1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16#include "clang/AST/ParentMap.h"
17#include "clang/AST/Stmt.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include <vector>
25
26using namespace clang;
27using namespace ento;
28
29//===----------------------------------------------------------------------===//
30// Node auditing.
31//===----------------------------------------------------------------------===//
32
33// An out of line virtual method to provide a home for the class vtable.
34ExplodedNode::Auditor::~Auditor() {}
35
36#ifndef NDEBUG
37static ExplodedNode::Auditor* NodeAuditor = nullptr;
38#endif
39
40void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
41#ifndef NDEBUG
42  NodeAuditor = A;
43#endif
44}
45
46//===----------------------------------------------------------------------===//
47// Cleanup.
48//===----------------------------------------------------------------------===//
49
50ExplodedGraph::ExplodedGraph()
51  : NumNodes(0), ReclaimNodeInterval(0) {}
52
53ExplodedGraph::~ExplodedGraph() {}
54
55//===----------------------------------------------------------------------===//
56// Node reclamation.
57//===----------------------------------------------------------------------===//
58
59bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
60  if (!Ex->isLValue())
61    return false;
62  return isa<DeclRefExpr>(Ex) ||
63         isa<MemberExpr>(Ex) ||
64         isa<ObjCIvarRefExpr>(Ex);
65}
66
67bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
68  // First, we only consider nodes for reclamation of the following
69  // conditions apply:
70  //
71  // (1) 1 predecessor (that has one successor)
72  // (2) 1 successor (that has one predecessor)
73  //
74  // If a node has no successor it is on the "frontier", while a node
75  // with no predecessor is a root.
76  //
77  // After these prerequisites, we discard all "filler" nodes that
78  // are used only for intermediate processing, and are not essential
79  // for analyzer history:
80  //
81  // (a) PreStmtPurgeDeadSymbols
82  //
83  // We then discard all other nodes where *all* of the following conditions
84  // apply:
85  //
86  // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
87  // (4) There is no 'tag' for the ProgramPoint.
88  // (5) The 'store' is the same as the predecessor.
89  // (6) The 'GDM' is the same as the predecessor.
90  // (7) The LocationContext is the same as the predecessor.
91  // (8) Expressions that are *not* lvalue expressions.
92  // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
93  // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
94  //      PreImplicitCall (so that we would be able to find it when retrying a
95  //      call with no inlining).
96  // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
97
98  // Conditions 1 and 2.
99  if (node->pred_size() != 1 || node->succ_size() != 1)
100    return false;
101
102  const ExplodedNode *pred = *(node->pred_begin());
103  if (pred->succ_size() != 1)
104    return false;
105
106  const ExplodedNode *succ = *(node->succ_begin());
107  if (succ->pred_size() != 1)
108    return false;
109
110  // Now reclaim any nodes that are (by definition) not essential to
111  // analysis history and are not consulted by any client code.
112  ProgramPoint progPoint = node->getLocation();
113  if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
114    return !progPoint.getTag();
115
116  // Condition 3.
117  if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
118    return false;
119
120  // Condition 4.
121  if (progPoint.getTag())
122    return false;
123
124  // Conditions 5, 6, and 7.
125  ProgramStateRef state = node->getState();
126  ProgramStateRef pred_state = pred->getState();
127  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
128      progPoint.getLocationContext() != pred->getLocationContext())
129    return false;
130
131  // All further checks require expressions. As per #3, we know that we have
132  // a PostStmt.
133  const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
134  if (!Ex)
135    return false;
136
137  // Condition 8.
138  // Do not collect nodes for "interesting" lvalue expressions since they are
139  // used extensively for generating path diagnostics.
140  if (isInterestingLValueExpr(Ex))
141    return false;
142
143  // Condition 9.
144  // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
145  // diagnostic generation; specifically, so that we could anchor arrows
146  // pointing to the beginning of statements (as written in code).
147  ParentMap &PM = progPoint.getLocationContext()->getParentMap();
148  if (!PM.isConsumedExpr(Ex))
149    return false;
150
151  // Condition 10.
152  const ProgramPoint SuccLoc = succ->getLocation();
153  if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
154    if (CallEvent::isCallStmt(SP->getStmt()))
155      return false;
156
157  // Condition 10, continuation.
158  if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
159    return false;
160
161  return true;
162}
163
164void ExplodedGraph::collectNode(ExplodedNode *node) {
165  // Removing a node means:
166  // (a) changing the predecessors successor to the successor of this node
167  // (b) changing the successors predecessor to the predecessor of this node
168  // (c) Putting 'node' onto freeNodes.
169  assert(node->pred_size() == 1 || node->succ_size() == 1);
170  ExplodedNode *pred = *(node->pred_begin());
171  ExplodedNode *succ = *(node->succ_begin());
172  pred->replaceSuccessor(succ);
173  succ->replacePredecessor(pred);
174  FreeNodes.push_back(node);
175  Nodes.RemoveNode(node);
176  --NumNodes;
177  node->~ExplodedNode();
178}
179
180void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
181  if (ChangedNodes.empty())
182    return;
183
184  // Only periodically reclaim nodes so that we can build up a set of
185  // nodes that meet the reclamation criteria.  Freshly created nodes
186  // by definition have no successor, and thus cannot be reclaimed (see below).
187  assert(ReclaimCounter > 0);
188  if (--ReclaimCounter != 0)
189    return;
190  ReclaimCounter = ReclaimNodeInterval;
191
192  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
193       it != et; ++it) {
194    ExplodedNode *node = *it;
195    if (shouldCollect(node))
196      collectNode(node);
197  }
198  ChangedNodes.clear();
199}
200
201//===----------------------------------------------------------------------===//
202// ExplodedNode.
203//===----------------------------------------------------------------------===//
204
205// An NodeGroup's storage type is actually very much like a TinyPtrVector:
206// it can be either a pointer to a single ExplodedNode, or a pointer to a
207// BumpVector allocated with the ExplodedGraph's allocator. This allows the
208// common case of single-node NodeGroups to be implemented with no extra memory.
209//
210// Consequently, each of the NodeGroup methods have up to four cases to handle:
211// 1. The flag is set and this group does not actually contain any nodes.
212// 2. The group is empty, in which case the storage value is null.
213// 3. The group contains a single node.
214// 4. The group contains more than one node.
215typedef BumpVector<ExplodedNode *> ExplodedNodeVector;
216typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage;
217
218void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
219  assert (!V->isSink());
220  Preds.addNode(V, G);
221  V->Succs.addNode(this, G);
222#ifndef NDEBUG
223  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
224#endif
225}
226
227void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
228  assert(!getFlag());
229
230  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
231  assert(Storage.is<ExplodedNode *>());
232  Storage = node;
233  assert(Storage.is<ExplodedNode *>());
234}
235
236void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
237  assert(!getFlag());
238
239  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
240  if (Storage.isNull()) {
241    Storage = N;
242    assert(Storage.is<ExplodedNode *>());
243    return;
244  }
245
246  ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
247
248  if (!V) {
249    // Switch from single-node to multi-node representation.
250    ExplodedNode *Old = Storage.get<ExplodedNode *>();
251
252    BumpVectorContext &Ctx = G.getNodeAllocator();
253    V = G.getAllocator().Allocate<ExplodedNodeVector>();
254    new (V) ExplodedNodeVector(Ctx, 4);
255    V->push_back(Old, Ctx);
256
257    Storage = V;
258    assert(!getFlag());
259    assert(Storage.is<ExplodedNodeVector *>());
260  }
261
262  V->push_back(N, G.getNodeAllocator());
263}
264
265unsigned ExplodedNode::NodeGroup::size() const {
266  if (getFlag())
267    return 0;
268
269  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
270  if (Storage.isNull())
271    return 0;
272  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
273    return V->size();
274  return 1;
275}
276
277ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
278  if (getFlag())
279    return nullptr;
280
281  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
282  if (Storage.isNull())
283    return nullptr;
284  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
285    return V->begin();
286  return Storage.getAddrOfPtr1();
287}
288
289ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
290  if (getFlag())
291    return nullptr;
292
293  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
294  if (Storage.isNull())
295    return nullptr;
296  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
297    return V->end();
298  return Storage.getAddrOfPtr1() + 1;
299}
300
301ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
302                                     ProgramStateRef State,
303                                     bool IsSink,
304                                     bool* IsNew) {
305  // Profile 'State' to determine if we already have an existing node.
306  llvm::FoldingSetNodeID profile;
307  void *InsertPos = nullptr;
308
309  NodeTy::Profile(profile, L, State, IsSink);
310  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
311
312  if (!V) {
313    if (!FreeNodes.empty()) {
314      V = FreeNodes.back();
315      FreeNodes.pop_back();
316    }
317    else {
318      // Allocate a new node.
319      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
320    }
321
322    new (V) NodeTy(L, State, IsSink);
323
324    if (ReclaimNodeInterval)
325      ChangedNodes.push_back(V);
326
327    // Insert the node into the node set and return it.
328    Nodes.InsertNode(V, InsertPos);
329    ++NumNodes;
330
331    if (IsNew) *IsNew = true;
332  }
333  else
334    if (IsNew) *IsNew = false;
335
336  return V;
337}
338
339ExplodedGraph *
340ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
341                    InterExplodedGraphMap *ForwardMap,
342                    InterExplodedGraphMap *InverseMap) const{
343
344  if (Nodes.empty())
345    return nullptr;
346
347  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
348  Pass1Ty Pass1;
349
350  typedef InterExplodedGraphMap Pass2Ty;
351  InterExplodedGraphMap Pass2Scratch;
352  Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
353
354  SmallVector<const ExplodedNode*, 10> WL1, WL2;
355
356  // ===- Pass 1 (reverse DFS) -===
357  for (ArrayRef<const NodeTy *>::iterator I = Sinks.begin(), E = Sinks.end();
358       I != E; ++I) {
359    if (*I)
360      WL1.push_back(*I);
361  }
362
363  // Process the first worklist until it is empty.
364  while (!WL1.empty()) {
365    const ExplodedNode *N = WL1.pop_back_val();
366
367    // Have we already visited this node?  If so, continue to the next one.
368    if (Pass1.count(N))
369      continue;
370
371    // Otherwise, mark this node as visited.
372    Pass1.insert(N);
373
374    // If this is a root enqueue it to the second worklist.
375    if (N->Preds.empty()) {
376      WL2.push_back(N);
377      continue;
378    }
379
380    // Visit our predecessors and enqueue them.
381    for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
382         I != E; ++I)
383      WL1.push_back(*I);
384  }
385
386  // We didn't hit a root? Return with a null pointer for the new graph.
387  if (WL2.empty())
388    return nullptr;
389
390  // Create an empty graph.
391  ExplodedGraph* G = MakeEmptyGraph();
392
393  // ===- Pass 2 (forward DFS to construct the new graph) -===
394  while (!WL2.empty()) {
395    const ExplodedNode *N = WL2.pop_back_val();
396
397    // Skip this node if we have already processed it.
398    if (Pass2.find(N) != Pass2.end())
399      continue;
400
401    // Create the corresponding node in the new graph and record the mapping
402    // from the old node to the new node.
403    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(),
404                                    nullptr);
405    Pass2[N] = NewN;
406
407    // Also record the reverse mapping from the new node to the old node.
408    if (InverseMap) (*InverseMap)[NewN] = N;
409
410    // If this node is a root, designate it as such in the graph.
411    if (N->Preds.empty())
412      G->addRoot(NewN);
413
414    // In the case that some of the intended predecessors of NewN have already
415    // been created, we should hook them up as predecessors.
416
417    // Walk through the predecessors of 'N' and hook up their corresponding
418    // nodes in the new graph (if any) to the freshly created node.
419    for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
420         I != E; ++I) {
421      Pass2Ty::iterator PI = Pass2.find(*I);
422      if (PI == Pass2.end())
423        continue;
424
425      NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
426    }
427
428    // In the case that some of the intended successors of NewN have already
429    // been created, we should hook them up as successors.  Otherwise, enqueue
430    // the new nodes from the original graph that should have nodes created
431    // in the new graph.
432    for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
433         I != E; ++I) {
434      Pass2Ty::iterator PI = Pass2.find(*I);
435      if (PI != Pass2.end()) {
436        const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
437        continue;
438      }
439
440      // Enqueue nodes to the worklist that were marked during pass 1.
441      if (Pass1.count(*I))
442        WL2.push_back(*I);
443    }
444  }
445
446  return G;
447}
448
449