CallEvent.cpp revision b347c76054a0a4b8e6d1fce44314f6daf3294c69
1//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/AST/ParentMap.h"
18#include "clang/Analysis/ProgramPoint.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23
24using namespace clang;
25using namespace ento;
26
27QualType CallEvent::getResultType() const {
28  const Expr *E = getOriginExpr();
29  assert(E && "Calls without origin expressions do not have results");
30  QualType ResultTy = E->getType();
31
32  ASTContext &Ctx = getState()->getStateManager().getContext();
33
34  // A function that returns a reference to 'int' will have a result type
35  // of simply 'int'. Check the origin expr's value kind to recover the
36  // proper type.
37  switch (E->getValueKind()) {
38  case VK_LValue:
39    ResultTy = Ctx.getLValueReferenceType(ResultTy);
40    break;
41  case VK_XValue:
42    ResultTy = Ctx.getRValueReferenceType(ResultTy);
43    break;
44  case VK_RValue:
45    // No adjustment is necessary.
46    break;
47  }
48
49  return ResultTy;
50}
51
52static bool isCallbackArg(SVal V, QualType T) {
53  // If the parameter is 0, it's harmless.
54  if (V.isZeroConstant())
55    return false;
56
57  // If a parameter is a block or a callback, assume it can modify pointer.
58  if (T->isBlockPointerType() ||
59      T->isFunctionPointerType() ||
60      T->isObjCSelType())
61    return true;
62
63  // Check if a callback is passed inside a struct (for both, struct passed by
64  // reference and by value). Dig just one level into the struct for now.
65
66  if (T->isAnyPointerType() || T->isReferenceType())
67    T = T->getPointeeType();
68
69  if (const RecordType *RT = T->getAsStructureType()) {
70    const RecordDecl *RD = RT->getDecl();
71    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
72         I != E; ++I) {
73      QualType FieldT = I->getType();
74      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
75        return true;
76    }
77  }
78
79  return false;
80}
81
82bool CallEvent::hasNonZeroCallbackArg() const {
83  unsigned NumOfArgs = getNumArgs();
84
85  // If calling using a function pointer, assume the function does not
86  // have a callback. TODO: We could check the types of the arguments here.
87  if (!getDecl())
88    return false;
89
90  unsigned Idx = 0;
91  for (CallEvent::param_type_iterator I = param_type_begin(),
92                                       E = param_type_end();
93       I != E && Idx < NumOfArgs; ++I, ++Idx) {
94    if (NumOfArgs <= Idx)
95      break;
96
97    if (isCallbackArg(getArgSVal(Idx), *I))
98      return true;
99  }
100
101  return false;
102}
103
104bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
105  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
106  if (!FD)
107    return false;
108
109  return CheckerContext::isCLibraryFunction(FD, FunctionName);
110}
111
112/// \brief Returns true if a type is a pointer-to-const or reference-to-const
113/// with no further indirection.
114static bool isPointerToConst(QualType Ty) {
115  QualType PointeeTy = Ty->getPointeeType();
116  if (PointeeTy == QualType())
117    return false;
118  if (!PointeeTy.isConstQualified())
119    return false;
120  if (PointeeTy->isAnyPointerType())
121    return false;
122  return true;
123}
124
125// Try to retrieve the function declaration and find the function parameter
126// types which are pointers/references to a non-pointer const.
127// We will not invalidate the corresponding argument regions.
128static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
129                                 const CallEvent &Call) {
130  unsigned Idx = 0;
131  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
132                                      E = Call.param_type_end();
133       I != E; ++I, ++Idx) {
134    if (isPointerToConst(*I))
135      PreserveArgs.insert(Idx);
136  }
137}
138
139ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
140                                             ProgramStateRef Orig) const {
141  ProgramStateRef Result = (Orig ? Orig : getState());
142
143  SmallVector<SVal, 8> ConstValues;
144  SmallVector<SVal, 8> ValuesToInvalidate;
145
146  getExtraInvalidatedValues(ValuesToInvalidate);
147
148  // Indexes of arguments whose values will be preserved by the call.
149  llvm::SmallSet<unsigned, 4> PreserveArgs;
150  if (!argumentsMayEscape())
151    findPtrToConstParams(PreserveArgs, *this);
152
153  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
154    // Mark this region for invalidation.  We batch invalidate regions
155    // below for efficiency.
156    if (PreserveArgs.count(Idx))
157      ConstValues.push_back(getArgSVal(Idx));
158    else
159      ValuesToInvalidate.push_back(getArgSVal(Idx));
160  }
161
162  // Invalidate designated regions using the batch invalidation API.
163  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
164  //  global variables.
165  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
166                                   BlockCount, getLocationContext(),
167                                   /*CausedByPointerEscape*/ true,
168                                   /*Symbols=*/0, this, ConstValues);
169}
170
171ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
172                                        const ProgramPointTag *Tag) const {
173  if (const Expr *E = getOriginExpr()) {
174    if (IsPreVisit)
175      return PreStmt(E, getLocationContext(), Tag);
176    return PostStmt(E, getLocationContext(), Tag);
177  }
178
179  const Decl *D = getDecl();
180  assert(D && "Cannot get a program point without a statement or decl");
181
182  SourceLocation Loc = getSourceRange().getBegin();
183  if (IsPreVisit)
184    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
185  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
186}
187
188SVal CallEvent::getArgSVal(unsigned Index) const {
189  const Expr *ArgE = getArgExpr(Index);
190  if (!ArgE)
191    return UnknownVal();
192  return getSVal(ArgE);
193}
194
195SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
196  const Expr *ArgE = getArgExpr(Index);
197  if (!ArgE)
198    return SourceRange();
199  return ArgE->getSourceRange();
200}
201
202SVal CallEvent::getReturnValue() const {
203  const Expr *E = getOriginExpr();
204  if (!E)
205    return UndefinedVal();
206  return getSVal(E);
207}
208
209void CallEvent::dump() const {
210  dump(llvm::errs());
211}
212
213void CallEvent::dump(raw_ostream &Out) const {
214  ASTContext &Ctx = getState()->getStateManager().getContext();
215  if (const Expr *E = getOriginExpr()) {
216    E->printPretty(Out, 0, Ctx.getPrintingPolicy());
217    Out << "\n";
218    return;
219  }
220
221  if (const Decl *D = getDecl()) {
222    Out << "Call to ";
223    D->print(Out, Ctx.getPrintingPolicy());
224    return;
225  }
226
227  // FIXME: a string representation of the kind would be nice.
228  Out << "Unknown call (type " << getKind() << ")";
229}
230
231
232bool CallEvent::isCallStmt(const Stmt *S) {
233  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
234                          || isa<CXXConstructExpr>(S)
235                          || isa<CXXNewExpr>(S);
236}
237
238QualType CallEvent::getDeclaredResultType(const Decl *D) {
239  assert(D);
240  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
241    return FD->getResultType();
242  if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
243    return MD->getResultType();
244  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
245    // Blocks are difficult because the return type may not be stored in the
246    // BlockDecl itself. The AST should probably be enhanced, but for now we
247    // just do what we can.
248    // If the block is declared without an explicit argument list, the
249    // signature-as-written just includes the return type, not the entire
250    // function type.
251    // FIXME: All blocks should have signatures-as-written, even if the return
252    // type is inferred. (That's signified with a dependent result type.)
253    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
254      QualType Ty = TSI->getType();
255      if (const FunctionType *FT = Ty->getAs<FunctionType>())
256        Ty = FT->getResultType();
257      if (!Ty->isDependentType())
258        return Ty;
259    }
260
261    return QualType();
262  }
263
264  return QualType();
265}
266
267static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
268                                         CallEvent::BindingsTy &Bindings,
269                                         SValBuilder &SVB,
270                                         const CallEvent &Call,
271                                         CallEvent::param_iterator I,
272                                         CallEvent::param_iterator E) {
273  MemRegionManager &MRMgr = SVB.getRegionManager();
274
275  unsigned Idx = 0;
276  for (; I != E; ++I, ++Idx) {
277    const ParmVarDecl *ParamDecl = *I;
278    assert(ParamDecl && "Formal parameter has no decl?");
279
280    SVal ArgVal = Call.getArgSVal(Idx);
281    if (!ArgVal.isUnknown()) {
282      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
283      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
284    }
285  }
286
287  // FIXME: Variadic arguments are not handled at all right now.
288}
289
290
291CallEvent::param_iterator AnyFunctionCall::param_begin() const {
292  const FunctionDecl *D = getDecl();
293  if (!D)
294    return 0;
295
296  return D->param_begin();
297}
298
299CallEvent::param_iterator AnyFunctionCall::param_end() const {
300  const FunctionDecl *D = getDecl();
301  if (!D)
302    return 0;
303
304  return D->param_end();
305}
306
307void AnyFunctionCall::getInitialStackFrameContents(
308                                        const StackFrameContext *CalleeCtx,
309                                        BindingsTy &Bindings) const {
310  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
311  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
312  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
313                               D->param_begin(), D->param_end());
314}
315
316bool AnyFunctionCall::argumentsMayEscape() const {
317  if (hasNonZeroCallbackArg())
318    return true;
319
320  const FunctionDecl *D = getDecl();
321  if (!D)
322    return true;
323
324  const IdentifierInfo *II = D->getIdentifier();
325  if (!II)
326    return false;
327
328  // This set of "escaping" APIs is
329
330  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
331  //   value into thread local storage. The value can later be retrieved with
332  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
333  //   parameter is 'const void *', the region escapes through the call.
334  if (II->isStr("pthread_setspecific"))
335    return true;
336
337  // - xpc_connection_set_context stores a value which can be retrieved later
338  //   with xpc_connection_get_context.
339  if (II->isStr("xpc_connection_set_context"))
340    return true;
341
342  // - funopen - sets a buffer for future IO calls.
343  if (II->isStr("funopen"))
344    return true;
345
346  StringRef FName = II->getName();
347
348  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
349  //   buffer even if it is const.
350  if (FName.endswith("NoCopy"))
351    return true;
352
353  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
354  //   be deallocated by NSMapRemove.
355  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
356    return true;
357
358  // - Many CF containers allow objects to escape through custom
359  //   allocators/deallocators upon container construction. (PR12101)
360  if (FName.startswith("CF") || FName.startswith("CG")) {
361    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
362           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
363           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
364           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
365           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
366           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
367  }
368
369  return false;
370}
371
372
373const FunctionDecl *SimpleCall::getDecl() const {
374  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
375  if (D)
376    return D;
377
378  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
379}
380
381
382const FunctionDecl *CXXInstanceCall::getDecl() const {
383  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
384  if (!CE)
385    return AnyFunctionCall::getDecl();
386
387  const FunctionDecl *D = CE->getDirectCallee();
388  if (D)
389    return D;
390
391  return getSVal(CE->getCallee()).getAsFunctionDecl();
392}
393
394void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
395  Values.push_back(getCXXThisVal());
396}
397
398SVal CXXInstanceCall::getCXXThisVal() const {
399  const Expr *Base = getCXXThisExpr();
400  // FIXME: This doesn't handle an overloaded ->* operator.
401  if (!Base)
402    return UnknownVal();
403
404  SVal ThisVal = getSVal(Base);
405  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
406  return ThisVal;
407}
408
409
410RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
411  // Do we have a decl at all?
412  const Decl *D = getDecl();
413  if (!D)
414    return RuntimeDefinition();
415
416  // If the method is non-virtual, we know we can inline it.
417  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
418  if (!MD->isVirtual())
419    return AnyFunctionCall::getRuntimeDefinition();
420
421  // Do we know the implicit 'this' object being called?
422  const MemRegion *R = getCXXThisVal().getAsRegion();
423  if (!R)
424    return RuntimeDefinition();
425
426  // Do we know anything about the type of 'this'?
427  DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
428  if (!DynType.isValid())
429    return RuntimeDefinition();
430
431  // Is the type a C++ class? (This is mostly a defensive check.)
432  QualType RegionType = DynType.getType()->getPointeeType();
433  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
434
435  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
436  if (!RD || !RD->hasDefinition())
437    return RuntimeDefinition();
438
439  // Find the decl for this method in that class.
440  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
441  if (!Result) {
442    // We might not even get the original statically-resolved method due to
443    // some particularly nasty casting (e.g. casts to sister classes).
444    // However, we should at least be able to search up and down our own class
445    // hierarchy, and some real bugs have been caught by checking this.
446    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
447
448    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
449    // the static type. However, because we currently don't update
450    // DynamicTypeInfo when an object is cast, we can't actually be sure the
451    // DynamicTypeInfo is up to date. This assert should be re-enabled once
452    // this is fixed. <rdar://problem/12287087>
453    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
454
455    return RuntimeDefinition();
456  }
457
458  // Does the decl that we found have an implementation?
459  const FunctionDecl *Definition;
460  if (!Result->hasBody(Definition))
461    return RuntimeDefinition();
462
463  // We found a definition. If we're not sure that this devirtualization is
464  // actually what will happen at runtime, make sure to provide the region so
465  // that ExprEngine can decide what to do with it.
466  if (DynType.canBeASubClass())
467    return RuntimeDefinition(Definition, R->StripCasts());
468  return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
469}
470
471void CXXInstanceCall::getInitialStackFrameContents(
472                                            const StackFrameContext *CalleeCtx,
473                                            BindingsTy &Bindings) const {
474  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
475
476  // Handle the binding of 'this' in the new stack frame.
477  SVal ThisVal = getCXXThisVal();
478  if (!ThisVal.isUnknown()) {
479    ProgramStateManager &StateMgr = getState()->getStateManager();
480    SValBuilder &SVB = StateMgr.getSValBuilder();
481
482    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
483    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
484
485    // If we devirtualized to a different member function, we need to make sure
486    // we have the proper layering of CXXBaseObjectRegions.
487    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
488      ASTContext &Ctx = SVB.getContext();
489      const CXXRecordDecl *Class = MD->getParent();
490      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
491
492      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
493      bool Failed;
494      ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
495      assert(!Failed && "Calling an incorrectly devirtualized method");
496    }
497
498    if (!ThisVal.isUnknown())
499      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
500  }
501}
502
503
504
505const Expr *CXXMemberCall::getCXXThisExpr() const {
506  return getOriginExpr()->getImplicitObjectArgument();
507}
508
509RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
510  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
511  // id-expression in the class member access expression is a qualified-id,
512  // that function is called. Otherwise, its final overrider in the dynamic type
513  // of the object expression is called.
514  if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
515    if (ME->hasQualifier())
516      return AnyFunctionCall::getRuntimeDefinition();
517
518  return CXXInstanceCall::getRuntimeDefinition();
519}
520
521
522const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
523  return getOriginExpr()->getArg(0);
524}
525
526
527const BlockDataRegion *BlockCall::getBlockRegion() const {
528  const Expr *Callee = getOriginExpr()->getCallee();
529  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
530
531  return dyn_cast_or_null<BlockDataRegion>(DataReg);
532}
533
534CallEvent::param_iterator BlockCall::param_begin() const {
535  const BlockDecl *D = getBlockDecl();
536  if (!D)
537    return 0;
538  return D->param_begin();
539}
540
541CallEvent::param_iterator BlockCall::param_end() const {
542  const BlockDecl *D = getBlockDecl();
543  if (!D)
544    return 0;
545  return D->param_end();
546}
547
548void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
549  // FIXME: This also needs to invalidate captured globals.
550  if (const MemRegion *R = getBlockRegion())
551    Values.push_back(loc::MemRegionVal(R));
552}
553
554void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
555                                             BindingsTy &Bindings) const {
556  const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
557  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
558  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
559                               D->param_begin(), D->param_end());
560}
561
562
563SVal CXXConstructorCall::getCXXThisVal() const {
564  if (Data)
565    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
566  return UnknownVal();
567}
568
569void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
570  if (Data)
571    Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
572}
573
574void CXXConstructorCall::getInitialStackFrameContents(
575                                             const StackFrameContext *CalleeCtx,
576                                             BindingsTy &Bindings) const {
577  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
578
579  SVal ThisVal = getCXXThisVal();
580  if (!ThisVal.isUnknown()) {
581    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
582    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
583    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
584    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
585  }
586}
587
588
589
590SVal CXXDestructorCall::getCXXThisVal() const {
591  if (Data)
592    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
593  return UnknownVal();
594}
595
596RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
597  // Base destructors are always called non-virtually.
598  // Skip CXXInstanceCall's devirtualization logic in this case.
599  if (isBaseDestructor())
600    return AnyFunctionCall::getRuntimeDefinition();
601
602  return CXXInstanceCall::getRuntimeDefinition();
603}
604
605
606CallEvent::param_iterator ObjCMethodCall::param_begin() const {
607  const ObjCMethodDecl *D = getDecl();
608  if (!D)
609    return 0;
610
611  return D->param_begin();
612}
613
614CallEvent::param_iterator ObjCMethodCall::param_end() const {
615  const ObjCMethodDecl *D = getDecl();
616  if (!D)
617    return 0;
618
619  return D->param_end();
620}
621
622void
623ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
624  Values.push_back(getReceiverSVal());
625}
626
627SVal ObjCMethodCall::getSelfSVal() const {
628  const LocationContext *LCtx = getLocationContext();
629  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
630  if (!SelfDecl)
631    return SVal();
632  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
633}
634
635SVal ObjCMethodCall::getReceiverSVal() const {
636  // FIXME: Is this the best way to handle class receivers?
637  if (!isInstanceMessage())
638    return UnknownVal();
639
640  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
641    return getSVal(RecE);
642
643  // An instance message with no expression means we are sending to super.
644  // In this case the object reference is the same as 'self'.
645  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
646  SVal SelfVal = getSelfSVal();
647  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
648  return SelfVal;
649}
650
651bool ObjCMethodCall::isReceiverSelfOrSuper() const {
652  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
653      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
654      return true;
655
656  if (!isInstanceMessage())
657    return false;
658
659  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
660
661  return (RecVal == getSelfSVal());
662}
663
664SourceRange ObjCMethodCall::getSourceRange() const {
665  switch (getMessageKind()) {
666  case OCM_Message:
667    return getOriginExpr()->getSourceRange();
668  case OCM_PropertyAccess:
669  case OCM_Subscript:
670    return getContainingPseudoObjectExpr()->getSourceRange();
671  }
672  llvm_unreachable("unknown message kind");
673}
674
675typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
676
677const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
678  assert(Data != 0 && "Lazy lookup not yet performed.");
679  assert(getMessageKind() != OCM_Message && "Explicit message send.");
680  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
681}
682
683ObjCMessageKind ObjCMethodCall::getMessageKind() const {
684  if (Data == 0) {
685    ParentMap &PM = getLocationContext()->getParentMap();
686    const Stmt *S = PM.getParent(getOriginExpr());
687    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
688      const Expr *Syntactic = POE->getSyntacticForm();
689
690      // This handles the funny case of assigning to the result of a getter.
691      // This can happen if the getter returns a non-const reference.
692      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
693        Syntactic = BO->getLHS();
694
695      ObjCMessageKind K;
696      switch (Syntactic->getStmtClass()) {
697      case Stmt::ObjCPropertyRefExprClass:
698        K = OCM_PropertyAccess;
699        break;
700      case Stmt::ObjCSubscriptRefExprClass:
701        K = OCM_Subscript;
702        break;
703      default:
704        // FIXME: Can this ever happen?
705        K = OCM_Message;
706        break;
707      }
708
709      if (K != OCM_Message) {
710        const_cast<ObjCMethodCall *>(this)->Data
711          = ObjCMessageDataTy(POE, K).getOpaqueValue();
712        assert(getMessageKind() == K);
713        return K;
714      }
715    }
716
717    const_cast<ObjCMethodCall *>(this)->Data
718      = ObjCMessageDataTy(0, 1).getOpaqueValue();
719    assert(getMessageKind() == OCM_Message);
720    return OCM_Message;
721  }
722
723  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
724  if (!Info.getPointer())
725    return OCM_Message;
726  return static_cast<ObjCMessageKind>(Info.getInt());
727}
728
729
730bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
731                                             Selector Sel) const {
732  assert(IDecl);
733  const SourceManager &SM =
734    getState()->getStateManager().getContext().getSourceManager();
735
736  // If the class interface is declared inside the main file, assume it is not
737  // subcassed.
738  // TODO: It could actually be subclassed if the subclass is private as well.
739  // This is probably very rare.
740  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
741  if (InterfLoc.isValid() && SM.isFromMainFile(InterfLoc))
742    return false;
743
744  // Assume that property accessors are not overridden.
745  if (getMessageKind() == OCM_PropertyAccess)
746    return false;
747
748  // We assume that if the method is public (declared outside of main file) or
749  // has a parent which publicly declares the method, the method could be
750  // overridden in a subclass.
751
752  // Find the first declaration in the class hierarchy that declares
753  // the selector.
754  ObjCMethodDecl *D = 0;
755  while (true) {
756    D = IDecl->lookupMethod(Sel, true);
757
758    // Cannot find a public definition.
759    if (!D)
760      return false;
761
762    // If outside the main file,
763    if (D->getLocation().isValid() && !SM.isFromMainFile(D->getLocation()))
764      return true;
765
766    if (D->isOverriding()) {
767      // Search in the superclass on the next iteration.
768      IDecl = D->getClassInterface();
769      if (!IDecl)
770        return false;
771
772      IDecl = IDecl->getSuperClass();
773      if (!IDecl)
774        return false;
775
776      continue;
777    }
778
779    return false;
780  };
781
782  llvm_unreachable("The while loop should always terminate.");
783}
784
785RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
786  const ObjCMessageExpr *E = getOriginExpr();
787  assert(E);
788  Selector Sel = E->getSelector();
789
790  if (E->isInstanceMessage()) {
791
792    // Find the the receiver type.
793    const ObjCObjectPointerType *ReceiverT = 0;
794    bool CanBeSubClassed = false;
795    QualType SupersType = E->getSuperType();
796    const MemRegion *Receiver = 0;
797
798    if (!SupersType.isNull()) {
799      // Super always means the type of immediate predecessor to the method
800      // where the call occurs.
801      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
802    } else {
803      Receiver = getReceiverSVal().getAsRegion();
804      if (!Receiver)
805        return RuntimeDefinition();
806
807      DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
808      QualType DynType = DTI.getType();
809      CanBeSubClassed = DTI.canBeASubClass();
810      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
811
812      if (ReceiverT && CanBeSubClassed)
813        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
814          if (!canBeOverridenInSubclass(IDecl, Sel))
815            CanBeSubClassed = false;
816    }
817
818    // Lookup the method implementation.
819    if (ReceiverT)
820      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
821        // Repeatedly calling lookupPrivateMethod() is expensive, especially
822        // when in many cases it returns null.  We cache the results so
823        // that repeated queries on the same ObjCIntefaceDecl and Selector
824        // don't incur the same cost.  On some test cases, we can see the
825        // same query being issued thousands of times.
826        //
827        // NOTE: This cache is essentially a "global" variable, but it
828        // only gets lazily created when we get here.  The value of the
829        // cache probably comes from it being global across ExprEngines,
830        // where the same queries may get issued.  If we are worried about
831        // concurrency, or possibly loading/unloading ASTs, etc., we may
832        // need to revisit this someday.  In terms of memory, this table
833        // stays around until clang quits, which also may be bad if we
834        // need to release memory.
835        typedef std::pair<const ObjCInterfaceDecl*, Selector>
836                PrivateMethodKey;
837        typedef llvm::DenseMap<PrivateMethodKey,
838                               Optional<const ObjCMethodDecl *> >
839                PrivateMethodCache;
840
841        static PrivateMethodCache PMC;
842        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
843
844        // Query lookupPrivateMethod() if the cache does not hit.
845        if (!Val.hasValue())
846          Val = IDecl->lookupPrivateMethod(Sel);
847
848        const ObjCMethodDecl *MD = Val.getValue();
849        if (CanBeSubClassed)
850          return RuntimeDefinition(MD, Receiver);
851        else
852          return RuntimeDefinition(MD, 0);
853      }
854
855  } else {
856    // This is a class method.
857    // If we have type info for the receiver class, we are calling via
858    // class name.
859    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
860      // Find/Return the method implementation.
861      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
862    }
863  }
864
865  return RuntimeDefinition();
866}
867
868void ObjCMethodCall::getInitialStackFrameContents(
869                                             const StackFrameContext *CalleeCtx,
870                                             BindingsTy &Bindings) const {
871  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
872  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
873  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
874                               D->param_begin(), D->param_end());
875
876  SVal SelfVal = getReceiverSVal();
877  if (!SelfVal.isUnknown()) {
878    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
879    MemRegionManager &MRMgr = SVB.getRegionManager();
880    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
881    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
882  }
883}
884
885CallEventRef<>
886CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
887                                const LocationContext *LCtx) {
888  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
889    return create<CXXMemberCall>(MCE, State, LCtx);
890
891  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
892    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
893    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
894      if (MD->isInstance())
895        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
896
897  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
898    return create<BlockCall>(CE, State, LCtx);
899  }
900
901  // Otherwise, it's a normal function call, static member function call, or
902  // something we can't reason about.
903  return create<FunctionCall>(CE, State, LCtx);
904}
905
906
907CallEventRef<>
908CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
909                            ProgramStateRef State) {
910  const LocationContext *ParentCtx = CalleeCtx->getParent();
911  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
912  assert(CallerCtx && "This should not be used for top-level stack frames");
913
914  const Stmt *CallSite = CalleeCtx->getCallSite();
915
916  if (CallSite) {
917    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
918      return getSimpleCall(CE, State, CallerCtx);
919
920    switch (CallSite->getStmtClass()) {
921    case Stmt::CXXConstructExprClass:
922    case Stmt::CXXTemporaryObjectExprClass: {
923      SValBuilder &SVB = State->getStateManager().getSValBuilder();
924      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
925      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
926      SVal ThisVal = State->getSVal(ThisPtr);
927
928      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
929                                   ThisVal.getAsRegion(), State, CallerCtx);
930    }
931    case Stmt::CXXNewExprClass:
932      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
933    case Stmt::ObjCMessageExprClass:
934      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
935                               State, CallerCtx);
936    default:
937      llvm_unreachable("This is not an inlineable statement.");
938    }
939  }
940
941  // Fall back to the CFG. The only thing we haven't handled yet is
942  // destructors, though this could change in the future.
943  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
944  CFGElement E = (*B)[CalleeCtx->getIndex()];
945  assert(E.getAs<CFGImplicitDtor>() &&
946         "All other CFG elements should have exprs");
947  assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
948
949  SValBuilder &SVB = State->getStateManager().getSValBuilder();
950  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
951  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
952  SVal ThisVal = State->getSVal(ThisPtr);
953
954  const Stmt *Trigger;
955  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
956    Trigger = AutoDtor->getTriggerStmt();
957  else
958    Trigger = Dtor->getBody();
959
960  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
961                              E.getAs<CFGBaseDtor>().hasValue(), State,
962                              CallerCtx);
963}
964