ExprEngineC.cpp revision 13dd47a0c01f8b4a6b3fbe379218f7ba8e692d0f
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/CheckerManager.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16
17using namespace clang;
18using namespace ento;
19using llvm::APSInt;
20
21void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
22                                     ExplodedNode *Pred,
23                                     ExplodedNodeSet &Dst) {
24
25  Expr *LHS = B->getLHS()->IgnoreParens();
26  Expr *RHS = B->getRHS()->IgnoreParens();
27
28  // FIXME: Prechecks eventually go in ::Visit().
29  ExplodedNodeSet CheckedSet;
30  ExplodedNodeSet Tmp2;
31  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
32
33  // With both the LHS and RHS evaluated, process the operation itself.
34  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
35         it != ei; ++it) {
36
37    ProgramStateRef state = (*it)->getState();
38    const LocationContext *LCtx = (*it)->getLocationContext();
39    SVal LeftV = state->getSVal(LHS, LCtx);
40    SVal RightV = state->getSVal(RHS, LCtx);
41
42    BinaryOperator::Opcode Op = B->getOpcode();
43
44    if (Op == BO_Assign) {
45      // EXPERIMENTAL: "Conjured" symbols.
46      // FIXME: Handle structs.
47      if (RightV.isUnknown()) {
48        unsigned Count = currentBuilderContext->getCurrentBlockCount();
49        RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx, Count);
50      }
51      // Simulate the effects of a "store":  bind the value of the RHS
52      // to the L-Value represented by the LHS.
53      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
54      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
55                LeftV, RightV);
56      continue;
57    }
58
59    if (!B->isAssignmentOp()) {
60      StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
61
62      if (B->isAdditiveOp()) {
63        // If one of the operands is a location, conjure a symbol for the other
64        // one (offset) if it's unknown so that memory arithmetic always
65        // results in an ElementRegion.
66        // TODO: This can be removed after we enable history tracking with
67        // SymSymExpr.
68        unsigned Count = currentBuilderContext->getCurrentBlockCount();
69        if (isa<Loc>(LeftV) &&
70            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
71          RightV = svalBuilder.getConjuredSymbolVal(RHS, LCtx,
72                                                    RHS->getType(), Count);
73        }
74        if (isa<Loc>(RightV) &&
75            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
76          LeftV = svalBuilder.getConjuredSymbolVal(LHS, LCtx,
77                                                   LHS->getType(), Count);
78        }
79      }
80
81      // Process non-assignments except commas or short-circuited
82      // logical expressions (LAnd and LOr).
83      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
84      if (Result.isUnknown()) {
85        Bldr.generateNode(B, *it, state);
86        continue;
87      }
88
89      state = state->BindExpr(B, LCtx, Result);
90      Bldr.generateNode(B, *it, state);
91      continue;
92    }
93
94    assert (B->isCompoundAssignmentOp());
95
96    switch (Op) {
97      default:
98        llvm_unreachable("Invalid opcode for compound assignment.");
99      case BO_MulAssign: Op = BO_Mul; break;
100      case BO_DivAssign: Op = BO_Div; break;
101      case BO_RemAssign: Op = BO_Rem; break;
102      case BO_AddAssign: Op = BO_Add; break;
103      case BO_SubAssign: Op = BO_Sub; break;
104      case BO_ShlAssign: Op = BO_Shl; break;
105      case BO_ShrAssign: Op = BO_Shr; break;
106      case BO_AndAssign: Op = BO_And; break;
107      case BO_XorAssign: Op = BO_Xor; break;
108      case BO_OrAssign:  Op = BO_Or;  break;
109    }
110
111    // Perform a load (the LHS).  This performs the checks for
112    // null dereferences, and so on.
113    ExplodedNodeSet Tmp;
114    SVal location = LeftV;
115    evalLoad(Tmp, B, LHS, *it, state, location);
116
117    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
118         ++I) {
119
120      state = (*I)->getState();
121      const LocationContext *LCtx = (*I)->getLocationContext();
122      SVal V = state->getSVal(LHS, LCtx);
123
124      // Get the computation type.
125      QualType CTy =
126        cast<CompoundAssignOperator>(B)->getComputationResultType();
127      CTy = getContext().getCanonicalType(CTy);
128
129      QualType CLHSTy =
130        cast<CompoundAssignOperator>(B)->getComputationLHSType();
131      CLHSTy = getContext().getCanonicalType(CLHSTy);
132
133      QualType LTy = getContext().getCanonicalType(LHS->getType());
134
135      // Promote LHS.
136      V = svalBuilder.evalCast(V, CLHSTy, LTy);
137
138      // Compute the result of the operation.
139      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
140                                         B->getType(), CTy);
141
142      // EXPERIMENTAL: "Conjured" symbols.
143      // FIXME: Handle structs.
144
145      SVal LHSVal;
146
147      if (Result.isUnknown()) {
148
149        unsigned Count = currentBuilderContext->getCurrentBlockCount();
150
151        // The symbolic value is actually for the type of the left-hand side
152        // expression, not the computation type, as this is the value the
153        // LValue on the LHS will bind to.
154        LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx,
155						  LTy, Count);
156
157        // However, we need to convert the symbol to the computation type.
158        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
159      }
160      else {
161        // The left-hand side may bind to a different value then the
162        // computation type.
163        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
164      }
165
166      // In C++, assignment and compound assignment operators return an
167      // lvalue.
168      if (B->isGLValue())
169        state = state->BindExpr(B, LCtx, location);
170      else
171        state = state->BindExpr(B, LCtx, Result);
172
173      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
174    }
175  }
176
177  // FIXME: postvisits eventually go in ::Visit()
178  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
179}
180
181void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
182                                ExplodedNodeSet &Dst) {
183
184  CanQualType T = getContext().getCanonicalType(BE->getType());
185
186  // Get the value of the block itself.
187  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
188                                       Pred->getLocationContext());
189
190  ProgramStateRef State = Pred->getState();
191
192  // If we created a new MemRegion for the block, we should explicitly bind
193  // the captured variables.
194  if (const BlockDataRegion *BDR =
195      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
196
197    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
198                                              E = BDR->referenced_vars_end();
199
200    for (; I != E; ++I) {
201      const MemRegion *capturedR = I.getCapturedRegion();
202      const MemRegion *originalR = I.getOriginalRegion();
203      if (capturedR != originalR) {
204        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
205        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
206      }
207    }
208  }
209
210  ExplodedNodeSet Tmp;
211  StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
212  Bldr.generateNode(BE, Pred,
213                    State->BindExpr(BE, Pred->getLocationContext(), V),
214                    false, 0,
215                    ProgramPoint::PostLValueKind);
216
217  // FIXME: Move all post/pre visits to ::Visit().
218  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
219}
220
221void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
222                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
223
224  ExplodedNodeSet dstPreStmt;
225  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
226
227  if (CastE->getCastKind() == CK_LValueToRValue) {
228    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
229         I!=E; ++I) {
230      ExplodedNode *subExprNode = *I;
231      ProgramStateRef state = subExprNode->getState();
232      const LocationContext *LCtx = subExprNode->getLocationContext();
233      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
234    }
235    return;
236  }
237
238  // All other casts.
239  QualType T = CastE->getType();
240  QualType ExTy = Ex->getType();
241
242  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
243    T = ExCast->getTypeAsWritten();
244
245  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
246  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
247       I != E; ++I) {
248
249    Pred = *I;
250
251    switch (CastE->getCastKind()) {
252      case CK_LValueToRValue:
253        llvm_unreachable("LValueToRValue casts handled earlier.");
254      case CK_ToVoid:
255        continue;
256        // The analyzer doesn't do anything special with these casts,
257        // since it understands retain/release semantics already.
258      case CK_ARCProduceObject:
259      case CK_ARCConsumeObject:
260      case CK_ARCReclaimReturnedObject:
261      case CK_ARCExtendBlockObject: // Fall-through.
262      case CK_CopyAndAutoreleaseBlockObject:
263        // The analyser can ignore atomic casts for now, although some future
264        // checkers may want to make certain that you're not modifying the same
265        // value through atomic and nonatomic pointers.
266      case CK_AtomicToNonAtomic:
267      case CK_NonAtomicToAtomic:
268        // True no-ops.
269      case CK_NoOp:
270      case CK_FunctionToPointerDecay: {
271        // Copy the SVal of Ex to CastE.
272        ProgramStateRef state = Pred->getState();
273        const LocationContext *LCtx = Pred->getLocationContext();
274        SVal V = state->getSVal(Ex, LCtx);
275        state = state->BindExpr(CastE, LCtx, V);
276        Bldr.generateNode(CastE, Pred, state);
277        continue;
278      }
279      case CK_Dependent:
280      case CK_ArrayToPointerDecay:
281      case CK_BitCast:
282      case CK_LValueBitCast:
283      case CK_IntegralCast:
284      case CK_NullToPointer:
285      case CK_IntegralToPointer:
286      case CK_PointerToIntegral:
287      case CK_PointerToBoolean:
288      case CK_IntegralToBoolean:
289      case CK_IntegralToFloating:
290      case CK_FloatingToIntegral:
291      case CK_FloatingToBoolean:
292      case CK_FloatingCast:
293      case CK_FloatingRealToComplex:
294      case CK_FloatingComplexToReal:
295      case CK_FloatingComplexToBoolean:
296      case CK_FloatingComplexCast:
297      case CK_FloatingComplexToIntegralComplex:
298      case CK_IntegralRealToComplex:
299      case CK_IntegralComplexToReal:
300      case CK_IntegralComplexToBoolean:
301      case CK_IntegralComplexCast:
302      case CK_IntegralComplexToFloatingComplex:
303      case CK_CPointerToObjCPointerCast:
304      case CK_BlockPointerToObjCPointerCast:
305      case CK_AnyPointerToBlockPointerCast:
306      case CK_ObjCObjectLValueCast: {
307        // Delegate to SValBuilder to process.
308        ProgramStateRef state = Pred->getState();
309        const LocationContext *LCtx = Pred->getLocationContext();
310        SVal V = state->getSVal(Ex, LCtx);
311        V = svalBuilder.evalCast(V, T, ExTy);
312        state = state->BindExpr(CastE, LCtx, V);
313        Bldr.generateNode(CastE, Pred, state);
314        continue;
315      }
316      case CK_DerivedToBase:
317      case CK_UncheckedDerivedToBase: {
318        // For DerivedToBase cast, delegate to the store manager.
319        ProgramStateRef state = Pred->getState();
320        const LocationContext *LCtx = Pred->getLocationContext();
321        SVal val = state->getSVal(Ex, LCtx);
322        val = getStoreManager().evalDerivedToBase(val, T);
323        state = state->BindExpr(CastE, LCtx, val);
324        Bldr.generateNode(CastE, Pred, state);
325        continue;
326      }
327      // Handle C++ dyn_cast.
328      case CK_Dynamic: {
329        ProgramStateRef state = Pred->getState();
330        const LocationContext *LCtx = Pred->getLocationContext();
331        SVal val = state->getSVal(Ex, LCtx);
332
333        // Compute the type of the result.
334        QualType resultType = CastE->getType();
335        if (CastE->isGLValue())
336          resultType = getContext().getPointerType(resultType);
337
338        bool Failed = false;
339
340        // Check if the value being cast evaluates to 0.
341        if (val.isZeroConstant())
342          Failed = true;
343        // Else, evaluate the cast.
344        else
345          val = getStoreManager().evalDynamicCast(val, T, Failed);
346
347        if (Failed) {
348          if (T->isReferenceType()) {
349            // A bad_cast exception is thrown if input value is a reference.
350            // Currently, we model this, by generating a sink.
351            Bldr.generateNode(CastE, Pred, state, true);
352            continue;
353          } else {
354            // If the cast fails on a pointer, bind to 0.
355            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
356          }
357        } else {
358          // If we don't know if the cast succeeded, conjure a new symbol.
359          if (val.isUnknown()) {
360            DefinedOrUnknownSVal NewSym = svalBuilder.getConjuredSymbolVal(NULL,
361                                 CastE, LCtx, resultType,
362                                 currentBuilderContext->getCurrentBlockCount());
363            state = state->BindExpr(CastE, LCtx, NewSym);
364          } else
365            // Else, bind to the derived region value.
366            state = state->BindExpr(CastE, LCtx, val);
367        }
368        Bldr.generateNode(CastE, Pred, state);
369        continue;
370      }
371      // Various C++ casts that are not handled yet.
372      case CK_ToUnion:
373      case CK_BaseToDerived:
374      case CK_NullToMemberPointer:
375      case CK_BaseToDerivedMemberPointer:
376      case CK_DerivedToBaseMemberPointer:
377      case CK_ReinterpretMemberPointer:
378      case CK_UserDefinedConversion:
379      case CK_ConstructorConversion:
380      case CK_VectorSplat:
381      case CK_MemberPointerToBoolean: {
382        // Recover some path-sensitivty by conjuring a new value.
383        QualType resultType = CastE->getType();
384        if (CastE->isGLValue())
385          resultType = getContext().getPointerType(resultType);
386        const LocationContext *LCtx = Pred->getLocationContext();
387        SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, LCtx,
388                    resultType, currentBuilderContext->getCurrentBlockCount());
389        ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
390                                                               result);
391        Bldr.generateNode(CastE, Pred, state);
392        continue;
393      }
394    }
395  }
396}
397
398void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
399                                          ExplodedNode *Pred,
400                                          ExplodedNodeSet &Dst) {
401  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
402
403  const InitListExpr *ILE
404    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
405
406  ProgramStateRef state = Pred->getState();
407  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
408  const LocationContext *LC = Pred->getLocationContext();
409  state = state->bindCompoundLiteral(CL, LC, ILV);
410
411  if (CL->isGLValue())
412    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
413  else
414    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
415}
416
417void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
418                               ExplodedNodeSet &Dst) {
419
420  // FIXME: static variables may have an initializer, but the second
421  //  time a function is called those values may not be current.
422  //  This may need to be reflected in the CFG.
423
424  // Assumption: The CFG has one DeclStmt per Decl.
425  const Decl *D = *DS->decl_begin();
426
427  if (!D || !isa<VarDecl>(D)) {
428    //TODO:AZ: remove explicit insertion after refactoring is done.
429    Dst.insert(Pred);
430    return;
431  }
432
433  // FIXME: all pre/post visits should eventually be handled by ::Visit().
434  ExplodedNodeSet dstPreVisit;
435  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
436
437  StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
438  const VarDecl *VD = dyn_cast<VarDecl>(D);
439  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
440       I!=E; ++I) {
441    ExplodedNode *N = *I;
442    ProgramStateRef state = N->getState();
443
444    // Decls without InitExpr are not initialized explicitly.
445    const LocationContext *LC = N->getLocationContext();
446
447    if (const Expr *InitEx = VD->getInit()) {
448      SVal InitVal = state->getSVal(InitEx, Pred->getLocationContext());
449
450      // We bound the temp obj region to the CXXConstructExpr. Now recover
451      // the lazy compound value when the variable is not a reference.
452      if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
453          !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
454        InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
455        assert(isa<nonloc::LazyCompoundVal>(InitVal));
456      }
457
458      // Recover some path-sensitivity if a scalar value evaluated to
459      // UnknownVal.
460      if (InitVal.isUnknown()) {
461	QualType Ty = InitEx->getType();
462	if (InitEx->isGLValue()) {
463	  Ty = getContext().getPointerType(Ty);
464	}
465
466        InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, LC, Ty,
467                                 currentBuilderContext->getCurrentBlockCount());
468      }
469      B.takeNodes(N);
470      ExplodedNodeSet Dst2;
471      evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
472      B.addNodes(Dst2);
473    }
474    else {
475      B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
476    }
477  }
478}
479
480void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
481                                  ExplodedNodeSet &Dst) {
482  assert(B->getOpcode() == BO_LAnd ||
483         B->getOpcode() == BO_LOr);
484
485  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
486  ProgramStateRef state = Pred->getState();
487  const LocationContext *LCtx = Pred->getLocationContext();
488  SVal X = state->getSVal(B, LCtx);
489  assert(X.isUndef());
490
491  const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
492  assert(Ex);
493
494  if (Ex == B->getRHS()) {
495    X = state->getSVal(Ex, LCtx);
496
497    // Handle undefined values.
498    if (X.isUndef()) {
499      Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
500      return;
501    }
502
503    DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
504
505    // We took the RHS.  Because the value of the '&&' or '||' expression must
506    // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
507    // or 1.  Alternatively, we could take a lazy approach, and calculate this
508    // value later when necessary.  We don't have the machinery in place for
509    // this right now, and since most logical expressions are used for branches,
510    // the payoff is not likely to be large.  Instead, we do eager evaluation.
511    if (ProgramStateRef newState = state->assume(XD, true))
512      Bldr.generateNode(B, Pred,
513               newState->BindExpr(B, LCtx,
514                                  svalBuilder.makeIntVal(1U, B->getType())));
515
516    if (ProgramStateRef newState = state->assume(XD, false))
517      Bldr.generateNode(B, Pred,
518               newState->BindExpr(B, LCtx,
519                                  svalBuilder.makeIntVal(0U, B->getType())));
520  }
521  else {
522    // We took the LHS expression.  Depending on whether we are '&&' or
523    // '||' we know what the value of the expression is via properties of
524    // the short-circuiting.
525    X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
526                               B->getType());
527    Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
528  }
529}
530
531void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
532                                   ExplodedNode *Pred,
533                                   ExplodedNodeSet &Dst) {
534  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
535
536  ProgramStateRef state = Pred->getState();
537  const LocationContext *LCtx = Pred->getLocationContext();
538  QualType T = getContext().getCanonicalType(IE->getType());
539  unsigned NumInitElements = IE->getNumInits();
540
541  if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
542    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
543
544    // Handle base case where the initializer has no elements.
545    // e.g: static int* myArray[] = {};
546    if (NumInitElements == 0) {
547      SVal V = svalBuilder.makeCompoundVal(T, vals);
548      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
549      return;
550    }
551
552    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
553         ei = IE->rend(); it != ei; ++it) {
554      vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
555                                     vals);
556    }
557
558    B.generateNode(IE, Pred,
559                   state->BindExpr(IE, LCtx,
560                                   svalBuilder.makeCompoundVal(T, vals)));
561    return;
562  }
563
564  if (Loc::isLocType(T) || T->isIntegerType()) {
565    assert(IE->getNumInits() == 1);
566    const Expr *initEx = IE->getInit(0);
567    B.generateNode(IE, Pred, state->BindExpr(IE, LCtx,
568                                             state->getSVal(initEx, LCtx)));
569    return;
570  }
571
572  assert(IE->getNumInits() == 1);
573  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, UnknownVal()));
574  return;
575}
576
577void ExprEngine::VisitGuardedExpr(const Expr *Ex,
578                                  const Expr *L,
579                                  const Expr *R,
580                                  ExplodedNode *Pred,
581                                  ExplodedNodeSet &Dst) {
582  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
583
584  ProgramStateRef state = Pred->getState();
585  const LocationContext *LCtx = Pred->getLocationContext();
586  SVal X = state->getSVal(Ex, LCtx);
587  assert (X.isUndef());
588  const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
589  assert(SE);
590  X = state->getSVal(SE, LCtx);
591
592  // Make sure that we invalidate the previous binding.
593  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, X, true));
594}
595
596void ExprEngine::
597VisitOffsetOfExpr(const OffsetOfExpr *OOE,
598                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
599  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
600  APSInt IV;
601  if (OOE->EvaluateAsInt(IV, getContext())) {
602    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
603    assert(OOE->getType()->isIntegerType());
604    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
605    SVal X = svalBuilder.makeIntVal(IV);
606    B.generateNode(OOE, Pred,
607                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
608                                              X));
609  }
610  // FIXME: Handle the case where __builtin_offsetof is not a constant.
611}
612
613
614void ExprEngine::
615VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
616                              ExplodedNode *Pred,
617                              ExplodedNodeSet &Dst) {
618  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
619
620  QualType T = Ex->getTypeOfArgument();
621
622  if (Ex->getKind() == UETT_SizeOf) {
623    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
624      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
625
626      // FIXME: Add support for VLA type arguments and VLA expressions.
627      // When that happens, we should probably refactor VLASizeChecker's code.
628      return;
629    }
630    else if (T->getAs<ObjCObjectType>()) {
631      // Some code tries to take the sizeof an ObjCObjectType, relying that
632      // the compiler has laid out its representation.  Just report Unknown
633      // for these.
634      return;
635    }
636  }
637
638  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
639  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
640
641  ProgramStateRef state = Pred->getState();
642  state = state->BindExpr(Ex, Pred->getLocationContext(),
643                          svalBuilder.makeIntVal(amt.getQuantity(),
644                                                     Ex->getType()));
645  Bldr.generateNode(Ex, Pred, state);
646}
647
648void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
649                                    ExplodedNode *Pred,
650                                    ExplodedNodeSet &Dst) {
651  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
652  switch (U->getOpcode()) {
653    default: {
654      Bldr.takeNodes(Pred);
655      ExplodedNodeSet Tmp;
656      VisitIncrementDecrementOperator(U, Pred, Tmp);
657      Bldr.addNodes(Tmp);
658    }
659      break;
660    case UO_Real: {
661      const Expr *Ex = U->getSubExpr()->IgnoreParens();
662
663      // FIXME: We don't have complex SValues yet.
664      if (Ex->getType()->isAnyComplexType()) {
665        // Just report "Unknown."
666        break;
667      }
668
669      // For all other types, UO_Real is an identity operation.
670      assert (U->getType() == Ex->getType());
671      ProgramStateRef state = Pred->getState();
672      const LocationContext *LCtx = Pred->getLocationContext();
673      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
674                                                 state->getSVal(Ex, LCtx)));
675      break;
676    }
677
678    case UO_Imag: {
679      const Expr *Ex = U->getSubExpr()->IgnoreParens();
680      // FIXME: We don't have complex SValues yet.
681      if (Ex->getType()->isAnyComplexType()) {
682        // Just report "Unknown."
683        break;
684      }
685      // For all other types, UO_Imag returns 0.
686      ProgramStateRef state = Pred->getState();
687      const LocationContext *LCtx = Pred->getLocationContext();
688      SVal X = svalBuilder.makeZeroVal(Ex->getType());
689      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
690      break;
691    }
692
693    case UO_Plus:
694      assert(!U->isGLValue());
695      // FALL-THROUGH.
696    case UO_Deref:
697    case UO_AddrOf:
698    case UO_Extension: {
699      // FIXME: We can probably just have some magic in Environment::getSVal()
700      // that propagates values, instead of creating a new node here.
701      //
702      // Unary "+" is a no-op, similar to a parentheses.  We still have places
703      // where it may be a block-level expression, so we need to
704      // generate an extra node that just propagates the value of the
705      // subexpression.
706      const Expr *Ex = U->getSubExpr()->IgnoreParens();
707      ProgramStateRef state = Pred->getState();
708      const LocationContext *LCtx = Pred->getLocationContext();
709      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
710                                                 state->getSVal(Ex, LCtx)));
711      break;
712    }
713
714    case UO_LNot:
715    case UO_Minus:
716    case UO_Not: {
717      assert (!U->isGLValue());
718      const Expr *Ex = U->getSubExpr()->IgnoreParens();
719      ProgramStateRef state = Pred->getState();
720      const LocationContext *LCtx = Pred->getLocationContext();
721
722      // Get the value of the subexpression.
723      SVal V = state->getSVal(Ex, LCtx);
724
725      if (V.isUnknownOrUndef()) {
726        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
727        break;
728      }
729
730      switch (U->getOpcode()) {
731        default:
732          llvm_unreachable("Invalid Opcode.");
733        case UO_Not:
734          // FIXME: Do we need to handle promotions?
735          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
736          break;
737        case UO_Minus:
738          // FIXME: Do we need to handle promotions?
739          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
740          break;
741        case UO_LNot:
742          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
743          //
744          //  Note: technically we do "E == 0", but this is the same in the
745          //    transfer functions as "0 == E".
746          SVal Result;
747          if (isa<Loc>(V)) {
748            Loc X = svalBuilder.makeNull();
749            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
750                               U->getType());
751          }
752          else {
753            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
754            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
755                               U->getType());
756          }
757
758          state = state->BindExpr(U, LCtx, Result);
759          break;
760      }
761      Bldr.generateNode(U, Pred, state);
762      break;
763    }
764  }
765
766}
767
768void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
769                                                 ExplodedNode *Pred,
770                                                 ExplodedNodeSet &Dst) {
771  // Handle ++ and -- (both pre- and post-increment).
772  assert (U->isIncrementDecrementOp());
773  const Expr *Ex = U->getSubExpr()->IgnoreParens();
774
775  const LocationContext *LCtx = Pred->getLocationContext();
776  ProgramStateRef state = Pred->getState();
777  SVal loc = state->getSVal(Ex, LCtx);
778
779  // Perform a load.
780  ExplodedNodeSet Tmp;
781  evalLoad(Tmp, U, Ex, Pred, state, loc);
782
783  ExplodedNodeSet Dst2;
784  StmtNodeBuilder Bldr(Tmp, Dst2, *currentBuilderContext);
785  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
786
787    state = (*I)->getState();
788    assert(LCtx == (*I)->getLocationContext());
789    SVal V2_untested = state->getSVal(Ex, LCtx);
790
791    // Propagate unknown and undefined values.
792    if (V2_untested.isUnknownOrUndef()) {
793      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
794      continue;
795    }
796    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
797
798    // Handle all other values.
799    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
800
801    // If the UnaryOperator has non-location type, use its type to create the
802    // constant value. If the UnaryOperator has location type, create the
803    // constant with int type and pointer width.
804    SVal RHS;
805
806    if (U->getType()->isAnyPointerType())
807      RHS = svalBuilder.makeArrayIndex(1);
808    else
809      RHS = svalBuilder.makeIntVal(1, U->getType());
810
811    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
812
813    // Conjure a new symbol if necessary to recover precision.
814    if (Result.isUnknown()){
815      DefinedOrUnknownSVal SymVal =
816	svalBuilder.getConjuredSymbolVal(NULL, Ex, LCtx,
817                               currentBuilderContext->getCurrentBlockCount());
818      Result = SymVal;
819
820      // If the value is a location, ++/-- should always preserve
821      // non-nullness.  Check if the original value was non-null, and if so
822      // propagate that constraint.
823      if (Loc::isLocType(U->getType())) {
824        DefinedOrUnknownSVal Constraint =
825        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
826
827        if (!state->assume(Constraint, true)) {
828          // It isn't feasible for the original value to be null.
829          // Propagate this constraint.
830          Constraint = svalBuilder.evalEQ(state, SymVal,
831                                       svalBuilder.makeZeroVal(U->getType()));
832
833
834          state = state->assume(Constraint, false);
835          assert(state);
836        }
837      }
838    }
839
840    // Since the lvalue-to-rvalue conversion is explicit in the AST,
841    // we bind an l-value if the operator is prefix and an lvalue (in C++).
842    if (U->isGLValue())
843      state = state->BindExpr(U, LCtx, loc);
844    else
845      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
846
847    // Perform the store.
848    Bldr.takeNodes(*I);
849    ExplodedNodeSet Dst3;
850    evalStore(Dst3, U, U, *I, state, loc, Result);
851    Bldr.addNodes(Dst3);
852  }
853  Dst.insert(Dst2);
854}
855