E->isInstanceMessage()) {
798
799    // Find the the receiver type.
800    const ObjCObjectPointerType *ReceiverT = 0;
801    bool CanBeSubClassed = false;
802    QualType SupersType = E->getSuperType();
803    const MemRegion *Receiver = 0;
804
805    if (!SupersType.isNull()) {
806      // Super always means the type of immediate predecessor to the method
807      // where the call occurs.
808      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
809    } else {
810      Receiver = getReceiverSVal().getAsRegion();
811      if (!Receiver)
812        return RuntimeDefinition();
813
814      DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
815      QualType DynType = DTI.getType();
816      CanBeSubClassed = DTI.canBeASubClass();
817      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
818
819      if (ReceiverT && CanBeSubClassed)
820        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
821          if (!canBeOverridenInSubclass(IDecl, Sel))
822            CanBeSubClassed = false;
823    }
824
825    // Lookup the method implementation.
826    if (ReceiverT)
827      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
828        // Repeatedly calling lookupPrivateMethod() is expensive, especially
829        // when in many cases it returns null.  We cache the results so
830        // that repeated queries on the same ObjCIntefaceDecl and Selector
831        // don't incur the same cost.  On some test cases, we can see the
832        // same query being issued thousands of times.
833        //
834        // NOTE: This cache is essentially a "global" variable, but it
835        // only gets lazily created when we get here.  The value of the
836        // cache probably comes from it being global across ExprEngines,
837        // where the same queries may get issued.  If we are worried about
838        // concurrency, or possibly loading/unloading ASTs, etc., we may
839        // need to revisit this someday.  In terms of memory, this table
840        // stays around until clang quits, which also may be bad if we
841        // need to release memory.
842        typedef std::pair<const ObjCInterfaceDecl*, Selector>
843                PrivateMethodKey;
844        typedef llvm::DenseMap<PrivateMethodKey,
845                               Optional<const ObjCMethodDecl *> >
846                PrivateMethodCache;
847
848        static PrivateMethodCache PMC;
849        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
850
851        // Query lookupPrivateMethod() if the cache does not hit.
852        if (!Val.hasValue())
853          Val = IDecl->lookupPrivateMethod(Sel);
854
855        const ObjCMethodDecl *MD = Val.getValue();
856        if (CanBeSubClassed)
857          return RuntimeDefinition(MD, Receiver);
858        else
859          return RuntimeDefinition(MD, 0);
860      }
861
862  } else {
863    // This is a class method.
864    // If we have type info for the receiver class, we are calling via
865    // class name.
866    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
867      // Find/Return the method implementation.
868      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
869    }
870  }
871
872  return RuntimeDefinition();
873}
874
875void ObjCMethodCall::getInitialStackFrameContents(
876                                             const StackFrameContext *CalleeCtx,
877                                             BindingsTy &Bindings) const {
878  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
879  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
880  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
881                               D->param_begin(), D->param_end());
882
883  SVal SelfVal = getReceiverSVal();
884  if (!SelfVal.isUnknown()) {
885    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
886    MemRegionManager &MRMgr = SVB.getRegionManager();
887    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
888    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
889  }
890}
891
892CallEventRef<>
893CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
894                                const LocationContext *LCtx) {
895  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
896    return create<CXXMemberCall>(MCE, State, LCtx);
897
898  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
899    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
900    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
901      if (MD->isInstance())
902        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
903
904  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
905    return create<BlockCall>(CE, State, LCtx);
906  }
907
908  // Otherwise, it's a normal function call, static member function call, or
909  // something we can't reason about.
910  return create<FunctionCall>(CE, State, LCtx);
911}
912
913
914CallEventRef<>
915CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
916                            ProgramStateRef State) {
917  const LocationContext *ParentCtx = CalleeCtx->getParent();
918  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
919  assert(CallerCtx && "This should not be used for top-level stack frames");
920
921  const Stmt *CallSite = CalleeCtx->getCallSite();
922
923  if (CallSite) {
924    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
925      return getSimpleCall(CE, State, CallerCtx);
926
927    switch (CallSite->getStmtClass()) {
928    case Stmt::CXXConstructExprClass:
929    case Stmt::CXXTemporaryObjectExprClass: {
930      SValBuilder &SVB = State->getStateManager().getSValBuilder();
931      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
932      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
933      SVal ThisVal = State->getSVal(ThisPtr);
934
935      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
936                                   ThisVal.getAsRegion(), State, CallerCtx);
937    }
938    case Stmt::CXXNewExprClass:
939      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
940    case Stmt::ObjCMessageExprClass:
941      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
942                               State, CallerCtx);
943    default:
944      llvm_unreachable("This is not an inlineable statement.");
945    }
946  }
947
948  // Fall back to the CFG. The only thing we haven't handled yet is
949  // destructors, though this could change in the future.
950  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
951  CFGElement E = (*B)[CalleeCtx->getIndex()];
952  assert(E.getAs<CFGImplicitDtor>() &&
953         "All other CFG elements should have exprs");
954  assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
955
956  SValBuilder &SVB = State->getStateManager().getSValBuilder();
957  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
958  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
959  SVal ThisVal = State->getSVal(ThisPtr);
960
961  const Stmt *Trigger;
962  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
963    Trigger = AutoDtor->getTriggerStmt();
964  else
965    Trigger = Dtor->getBody();
966
967  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
968                              E.getAs<CFGBaseDtor>().hasValue(), State,
969                              CallerCtx);
970}
971