CallEvent.cpp revision 7c99aa385178c630e29f671299cdd9c104f1c885
1//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/Analysis/ProgramPoint.h"
18#include "clang/AST/ParentMap.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/StringExtras.h"
21
22using namespace clang;
23using namespace ento;
24
25QualType CallEvent::getResultType() const {
26  QualType ResultTy = getDeclaredResultType();
27
28  if (ResultTy.isNull())
29    ResultTy = getOriginExpr()->getType();
30
31  return ResultTy;
32}
33
34static bool isCallbackArg(SVal V, QualType T) {
35  // If the parameter is 0, it's harmless.
36  if (V.isZeroConstant())
37    return false;
38
39  // If a parameter is a block or a callback, assume it can modify pointer.
40  if (T->isBlockPointerType() ||
41      T->isFunctionPointerType() ||
42      T->isObjCSelType())
43    return true;
44
45  // Check if a callback is passed inside a struct (for both, struct passed by
46  // reference and by value). Dig just one level into the struct for now.
47
48  if (isa<PointerType>(T) || isa<ReferenceType>(T))
49    T = T->getPointeeType();
50
51  if (const RecordType *RT = T->getAsStructureType()) {
52    const RecordDecl *RD = RT->getDecl();
53    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
54         I != E; ++I) {
55      QualType FieldT = I->getType();
56      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
57        return true;
58    }
59  }
60
61  return false;
62}
63
64bool CallEvent::hasNonZeroCallbackArg() const {
65  unsigned NumOfArgs = getNumArgs();
66
67  // If calling using a function pointer, assume the function does not
68  // have a callback. TODO: We could check the types of the arguments here.
69  if (!getDecl())
70    return false;
71
72  unsigned Idx = 0;
73  for (CallEvent::param_type_iterator I = param_type_begin(),
74                                       E = param_type_end();
75       I != E && Idx < NumOfArgs; ++I, ++Idx) {
76    if (NumOfArgs <= Idx)
77      break;
78
79    if (isCallbackArg(getArgSVal(Idx), *I))
80      return true;
81  }
82
83  return false;
84}
85
86/// \brief Returns true if a type is a pointer-to-const or reference-to-const
87/// with no further indirection.
88static bool isPointerToConst(QualType Ty) {
89  QualType PointeeTy = Ty->getPointeeType();
90  if (PointeeTy == QualType())
91    return false;
92  if (!PointeeTy.isConstQualified())
93    return false;
94  if (PointeeTy->isAnyPointerType())
95    return false;
96  return true;
97}
98
99// Try to retrieve the function declaration and find the function parameter
100// types which are pointers/references to a non-pointer const.
101// We will not invalidate the corresponding argument regions.
102static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
103                                 const CallEvent &Call) {
104  unsigned Idx = 0;
105  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
106                                      E = Call.param_type_end();
107       I != E; ++I, ++Idx) {
108    if (isPointerToConst(*I))
109      PreserveArgs.insert(Idx);
110  }
111}
112
113ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
114                                              ProgramStateRef Orig) const {
115  ProgramStateRef Result = (Orig ? Orig : getState());
116
117  SmallVector<const MemRegion *, 8> RegionsToInvalidate;
118  getExtraInvalidatedRegions(RegionsToInvalidate);
119
120  // Indexes of arguments whose values will be preserved by the call.
121  llvm::SmallSet<unsigned, 1> PreserveArgs;
122  if (!argumentsMayEscape())
123    findPtrToConstParams(PreserveArgs, *this);
124
125  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
126    if (PreserveArgs.count(Idx))
127      continue;
128
129    SVal V = getArgSVal(Idx);
130
131    // If we are passing a location wrapped as an integer, unwrap it and
132    // invalidate the values referred by the location.
133    if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
134      V = Wrapped->getLoc();
135    else if (!isa<Loc>(V))
136      continue;
137
138    if (const MemRegion *R = V.getAsRegion()) {
139      // Invalidate the value of the variable passed by reference.
140
141      // Are we dealing with an ElementRegion?  If the element type is
142      // a basic integer type (e.g., char, int) and the underlying region
143      // is a variable region then strip off the ElementRegion.
144      // FIXME: We really need to think about this for the general case
145      //   as sometimes we are reasoning about arrays and other times
146      //   about (char*), etc., is just a form of passing raw bytes.
147      //   e.g., void *p = alloca(); foo((char*)p);
148      if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
149        // Checking for 'integral type' is probably too promiscuous, but
150        // we'll leave it in for now until we have a systematic way of
151        // handling all of these cases.  Eventually we need to come up
152        // with an interface to StoreManager so that this logic can be
153        // appropriately delegated to the respective StoreManagers while
154        // still allowing us to do checker-specific logic (e.g.,
155        // invalidating reference counts), probably via callbacks.
156        if (ER->getElementType()->isIntegralOrEnumerationType()) {
157          const MemRegion *superReg = ER->getSuperRegion();
158          if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
159              isa<ObjCIvarRegion>(superReg))
160            R = cast<TypedRegion>(superReg);
161        }
162        // FIXME: What about layers of ElementRegions?
163      }
164
165      // Mark this region for invalidation.  We batch invalidate regions
166      // below for efficiency.
167      RegionsToInvalidate.push_back(R);
168    }
169  }
170
171  // Invalidate designated regions using the batch invalidation API.
172  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
173  //  global variables.
174  return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(),
175                                   BlockCount, getLocationContext(),
176                                   /*Symbols=*/0, this);
177}
178
179ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
180                                        const ProgramPointTag *Tag) const {
181  if (const Expr *E = getOriginExpr()) {
182    if (IsPreVisit)
183      return PreStmt(E, getLocationContext(), Tag);
184    return PostStmt(E, getLocationContext(), Tag);
185  }
186
187  const Decl *D = getDecl();
188  assert(D && "Cannot get a program point without a statement or decl");
189
190  SourceLocation Loc = getSourceRange().getBegin();
191  if (IsPreVisit)
192    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
193  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
194}
195
196SVal CallEvent::getArgSVal(unsigned Index) const {
197  const Expr *ArgE = getArgExpr(Index);
198  if (!ArgE)
199    return UnknownVal();
200  return getSVal(ArgE);
201}
202
203SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
204  const Expr *ArgE = getArgExpr(Index);
205  if (!ArgE)
206    return SourceRange();
207  return ArgE->getSourceRange();
208}
209
210void CallEvent::dump(raw_ostream &Out) const {
211  ASTContext &Ctx = getState()->getStateManager().getContext();
212  if (const Expr *E = getOriginExpr()) {
213    E->printPretty(Out, Ctx, 0, Ctx.getPrintingPolicy());
214    Out << "\n";
215    return;
216  }
217
218  if (const Decl *D = getDecl()) {
219    Out << "Call to ";
220    D->print(Out, Ctx.getPrintingPolicy());
221    return;
222  }
223
224  // FIXME: a string representation of the kind would be nice.
225  Out << "Unknown call (type " << getKind() << ")";
226}
227
228
229bool CallEvent::mayBeInlined(const Stmt *S) {
230  // FIXME: Kill this.
231  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
232                          || isa<CXXConstructExpr>(S);
233}
234
235
236CallEvent::param_iterator
237AnyFunctionCall::param_begin(bool UseDefinitionParams) const {
238  const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
239                                      : getDecl();
240  if (!D)
241    return 0;
242
243  return cast<FunctionDecl>(D)->param_begin();
244}
245
246CallEvent::param_iterator
247AnyFunctionCall::param_end(bool UseDefinitionParams) const {
248  const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
249                                      : getDecl();
250  if (!D)
251    return 0;
252
253  return cast<FunctionDecl>(D)->param_end();
254}
255
256QualType AnyFunctionCall::getDeclaredResultType() const {
257  const FunctionDecl *D = getDecl();
258  if (!D)
259    return QualType();
260
261  return D->getResultType();
262}
263
264bool AnyFunctionCall::argumentsMayEscape() const {
265  if (hasNonZeroCallbackArg())
266    return true;
267
268  const FunctionDecl *D = getDecl();
269  if (!D)
270    return true;
271
272  const IdentifierInfo *II = D->getIdentifier();
273  if (!II)
274    return true;
275
276  // This set of "escaping" APIs is
277
278  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
279  //   value into thread local storage. The value can later be retrieved with
280  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
281  //   parameter is 'const void *', the region escapes through the call.
282  if (II->isStr("pthread_setspecific"))
283    return true;
284
285  // - xpc_connection_set_context stores a value which can be retrieved later
286  //   with xpc_connection_get_context.
287  if (II->isStr("xpc_connection_set_context"))
288    return true;
289
290  // - funopen - sets a buffer for future IO calls.
291  if (II->isStr("funopen"))
292    return true;
293
294  StringRef FName = II->getName();
295
296  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
297  //   buffer even if it is const.
298  if (FName.endswith("NoCopy"))
299    return true;
300
301  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
302  //   be deallocated by NSMapRemove.
303  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
304    return true;
305
306  // - Many CF containers allow objects to escape through custom
307  //   allocators/deallocators upon container construction. (PR12101)
308  if (FName.startswith("CF") || FName.startswith("CG")) {
309    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
310           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
311           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
312           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
313           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
314           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
315  }
316
317  return false;
318}
319
320
321const FunctionDecl *SimpleCall::getDecl() const {
322  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
323  if (D)
324    return D;
325
326  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
327}
328
329
330void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const {
331  if (const MemRegion *R = getCXXThisVal().getAsRegion())
332    Regions.push_back(R);
333}
334
335static const CXXMethodDecl *devirtualize(const CXXMethodDecl *MD, SVal ThisVal){
336  const MemRegion *R = ThisVal.getAsRegion();
337  if (!R)
338    return 0;
339
340  const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R->StripCasts());
341  if (!TR)
342    return 0;
343
344  const CXXRecordDecl *RD = TR->getValueType()->getAsCXXRecordDecl();
345  if (!RD)
346    return 0;
347
348  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD);
349  const FunctionDecl *Definition;
350  if (!Result->hasBody(Definition))
351    return 0;
352
353  return cast<CXXMethodDecl>(Definition);
354}
355
356
357const Decl *CXXInstanceCall::getRuntimeDefinition() const {
358  const Decl *D = SimpleCall::getRuntimeDefinition();
359  if (!D)
360    return 0;
361
362  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
363  if (!MD->isVirtual())
364    return MD;
365
366  // If the method is virtual, see if we can find the actual implementation
367  // based on context-sensitivity.
368  if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
369    return Devirtualized;
370
371  return 0;
372}
373
374
375SVal CXXMemberCall::getCXXThisVal() const {
376  const Expr *Base = getOriginExpr()->getImplicitObjectArgument();
377
378  // FIXME: Will eventually need to cope with member pointers.  This is
379  // a limitation in getImplicitObjectArgument().
380  if (!Base)
381    return UnknownVal();
382
383  return getSVal(Base);
384}
385
386
387SVal CXXMemberOperatorCall::getCXXThisVal() const {
388  const Expr *Base = getOriginExpr()->getArg(0);
389  return getSVal(Base);
390}
391
392
393const BlockDataRegion *BlockCall::getBlockRegion() const {
394  const Expr *Callee = getOriginExpr()->getCallee();
395  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
396
397  return dyn_cast_or_null<BlockDataRegion>(DataReg);
398}
399
400CallEvent::param_iterator
401BlockCall::param_begin(bool UseDefinitionParams) const {
402  // Blocks don't have distinct declarations and definitions.
403  (void)UseDefinitionParams;
404
405  const BlockDecl *D = getBlockDecl();
406  if (!D)
407    return 0;
408  return D->param_begin();
409}
410
411CallEvent::param_iterator
412BlockCall::param_end(bool UseDefinitionParams) const {
413  // Blocks don't have distinct declarations and definitions.
414  (void)UseDefinitionParams;
415
416  const BlockDecl *D = getBlockDecl();
417  if (!D)
418    return 0;
419  return D->param_end();
420}
421
422void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const {
423  // FIXME: This also needs to invalidate captured globals.
424  if (const MemRegion *R = getBlockRegion())
425    Regions.push_back(R);
426}
427
428QualType BlockCall::getDeclaredResultType() const {
429  const BlockDataRegion *BR = getBlockRegion();
430  if (!BR)
431    return QualType();
432  QualType BlockTy = BR->getCodeRegion()->getLocationType();
433  return cast<FunctionType>(BlockTy->getPointeeType())->getResultType();
434}
435
436
437SVal CXXConstructorCall::getCXXThisVal() const {
438  if (Data)
439    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
440  return UnknownVal();
441}
442
443void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
444  if (Data)
445    Regions.push_back(static_cast<const MemRegion *>(Data));
446}
447
448
449SVal CXXDestructorCall::getCXXThisVal() const {
450  if (Data)
451    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
452  return UnknownVal();
453}
454
455void CXXDestructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
456  if (Data)
457    Regions.push_back(static_cast<const MemRegion *>(Data));
458}
459
460const Decl *CXXDestructorCall::getRuntimeDefinition() const {
461  const Decl *D = AnyFunctionCall::getRuntimeDefinition();
462  if (!D)
463    return 0;
464
465  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
466  if (!MD->isVirtual())
467    return MD;
468
469  // If the method is virtual, see if we can find the actual implementation
470  // based on context-sensitivity.
471  if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
472    return Devirtualized;
473
474  return 0;
475}
476
477
478CallEvent::param_iterator
479ObjCMethodCall::param_begin(bool UseDefinitionParams) const {
480  const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
481                                      : getDecl();
482  if (!D)
483    return 0;
484
485  return cast<ObjCMethodDecl>(D)->param_begin();
486}
487
488CallEvent::param_iterator
489ObjCMethodCall::param_end(bool UseDefinitionParams) const {
490  const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
491                                      : getDecl();
492  if (!D)
493    return 0;
494
495  return cast<ObjCMethodDecl>(D)->param_end();
496}
497
498void
499ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const {
500  if (const MemRegion *R = getReceiverSVal().getAsRegion())
501    Regions.push_back(R);
502}
503
504QualType ObjCMethodCall::getDeclaredResultType() const {
505  const ObjCMethodDecl *D = getDecl();
506  if (!D)
507    return QualType();
508
509  return D->getResultType();
510}
511
512SVal ObjCMethodCall::getReceiverSVal() const {
513  // FIXME: Is this the best way to handle class receivers?
514  if (!isInstanceMessage())
515    return UnknownVal();
516
517  if (const Expr *Base = getOriginExpr()->getInstanceReceiver())
518    return getSVal(Base);
519
520  // An instance message with no expression means we are sending to super.
521  // In this case the object reference is the same as 'self'.
522  const LocationContext *LCtx = getLocationContext();
523  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
524  assert(SelfDecl && "No message receiver Expr, but not in an ObjC method");
525  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
526}
527
528SourceRange ObjCMethodCall::getSourceRange() const {
529  switch (getMessageKind()) {
530  case OCM_Message:
531    return getOriginExpr()->getSourceRange();
532  case OCM_PropertyAccess:
533  case OCM_Subscript:
534    return getContainingPseudoObjectExpr()->getSourceRange();
535  }
536  llvm_unreachable("unknown message kind");
537}
538
539typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
540
541const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
542  assert(Data != 0 && "Lazy lookup not yet performed.");
543  assert(getMessageKind() != OCM_Message && "Explicit message send.");
544  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
545}
546
547ObjCMessageKind ObjCMethodCall::getMessageKind() const {
548  if (Data == 0) {
549    ParentMap &PM = getLocationContext()->getParentMap();
550    const Stmt *S = PM.getParent(getOriginExpr());
551    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
552      const Expr *Syntactic = POE->getSyntacticForm();
553
554      // This handles the funny case of assigning to the result of a getter.
555      // This can happen if the getter returns a non-const reference.
556      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
557        Syntactic = BO->getLHS();
558
559      ObjCMessageKind K;
560      switch (Syntactic->getStmtClass()) {
561      case Stmt::ObjCPropertyRefExprClass:
562        K = OCM_PropertyAccess;
563        break;
564      case Stmt::ObjCSubscriptRefExprClass:
565        K = OCM_Subscript;
566        break;
567      default:
568        // FIXME: Can this ever happen?
569        K = OCM_Message;
570        break;
571      }
572
573      if (K != OCM_Message) {
574        const_cast<ObjCMethodCall *>(this)->Data
575          = ObjCMessageDataTy(POE, K).getOpaqueValue();
576        assert(getMessageKind() == K);
577        return K;
578      }
579    }
580
581    const_cast<ObjCMethodCall *>(this)->Data
582      = ObjCMessageDataTy(0, 1).getOpaqueValue();
583    assert(getMessageKind() == OCM_Message);
584    return OCM_Message;
585  }
586
587  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
588  if (!Info.getPointer())
589    return OCM_Message;
590  return static_cast<ObjCMessageKind>(Info.getInt());
591}
592
593// TODO: This implementation is copied from SemaExprObjC.cpp, needs to be
594// factored into the ObjCInterfaceDecl.
595ObjCMethodDecl *ObjCMethodCall::LookupClassMethodDefinition(Selector Sel,
596                                           ObjCInterfaceDecl *ClassDecl) const {
597  ObjCMethodDecl *Method = 0;
598  // Lookup in class and all superclasses.
599  while (ClassDecl && !Method) {
600    if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
601      Method = ImpDecl->getClassMethod(Sel);
602
603    // Look through local category implementations associated with the class.
604    if (!Method)
605      Method = ClassDecl->getCategoryClassMethod(Sel);
606
607    // Before we give up, check if the selector is an instance method.
608    // But only in the root. This matches gcc's behavior and what the
609    // runtime expects.
610    if (!Method && !ClassDecl->getSuperClass()) {
611      Method = ClassDecl->lookupInstanceMethod(Sel);
612      // Look through local category implementations associated
613      // with the root class.
614      //if (!Method)
615      //  Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
616    }
617
618    ClassDecl = ClassDecl->getSuperClass();
619  }
620  return Method;
621}
622
623