ExplodedGraph.cpp revision 8347d3d45e6f128bba19821f0d2f54cadd4d49bb
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/ParentMap.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include <vector>
25
26using namespace clang;
27using namespace ento;
28
29//===----------------------------------------------------------------------===//
30// Node auditing.
31//===----------------------------------------------------------------------===//
32
33// An out of line virtual method to provide a home for the class vtable.
34ExplodedNode::Auditor::~Auditor() {}
35
36#ifndef NDEBUG
37static ExplodedNode::Auditor* NodeAuditor = 0;
38#endif
39
40void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
41#ifndef NDEBUG
42  NodeAuditor = A;
43#endif
44}
45
46//===----------------------------------------------------------------------===//
47// Cleanup.
48//===----------------------------------------------------------------------===//
49
50static const unsigned CounterTop = 1000;
51
52ExplodedGraph::ExplodedGraph()
53  : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
54
55ExplodedGraph::~ExplodedGraph() {}
56
57//===----------------------------------------------------------------------===//
58// Node reclamation.
59//===----------------------------------------------------------------------===//
60
61bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
62  // Reclaim all nodes that match *all* the following criteria:
63  //
64  // (1) 1 predecessor (that has one successor)
65  // (2) 1 successor (that has one predecessor)
66  // (3) The ProgramPoint is for a PostStmt.
67  // (4) There is no 'tag' for the ProgramPoint.
68  // (5) The 'store' is the same as the predecessor.
69  // (6) The 'GDM' is the same as the predecessor.
70  // (7) The LocationContext is the same as the predecessor.
71  // (8) The PostStmt isn't for a non-consumed Stmt or Expr.
72  // (9) The successor is not a CallExpr StmtPoint (so that we would be able to
73  //     find it when retrying a call with no inlining).
74  // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
75
76  // Conditions 1 and 2.
77  if (node->pred_size() != 1 || node->succ_size() != 1)
78    return false;
79
80  const ExplodedNode *pred = *(node->pred_begin());
81  if (pred->succ_size() != 1)
82    return false;
83
84  const ExplodedNode *succ = *(node->succ_begin());
85  if (succ->pred_size() != 1)
86    return false;
87
88  // Condition 3.
89  ProgramPoint progPoint = node->getLocation();
90  if (!isa<PostStmt>(progPoint))
91    return false;
92
93  // Condition 4.
94  PostStmt ps = cast<PostStmt>(progPoint);
95  if (ps.getTag())
96    return false;
97
98  // Conditions 5, 6, and 7.
99  ProgramStateRef state = node->getState();
100  ProgramStateRef pred_state = pred->getState();
101  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
102      progPoint.getLocationContext() != pred->getLocationContext())
103    return false;
104
105  // Condition 8.
106  // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
107  // diagnostic generation; specifically, so that we could anchor arrows
108  // pointing to the beginning of statements (as written in code).
109  if (!isa<Expr>(ps.getStmt()))
110    return false;
111
112  if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
113    ParentMap &PM = progPoint.getLocationContext()->getParentMap();
114    if (!PM.isConsumedExpr(Ex))
115      return false;
116  }
117
118  // Condition 9.
119  const ProgramPoint SuccLoc = succ->getLocation();
120  if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc))
121    if (CallEvent::isCallStmt(SP->getStmt()))
122      return false;
123
124  return true;
125}
126
127void ExplodedGraph::collectNode(ExplodedNode *node) {
128  // Removing a node means:
129  // (a) changing the predecessors successor to the successor of this node
130  // (b) changing the successors predecessor to the predecessor of this node
131  // (c) Putting 'node' onto freeNodes.
132  assert(node->pred_size() == 1 || node->succ_size() == 1);
133  ExplodedNode *pred = *(node->pred_begin());
134  ExplodedNode *succ = *(node->succ_begin());
135  pred->replaceSuccessor(succ);
136  succ->replacePredecessor(pred);
137  FreeNodes.push_back(node);
138  Nodes.RemoveNode(node);
139  --NumNodes;
140  node->~ExplodedNode();
141}
142
143void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
144  if (ChangedNodes.empty())
145    return;
146
147  // Only periodically relcaim nodes so that we can build up a set of
148  // nodes that meet the reclamation criteria.  Freshly created nodes
149  // by definition have no successor, and thus cannot be reclaimed (see below).
150  assert(reclaimCounter > 0);
151  if (--reclaimCounter != 0)
152    return;
153  reclaimCounter = CounterTop;
154
155  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
156       it != et; ++it) {
157    ExplodedNode *node = *it;
158    if (shouldCollect(node))
159      collectNode(node);
160  }
161  ChangedNodes.clear();
162}
163
164//===----------------------------------------------------------------------===//
165// ExplodedNode.
166//===----------------------------------------------------------------------===//
167
168// An NodeGroup's storage type is actually very much like a TinyPtrVector:
169// it can be either a pointer to a single ExplodedNode, or a pointer to a
170// BumpVector allocated with the ExplodedGraph's allocator. This allows the
171// common case of single-node NodeGroups to be implemented with no extra memory.
172//
173// Consequently, each of the NodeGroup methods have up to four cases to handle:
174// 1. The flag is set and this group does not actually contain any nodes.
175// 2. The group is empty, in which case the storage value is null.
176// 3. The group contains a single node.
177// 4. The group contains more than one node.
178typedef BumpVector<ExplodedNode *> ExplodedNodeVector;
179typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage;
180
181void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
182  assert (!V->isSink());
183  Preds.addNode(V, G);
184  V->Succs.addNode(this, G);
185#ifndef NDEBUG
186  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
187#endif
188}
189
190void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
191  assert(!getFlag());
192
193  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
194  assert(Storage.is<ExplodedNode *>());
195  Storage = node;
196  assert(Storage.is<ExplodedNode *>());
197}
198
199void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
200  assert(!getFlag());
201
202  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
203  if (Storage.isNull()) {
204    Storage = N;
205    assert(Storage.is<ExplodedNode *>());
206    return;
207  }
208
209  ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
210
211  if (!V) {
212    // Switch from single-node to multi-node representation.
213    ExplodedNode *Old = Storage.get<ExplodedNode *>();
214
215    BumpVectorContext &Ctx = G.getNodeAllocator();
216    V = G.getAllocator().Allocate<ExplodedNodeVector>();
217    new (V) ExplodedNodeVector(Ctx, 4);
218    V->push_back(Old, Ctx);
219
220    Storage = V;
221    assert(!getFlag());
222    assert(Storage.is<ExplodedNodeVector *>());
223  }
224
225  V->push_back(N, G.getNodeAllocator());
226}
227
228unsigned ExplodedNode::NodeGroup::size() const {
229  if (getFlag())
230    return 0;
231
232  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
233  if (Storage.isNull())
234    return 0;
235  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
236    return V->size();
237  return 1;
238}
239
240ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
241  if (getFlag())
242    return 0;
243
244  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
245  if (Storage.isNull())
246    return 0;
247  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
248    return V->begin();
249  return Storage.getAddrOfPtr1();
250}
251
252ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
253  if (getFlag())
254    return 0;
255
256  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
257  if (Storage.isNull())
258    return 0;
259  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
260    return V->end();
261  return Storage.getAddrOfPtr1() + 1;
262}
263
264ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
265                                     ProgramStateRef State,
266                                     bool IsSink,
267                                     bool* IsNew) {
268  // Profile 'State' to determine if we already have an existing node.
269  llvm::FoldingSetNodeID profile;
270  void *InsertPos = 0;
271
272  NodeTy::Profile(profile, L, State, IsSink);
273  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
274
275  if (!V) {
276    if (!FreeNodes.empty()) {
277      V = FreeNodes.back();
278      FreeNodes.pop_back();
279    }
280    else {
281      // Allocate a new node.
282      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
283    }
284
285    new (V) NodeTy(L, State, IsSink);
286
287    if (reclaimNodes)
288      ChangedNodes.push_back(V);
289
290    // Insert the node into the node set and return it.
291    Nodes.InsertNode(V, InsertPos);
292    ++NumNodes;
293
294    if (IsNew) *IsNew = true;
295  }
296  else
297    if (IsNew) *IsNew = false;
298
299  return V;
300}
301
302std::pair<ExplodedGraph*, InterExplodedGraphMap*>
303ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
304               llvm::DenseMap<const void*, const void*> *InverseMap) const {
305
306  if (NBeg == NEnd)
307    return std::make_pair((ExplodedGraph*) 0,
308                          (InterExplodedGraphMap*) 0);
309
310  assert (NBeg < NEnd);
311
312  OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
313
314  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
315
316  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
317}
318
319ExplodedGraph*
320ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
321                            const ExplodedNode* const* EndSources,
322                            InterExplodedGraphMap* M,
323                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
324
325  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
326  Pass1Ty Pass1;
327
328  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
329  Pass2Ty& Pass2 = M->M;
330
331  SmallVector<const ExplodedNode*, 10> WL1, WL2;
332
333  // ===- Pass 1 (reverse DFS) -===
334  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
335    if (*I)
336      WL1.push_back(*I);
337  }
338
339  // Process the first worklist until it is empty.  Because it is a std::list
340  // it acts like a FIFO queue.
341  while (!WL1.empty()) {
342    const ExplodedNode *N = WL1.back();
343    WL1.pop_back();
344
345    // Have we already visited this node?  If so, continue to the next one.
346    if (Pass1.count(N))
347      continue;
348
349    // Otherwise, mark this node as visited.
350    Pass1.insert(N);
351
352    // If this is a root enqueue it to the second worklist.
353    if (N->Preds.empty()) {
354      WL2.push_back(N);
355      continue;
356    }
357
358    // Visit our predecessors and enqueue them.
359    for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
360         I != E; ++I)
361      WL1.push_back(*I);
362  }
363
364  // We didn't hit a root? Return with a null pointer for the new graph.
365  if (WL2.empty())
366    return 0;
367
368  // Create an empty graph.
369  ExplodedGraph* G = MakeEmptyGraph();
370
371  // ===- Pass 2 (forward DFS to construct the new graph) -===
372  while (!WL2.empty()) {
373    const ExplodedNode *N = WL2.back();
374    WL2.pop_back();
375
376    // Skip this node if we have already processed it.
377    if (Pass2.find(N) != Pass2.end())
378      continue;
379
380    // Create the corresponding node in the new graph and record the mapping
381    // from the old node to the new node.
382    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
383    Pass2[N] = NewN;
384
385    // Also record the reverse mapping from the new node to the old node.
386    if (InverseMap) (*InverseMap)[NewN] = N;
387
388    // If this node is a root, designate it as such in the graph.
389    if (N->Preds.empty())
390      G->addRoot(NewN);
391
392    // In the case that some of the intended predecessors of NewN have already
393    // been created, we should hook them up as predecessors.
394
395    // Walk through the predecessors of 'N' and hook up their corresponding
396    // nodes in the new graph (if any) to the freshly created node.
397    for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
398         I != E; ++I) {
399      Pass2Ty::iterator PI = Pass2.find(*I);
400      if (PI == Pass2.end())
401        continue;
402
403      NewN->addPredecessor(PI->second, *G);
404    }
405
406    // In the case that some of the intended successors of NewN have already
407    // been created, we should hook them up as successors.  Otherwise, enqueue
408    // the new nodes from the original graph that should have nodes created
409    // in the new graph.
410    for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
411         I != E; ++I) {
412      Pass2Ty::iterator PI = Pass2.find(*I);
413      if (PI != Pass2.end()) {
414        PI->second->addPredecessor(NewN, *G);
415        continue;
416      }
417
418      // Enqueue nodes to the worklist that were marked during pass 1.
419      if (Pass1.count(*I))
420        WL2.push_back(*I);
421    }
422  }
423
424  return G;
425}
426
427void InterExplodedGraphMap::anchor() { }
428
429ExplodedNode*
430InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
431  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
432    M.find(N);
433
434  return I == M.end() ? 0 : I->second;
435}
436
437