ExprEngineC.cpp revision 0156439a3d718ea0ef5922c38d189a60829c8a86
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/CheckerManager.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16
17using namespace clang;
18using namespace ento;
19using llvm::APSInt;
20
21void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
22                                     ExplodedNode *Pred,
23                                     ExplodedNodeSet &Dst) {
24
25  Expr *LHS = B->getLHS()->IgnoreParens();
26  Expr *RHS = B->getRHS()->IgnoreParens();
27
28  // FIXME: Prechecks eventually go in ::Visit().
29  ExplodedNodeSet CheckedSet;
30  ExplodedNodeSet Tmp2;
31  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
32
33  // With both the LHS and RHS evaluated, process the operation itself.
34  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
35         it != ei; ++it) {
36
37    ProgramStateRef state = (*it)->getState();
38    const LocationContext *LCtx = (*it)->getLocationContext();
39    SVal LeftV = state->getSVal(LHS, LCtx);
40    SVal RightV = state->getSVal(RHS, LCtx);
41
42    BinaryOperator::Opcode Op = B->getOpcode();
43
44    if (Op == BO_Assign) {
45      // EXPERIMENTAL: "Conjured" symbols.
46      // FIXME: Handle structs.
47      if (RightV.isUnknown()) {
48        unsigned Count = currBldrCtx->blockCount();
49        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
50      }
51      // Simulate the effects of a "store":  bind the value of the RHS
52      // to the L-Value represented by the LHS.
53      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
54      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
55                LeftV, RightV);
56      continue;
57    }
58
59    if (!B->isAssignmentOp()) {
60      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
61
62      if (B->isAdditiveOp()) {
63        // If one of the operands is a location, conjure a symbol for the other
64        // one (offset) if it's unknown so that memory arithmetic always
65        // results in an ElementRegion.
66        // TODO: This can be removed after we enable history tracking with
67        // SymSymExpr.
68        unsigned Count = currBldrCtx->blockCount();
69        if (isa<Loc>(LeftV) &&
70            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
71          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
72                                                Count);
73        }
74        if (isa<Loc>(RightV) &&
75            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
76          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
77                                               Count);
78        }
79      }
80
81      // Process non-assignments except commas or short-circuited
82      // logical expressions (LAnd and LOr).
83      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
84      if (Result.isUnknown()) {
85        Bldr.generateNode(B, *it, state);
86        continue;
87      }
88
89      state = state->BindExpr(B, LCtx, Result);
90      Bldr.generateNode(B, *it, state);
91      continue;
92    }
93
94    assert (B->isCompoundAssignmentOp());
95
96    switch (Op) {
97      default:
98        llvm_unreachable("Invalid opcode for compound assignment.");
99      case BO_MulAssign: Op = BO_Mul; break;
100      case BO_DivAssign: Op = BO_Div; break;
101      case BO_RemAssign: Op = BO_Rem; break;
102      case BO_AddAssign: Op = BO_Add; break;
103      case BO_SubAssign: Op = BO_Sub; break;
104      case BO_ShlAssign: Op = BO_Shl; break;
105      case BO_ShrAssign: Op = BO_Shr; break;
106      case BO_AndAssign: Op = BO_And; break;
107      case BO_XorAssign: Op = BO_Xor; break;
108      case BO_OrAssign:  Op = BO_Or;  break;
109    }
110
111    // Perform a load (the LHS).  This performs the checks for
112    // null dereferences, and so on.
113    ExplodedNodeSet Tmp;
114    SVal location = LeftV;
115    evalLoad(Tmp, B, LHS, *it, state, location);
116
117    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
118         ++I) {
119
120      state = (*I)->getState();
121      const LocationContext *LCtx = (*I)->getLocationContext();
122      SVal V = state->getSVal(LHS, LCtx);
123
124      // Get the computation type.
125      QualType CTy =
126        cast<CompoundAssignOperator>(B)->getComputationResultType();
127      CTy = getContext().getCanonicalType(CTy);
128
129      QualType CLHSTy =
130        cast<CompoundAssignOperator>(B)->getComputationLHSType();
131      CLHSTy = getContext().getCanonicalType(CLHSTy);
132
133      QualType LTy = getContext().getCanonicalType(LHS->getType());
134
135      // Promote LHS.
136      V = svalBuilder.evalCast(V, CLHSTy, LTy);
137
138      // Compute the result of the operation.
139      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
140                                         B->getType(), CTy);
141
142      // EXPERIMENTAL: "Conjured" symbols.
143      // FIXME: Handle structs.
144
145      SVal LHSVal;
146
147      if (Result.isUnknown()) {
148        // The symbolic value is actually for the type of the left-hand side
149        // expression, not the computation type, as this is the value the
150        // LValue on the LHS will bind to.
151        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
152                                              currBldrCtx->blockCount());
153        // However, we need to convert the symbol to the computation type.
154        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
155      }
156      else {
157        // The left-hand side may bind to a different value then the
158        // computation type.
159        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
160      }
161
162      // In C++, assignment and compound assignment operators return an
163      // lvalue.
164      if (B->isGLValue())
165        state = state->BindExpr(B, LCtx, location);
166      else
167        state = state->BindExpr(B, LCtx, Result);
168
169      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
170    }
171  }
172
173  // FIXME: postvisits eventually go in ::Visit()
174  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
175}
176
177void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
178                                ExplodedNodeSet &Dst) {
179
180  CanQualType T = getContext().getCanonicalType(BE->getType());
181
182  // Get the value of the block itself.
183  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
184                                       Pred->getLocationContext());
185
186  ProgramStateRef State = Pred->getState();
187
188  // If we created a new MemRegion for the block, we should explicitly bind
189  // the captured variables.
190  if (const BlockDataRegion *BDR =
191      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
192
193    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
194                                              E = BDR->referenced_vars_end();
195
196    for (; I != E; ++I) {
197      const MemRegion *capturedR = I.getCapturedRegion();
198      const MemRegion *originalR = I.getOriginalRegion();
199      if (capturedR != originalR) {
200        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
201        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
202      }
203    }
204  }
205
206  ExplodedNodeSet Tmp;
207  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
208  Bldr.generateNode(BE, Pred,
209                    State->BindExpr(BE, Pred->getLocationContext(), V),
210                    0, ProgramPoint::PostLValueKind);
211
212  // FIXME: Move all post/pre visits to ::Visit().
213  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
214}
215
216void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
217                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
218
219  ExplodedNodeSet dstPreStmt;
220  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
221
222  if (CastE->getCastKind() == CK_LValueToRValue) {
223    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
224         I!=E; ++I) {
225      ExplodedNode *subExprNode = *I;
226      ProgramStateRef state = subExprNode->getState();
227      const LocationContext *LCtx = subExprNode->getLocationContext();
228      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
229    }
230    return;
231  }
232
233  // All other casts.
234  QualType T = CastE->getType();
235  QualType ExTy = Ex->getType();
236
237  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
238    T = ExCast->getTypeAsWritten();
239
240  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
241  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
242       I != E; ++I) {
243
244    Pred = *I;
245    ProgramStateRef state = Pred->getState();
246    const LocationContext *LCtx = Pred->getLocationContext();
247
248    switch (CastE->getCastKind()) {
249      case CK_LValueToRValue:
250        llvm_unreachable("LValueToRValue casts handled earlier.");
251      case CK_ToVoid:
252        continue;
253        // The analyzer doesn't do anything special with these casts,
254        // since it understands retain/release semantics already.
255      case CK_ARCProduceObject:
256      case CK_ARCConsumeObject:
257      case CK_ARCReclaimReturnedObject:
258      case CK_ARCExtendBlockObject: // Fall-through.
259      case CK_CopyAndAutoreleaseBlockObject:
260        // The analyser can ignore atomic casts for now, although some future
261        // checkers may want to make certain that you're not modifying the same
262        // value through atomic and nonatomic pointers.
263      case CK_AtomicToNonAtomic:
264      case CK_NonAtomicToAtomic:
265        // True no-ops.
266      case CK_NoOp:
267      case CK_UserDefinedConversion:
268      case CK_FunctionToPointerDecay: {
269        // Copy the SVal of Ex to CastE.
270        ProgramStateRef state = Pred->getState();
271        const LocationContext *LCtx = Pred->getLocationContext();
272        SVal V = state->getSVal(Ex, LCtx);
273        state = state->BindExpr(CastE, LCtx, V);
274        Bldr.generateNode(CastE, Pred, state);
275        continue;
276      }
277      case CK_MemberPointerToBoolean:
278        // FIXME: For now, member pointers are represented by void *.
279        // FALLTHROUGH
280      case CK_Dependent:
281      case CK_ArrayToPointerDecay:
282      case CK_BitCast:
283      case CK_IntegralCast:
284      case CK_NullToPointer:
285      case CK_IntegralToPointer:
286      case CK_PointerToIntegral:
287      case CK_PointerToBoolean:
288      case CK_IntegralToBoolean:
289      case CK_IntegralToFloating:
290      case CK_FloatingToIntegral:
291      case CK_FloatingToBoolean:
292      case CK_FloatingCast:
293      case CK_FloatingRealToComplex:
294      case CK_FloatingComplexToReal:
295      case CK_FloatingComplexToBoolean:
296      case CK_FloatingComplexCast:
297      case CK_FloatingComplexToIntegralComplex:
298      case CK_IntegralRealToComplex:
299      case CK_IntegralComplexToReal:
300      case CK_IntegralComplexToBoolean:
301      case CK_IntegralComplexCast:
302      case CK_IntegralComplexToFloatingComplex:
303      case CK_CPointerToObjCPointerCast:
304      case CK_BlockPointerToObjCPointerCast:
305      case CK_AnyPointerToBlockPointerCast:
306      case CK_ObjCObjectLValueCast: {
307        // Delegate to SValBuilder to process.
308        SVal V = state->getSVal(Ex, LCtx);
309        V = svalBuilder.evalCast(V, T, ExTy);
310        state = state->BindExpr(CastE, LCtx, V);
311        Bldr.generateNode(CastE, Pred, state);
312        continue;
313      }
314      case CK_DerivedToBase:
315      case CK_UncheckedDerivedToBase: {
316        // For DerivedToBase cast, delegate to the store manager.
317        SVal val = state->getSVal(Ex, LCtx);
318        val = getStoreManager().evalDerivedToBase(val, CastE);
319        state = state->BindExpr(CastE, LCtx, val);
320        Bldr.generateNode(CastE, Pred, state);
321        continue;
322      }
323      // Handle C++ dyn_cast.
324      case CK_Dynamic: {
325        SVal val = state->getSVal(Ex, LCtx);
326
327        // Compute the type of the result.
328        QualType resultType = CastE->getType();
329        if (CastE->isGLValue())
330          resultType = getContext().getPointerType(resultType);
331
332        bool Failed = false;
333
334        // Check if the value being cast evaluates to 0.
335        if (val.isZeroConstant())
336          Failed = true;
337        // Else, evaluate the cast.
338        else
339          val = getStoreManager().evalDynamicCast(val, T, Failed);
340
341        if (Failed) {
342          if (T->isReferenceType()) {
343            // A bad_cast exception is thrown if input value is a reference.
344            // Currently, we model this, by generating a sink.
345            Bldr.generateSink(CastE, Pred, state);
346            continue;
347          } else {
348            // If the cast fails on a pointer, bind to 0.
349            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
350          }
351        } else {
352          // If we don't know if the cast succeeded, conjure a new symbol.
353          if (val.isUnknown()) {
354            DefinedOrUnknownSVal NewSym =
355              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
356                                           currBldrCtx->blockCount());
357            state = state->BindExpr(CastE, LCtx, NewSym);
358          } else
359            // Else, bind to the derived region value.
360            state = state->BindExpr(CastE, LCtx, val);
361        }
362        Bldr.generateNode(CastE, Pred, state);
363        continue;
364      }
365      case CK_NullToMemberPointer: {
366        // FIXME: For now, member pointers are represented by void *.
367        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
368        state = state->BindExpr(CastE, LCtx, V);
369        Bldr.generateNode(CastE, Pred, state);
370        continue;
371      }
372      // Various C++ casts that are not handled yet.
373      case CK_ToUnion:
374      case CK_BaseToDerived:
375      case CK_BaseToDerivedMemberPointer:
376      case CK_DerivedToBaseMemberPointer:
377      case CK_ReinterpretMemberPointer:
378      case CK_ConstructorConversion:
379      case CK_VectorSplat:
380      case CK_LValueBitCast: {
381        // Recover some path-sensitivty by conjuring a new value.
382        QualType resultType = CastE->getType();
383        if (CastE->isGLValue())
384          resultType = getContext().getPointerType(resultType);
385        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
386                                                   resultType,
387                                                   currBldrCtx->blockCount());
388        state = state->BindExpr(CastE, LCtx, result);
389        Bldr.generateNode(CastE, Pred, state);
390        continue;
391      }
392    }
393  }
394}
395
396void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
397                                          ExplodedNode *Pred,
398                                          ExplodedNodeSet &Dst) {
399  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
400
401  const InitListExpr *ILE
402    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
403
404  ProgramStateRef state = Pred->getState();
405  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
406  const LocationContext *LC = Pred->getLocationContext();
407  state = state->bindCompoundLiteral(CL, LC, ILV);
408
409  // Compound literal expressions are a GNU extension in C++.
410  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
411  // and like temporary objects created by the functional notation T()
412  // CLs are destroyed at the end of the containing full-expression.
413  // HOWEVER, an rvalue of array type is not something the analyzer can
414  // reason about, since we expect all regions to be wrapped in Locs.
415  // So we treat array CLs as lvalues as well, knowing that they will decay
416  // to pointers as soon as they are used.
417  if (CL->isGLValue() || CL->getType()->isArrayType())
418    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
419  else
420    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
421}
422
423void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
424                               ExplodedNodeSet &Dst) {
425
426  // FIXME: static variables may have an initializer, but the second
427  //  time a function is called those values may not be current.
428  //  This may need to be reflected in the CFG.
429
430  // Assumption: The CFG has one DeclStmt per Decl.
431  const Decl *D = *DS->decl_begin();
432
433  if (!D || !isa<VarDecl>(D)) {
434    //TODO:AZ: remove explicit insertion after refactoring is done.
435    Dst.insert(Pred);
436    return;
437  }
438
439  // FIXME: all pre/post visits should eventually be handled by ::Visit().
440  ExplodedNodeSet dstPreVisit;
441  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
442
443  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
444  const VarDecl *VD = dyn_cast<VarDecl>(D);
445  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
446       I!=E; ++I) {
447    ExplodedNode *N = *I;
448    ProgramStateRef state = N->getState();
449
450    // Decls without InitExpr are not initialized explicitly.
451    const LocationContext *LC = N->getLocationContext();
452
453    if (const Expr *InitEx = VD->getInit()) {
454      SVal InitVal = state->getSVal(InitEx, LC);
455
456      if (InitVal == state->getLValue(VD, LC) ||
457          (VD->getType()->isArrayType() &&
458           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
459        // We constructed the object directly in the variable.
460        // No need to bind anything.
461        B.generateNode(DS, N, state);
462      } else {
463        // We bound the temp obj region to the CXXConstructExpr. Now recover
464        // the lazy compound value when the variable is not a reference.
465        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
466            !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
467          InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
468          assert(isa<nonloc::LazyCompoundVal>(InitVal));
469        }
470
471        // Recover some path-sensitivity if a scalar value evaluated to
472        // UnknownVal.
473        if (InitVal.isUnknown()) {
474          QualType Ty = InitEx->getType();
475          if (InitEx->isGLValue()) {
476            Ty = getContext().getPointerType(Ty);
477          }
478
479          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
480                                                 currBldrCtx->blockCount());
481        }
482        B.takeNodes(N);
483        ExplodedNodeSet Dst2;
484        evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
485        B.addNodes(Dst2);
486      }
487    }
488    else {
489      B.generateNode(DS, N, state);
490    }
491  }
492}
493
494void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
495                                  ExplodedNodeSet &Dst) {
496  assert(B->getOpcode() == BO_LAnd ||
497         B->getOpcode() == BO_LOr);
498
499  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
500  ProgramStateRef state = Pred->getState();
501
502  ExplodedNode *N = Pred;
503  while (!isa<BlockEntrance>(N->getLocation())) {
504    ProgramPoint P = N->getLocation();
505    assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
506    (void) P;
507    assert(N->pred_size() == 1);
508    N = *N->pred_begin();
509  }
510  assert(N->pred_size() == 1);
511  N = *N->pred_begin();
512  BlockEdge BE = cast<BlockEdge>(N->getLocation());
513  SVal X;
514
515  // Determine the value of the expression by introspecting how we
516  // got this location in the CFG.  This requires looking at the previous
517  // block we were in and what kind of control-flow transfer was involved.
518  const CFGBlock *SrcBlock = BE.getSrc();
519  // The only terminator (if there is one) that makes sense is a logical op.
520  CFGTerminator T = SrcBlock->getTerminator();
521  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
522    (void) Term;
523    assert(Term->isLogicalOp());
524    assert(SrcBlock->succ_size() == 2);
525    // Did we take the true or false branch?
526    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
527    X = svalBuilder.makeIntVal(constant, B->getType());
528  }
529  else {
530    // If there is no terminator, by construction the last statement
531    // in SrcBlock is the value of the enclosing expression.
532    // However, we still need to constrain that value to be 0 or 1.
533    assert(!SrcBlock->empty());
534    CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
535    const Expr *RHS = cast<Expr>(Elem.getStmt());
536    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
537
538    DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
539    ProgramStateRef StTrue, StFalse;
540    llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
541    if (StTrue) {
542      if (StFalse) {
543        // We can't constrain the value to 0 or 1; the best we can do is a cast.
544        X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
545      } else {
546        // The value is known to be true.
547        X = getSValBuilder().makeIntVal(1, B->getType());
548      }
549    } else {
550      // The value is known to be false.
551      assert(StFalse && "Infeasible path!");
552      X = getSValBuilder().makeIntVal(0, B->getType());
553    }
554  }
555
556  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
557}
558
559void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
560                                   ExplodedNode *Pred,
561                                   ExplodedNodeSet &Dst) {
562  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
563
564  ProgramStateRef state = Pred->getState();
565  const LocationContext *LCtx = Pred->getLocationContext();
566  QualType T = getContext().getCanonicalType(IE->getType());
567  unsigned NumInitElements = IE->getNumInits();
568
569  if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
570    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
571
572    // Handle base case where the initializer has no elements.
573    // e.g: static int* myArray[] = {};
574    if (NumInitElements == 0) {
575      SVal V = svalBuilder.makeCompoundVal(T, vals);
576      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
577      return;
578    }
579
580    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
581         ei = IE->rend(); it != ei; ++it) {
582      vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
583                                     vals);
584    }
585
586    B.generateNode(IE, Pred,
587                   state->BindExpr(IE, LCtx,
588                                   svalBuilder.makeCompoundVal(T, vals)));
589    return;
590  }
591
592  // Handle scalars: int{5} and int{}.
593  assert(NumInitElements <= 1);
594
595  SVal V;
596  if (NumInitElements == 0)
597    V = getSValBuilder().makeZeroVal(T);
598  else
599    V = state->getSVal(IE->getInit(0), LCtx);
600
601  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
602}
603
604void ExprEngine::VisitGuardedExpr(const Expr *Ex,
605                                  const Expr *L,
606                                  const Expr *R,
607                                  ExplodedNode *Pred,
608                                  ExplodedNodeSet &Dst) {
609  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
610  ProgramStateRef state = Pred->getState();
611  const LocationContext *LCtx = Pred->getLocationContext();
612  const CFGBlock *SrcBlock = 0;
613
614  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
615    ProgramPoint PP = N->getLocation();
616    if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
617      assert(N->pred_size() == 1);
618      continue;
619    }
620    SrcBlock = cast<BlockEdge>(&PP)->getSrc();
621    break;
622  }
623
624  // Find the last expression in the predecessor block.  That is the
625  // expression that is used for the value of the ternary expression.
626  bool hasValue = false;
627  SVal V;
628
629  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
630                                        E = SrcBlock->rend(); I != E; ++I) {
631    CFGElement CE = *I;
632    if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
633      const Expr *ValEx = cast<Expr>(CS->getStmt());
634      hasValue = true;
635      V = state->getSVal(ValEx, LCtx);
636      break;
637    }
638  }
639
640  assert(hasValue);
641  (void) hasValue;
642
643  // Generate a new node with the binding from the appropriate path.
644  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
645}
646
647void ExprEngine::
648VisitOffsetOfExpr(const OffsetOfExpr *OOE,
649                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
650  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
651  APSInt IV;
652  if (OOE->EvaluateAsInt(IV, getContext())) {
653    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
654    assert(OOE->getType()->isIntegerType());
655    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
656    SVal X = svalBuilder.makeIntVal(IV);
657    B.generateNode(OOE, Pred,
658                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
659                                              X));
660  }
661  // FIXME: Handle the case where __builtin_offsetof is not a constant.
662}
663
664
665void ExprEngine::
666VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
667                              ExplodedNode *Pred,
668                              ExplodedNodeSet &Dst) {
669  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
670
671  QualType T = Ex->getTypeOfArgument();
672
673  if (Ex->getKind() == UETT_SizeOf) {
674    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
675      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
676
677      // FIXME: Add support for VLA type arguments and VLA expressions.
678      // When that happens, we should probably refactor VLASizeChecker's code.
679      return;
680    }
681    else if (T->getAs<ObjCObjectType>()) {
682      // Some code tries to take the sizeof an ObjCObjectType, relying that
683      // the compiler has laid out its representation.  Just report Unknown
684      // for these.
685      return;
686    }
687  }
688
689  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
690  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
691
692  ProgramStateRef state = Pred->getState();
693  state = state->BindExpr(Ex, Pred->getLocationContext(),
694                          svalBuilder.makeIntVal(amt.getQuantity(),
695                                                     Ex->getType()));
696  Bldr.generateNode(Ex, Pred, state);
697}
698
699void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
700                                    ExplodedNode *Pred,
701                                    ExplodedNodeSet &Dst) {
702  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
703  switch (U->getOpcode()) {
704    default: {
705      Bldr.takeNodes(Pred);
706      ExplodedNodeSet Tmp;
707      VisitIncrementDecrementOperator(U, Pred, Tmp);
708      Bldr.addNodes(Tmp);
709    }
710      break;
711    case UO_Real: {
712      const Expr *Ex = U->getSubExpr()->IgnoreParens();
713
714      // FIXME: We don't have complex SValues yet.
715      if (Ex->getType()->isAnyComplexType()) {
716        // Just report "Unknown."
717        break;
718      }
719
720      // For all other types, UO_Real is an identity operation.
721      assert (U->getType() == Ex->getType());
722      ProgramStateRef state = Pred->getState();
723      const LocationContext *LCtx = Pred->getLocationContext();
724      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
725                                                 state->getSVal(Ex, LCtx)));
726      break;
727    }
728
729    case UO_Imag: {
730      const Expr *Ex = U->getSubExpr()->IgnoreParens();
731      // FIXME: We don't have complex SValues yet.
732      if (Ex->getType()->isAnyComplexType()) {
733        // Just report "Unknown."
734        break;
735      }
736      // For all other types, UO_Imag returns 0.
737      ProgramStateRef state = Pred->getState();
738      const LocationContext *LCtx = Pred->getLocationContext();
739      SVal X = svalBuilder.makeZeroVal(Ex->getType());
740      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
741      break;
742    }
743
744    case UO_Plus:
745      assert(!U->isGLValue());
746      // FALL-THROUGH.
747    case UO_Deref:
748    case UO_AddrOf:
749    case UO_Extension: {
750      // FIXME: We can probably just have some magic in Environment::getSVal()
751      // that propagates values, instead of creating a new node here.
752      //
753      // Unary "+" is a no-op, similar to a parentheses.  We still have places
754      // where it may be a block-level expression, so we need to
755      // generate an extra node that just propagates the value of the
756      // subexpression.
757      const Expr *Ex = U->getSubExpr()->IgnoreParens();
758      ProgramStateRef state = Pred->getState();
759      const LocationContext *LCtx = Pred->getLocationContext();
760      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
761                                                 state->getSVal(Ex, LCtx)));
762      break;
763    }
764
765    case UO_LNot:
766    case UO_Minus:
767    case UO_Not: {
768      assert (!U->isGLValue());
769      const Expr *Ex = U->getSubExpr()->IgnoreParens();
770      ProgramStateRef state = Pred->getState();
771      const LocationContext *LCtx = Pred->getLocationContext();
772
773      // Get the value of the subexpression.
774      SVal V = state->getSVal(Ex, LCtx);
775
776      if (V.isUnknownOrUndef()) {
777        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
778        break;
779      }
780
781      switch (U->getOpcode()) {
782        default:
783          llvm_unreachable("Invalid Opcode.");
784        case UO_Not:
785          // FIXME: Do we need to handle promotions?
786          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
787          break;
788        case UO_Minus:
789          // FIXME: Do we need to handle promotions?
790          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
791          break;
792        case UO_LNot:
793          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
794          //
795          //  Note: technically we do "E == 0", but this is the same in the
796          //    transfer functions as "0 == E".
797          SVal Result;
798          if (isa<Loc>(V)) {
799            Loc X = svalBuilder.makeNull();
800            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
801                               U->getType());
802          }
803          else {
804            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
805            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
806                               U->getType());
807          }
808
809          state = state->BindExpr(U, LCtx, Result);
810          break;
811      }
812      Bldr.generateNode(U, Pred, state);
813      break;
814    }
815  }
816
817}
818
819void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
820                                                 ExplodedNode *Pred,
821                                                 ExplodedNodeSet &Dst) {
822  // Handle ++ and -- (both pre- and post-increment).
823  assert (U->isIncrementDecrementOp());
824  const Expr *Ex = U->getSubExpr()->IgnoreParens();
825
826  const LocationContext *LCtx = Pred->getLocationContext();
827  ProgramStateRef state = Pred->getState();
828  SVal loc = state->getSVal(Ex, LCtx);
829
830  // Perform a load.
831  ExplodedNodeSet Tmp;
832  evalLoad(Tmp, U, Ex, Pred, state, loc);
833
834  ExplodedNodeSet Dst2;
835  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
836  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
837
838    state = (*I)->getState();
839    assert(LCtx == (*I)->getLocationContext());
840    SVal V2_untested = state->getSVal(Ex, LCtx);
841
842    // Propagate unknown and undefined values.
843    if (V2_untested.isUnknownOrUndef()) {
844      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
845      continue;
846    }
847    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
848
849    // Handle all other values.
850    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
851
852    // If the UnaryOperator has non-location type, use its type to create the
853    // constant value. If the UnaryOperator has location type, create the
854    // constant with int type and pointer width.
855    SVal RHS;
856
857    if (U->getType()->isAnyPointerType())
858      RHS = svalBuilder.makeArrayIndex(1);
859    else
860      RHS = svalBuilder.makeIntVal(1, U->getType());
861
862    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
863
864    // Conjure a new symbol if necessary to recover precision.
865    if (Result.isUnknown()){
866      DefinedOrUnknownSVal SymVal =
867        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
868      Result = SymVal;
869
870      // If the value is a location, ++/-- should always preserve
871      // non-nullness.  Check if the original value was non-null, and if so
872      // propagate that constraint.
873      if (Loc::isLocType(U->getType())) {
874        DefinedOrUnknownSVal Constraint =
875        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
876
877        if (!state->assume(Constraint, true)) {
878          // It isn't feasible for the original value to be null.
879          // Propagate this constraint.
880          Constraint = svalBuilder.evalEQ(state, SymVal,
881                                       svalBuilder.makeZeroVal(U->getType()));
882
883
884          state = state->assume(Constraint, false);
885          assert(state);
886        }
887      }
888    }
889
890    // Since the lvalue-to-rvalue conversion is explicit in the AST,
891    // we bind an l-value if the operator is prefix and an lvalue (in C++).
892    if (U->isGLValue())
893      state = state->BindExpr(U, LCtx, loc);
894    else
895      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
896
897    // Perform the store.
898    Bldr.takeNodes(*I);
899    ExplodedNodeSet Dst3;
900    evalStore(Dst3, U, U, *I, state, loc, Result);
901    Bldr.addNodes(Dst3);
902  }
903  Dst.insert(Dst2);
904}
905