ExprEngineC.cpp revision 651f13cea278ec967336033dd032faef0e9fc2ec
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (LeftV.getAs<Loc>() &&
71            RHS->getType()->isIntegralOrEnumerationType() &&
72            RightV.isUnknown()) {
73          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
74                                                Count);
75        }
76        if (RightV.getAs<Loc>() &&
77            LHS->getType()->isIntegralOrEnumerationType() &&
78            LeftV.isUnknown()) {
79          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
80                                               Count);
81        }
82      }
83
84      // Process non-assignments except commas or short-circuited
85      // logical expressions (LAnd and LOr).
86      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
87      if (Result.isUnknown()) {
88        Bldr.generateNode(B, *it, state);
89        continue;
90      }
91
92      state = state->BindExpr(B, LCtx, Result);
93      Bldr.generateNode(B, *it, state);
94      continue;
95    }
96
97    assert (B->isCompoundAssignmentOp());
98
99    switch (Op) {
100      default:
101        llvm_unreachable("Invalid opcode for compound assignment.");
102      case BO_MulAssign: Op = BO_Mul; break;
103      case BO_DivAssign: Op = BO_Div; break;
104      case BO_RemAssign: Op = BO_Rem; break;
105      case BO_AddAssign: Op = BO_Add; break;
106      case BO_SubAssign: Op = BO_Sub; break;
107      case BO_ShlAssign: Op = BO_Shl; break;
108      case BO_ShrAssign: Op = BO_Shr; break;
109      case BO_AndAssign: Op = BO_And; break;
110      case BO_XorAssign: Op = BO_Xor; break;
111      case BO_OrAssign:  Op = BO_Or;  break;
112    }
113
114    // Perform a load (the LHS).  This performs the checks for
115    // null dereferences, and so on.
116    ExplodedNodeSet Tmp;
117    SVal location = LeftV;
118    evalLoad(Tmp, B, LHS, *it, state, location);
119
120    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
121         ++I) {
122
123      state = (*I)->getState();
124      const LocationContext *LCtx = (*I)->getLocationContext();
125      SVal V = state->getSVal(LHS, LCtx);
126
127      // Get the computation type.
128      QualType CTy =
129        cast<CompoundAssignOperator>(B)->getComputationResultType();
130      CTy = getContext().getCanonicalType(CTy);
131
132      QualType CLHSTy =
133        cast<CompoundAssignOperator>(B)->getComputationLHSType();
134      CLHSTy = getContext().getCanonicalType(CLHSTy);
135
136      QualType LTy = getContext().getCanonicalType(LHS->getType());
137
138      // Promote LHS.
139      V = svalBuilder.evalCast(V, CLHSTy, LTy);
140
141      // Compute the result of the operation.
142      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
143                                         B->getType(), CTy);
144
145      // EXPERIMENTAL: "Conjured" symbols.
146      // FIXME: Handle structs.
147
148      SVal LHSVal;
149
150      if (Result.isUnknown()) {
151        // The symbolic value is actually for the type of the left-hand side
152        // expression, not the computation type, as this is the value the
153        // LValue on the LHS will bind to.
154        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
155                                              currBldrCtx->blockCount());
156        // However, we need to convert the symbol to the computation type.
157        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
158      }
159      else {
160        // The left-hand side may bind to a different value then the
161        // computation type.
162        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
163      }
164
165      // In C++, assignment and compound assignment operators return an
166      // lvalue.
167      if (B->isGLValue())
168        state = state->BindExpr(B, LCtx, location);
169      else
170        state = state->BindExpr(B, LCtx, Result);
171
172      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
173    }
174  }
175
176  // FIXME: postvisits eventually go in ::Visit()
177  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
178}
179
180void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
181                                ExplodedNodeSet &Dst) {
182
183  CanQualType T = getContext().getCanonicalType(BE->getType());
184
185  // Get the value of the block itself.
186  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
187                                       Pred->getLocationContext(),
188                                       currBldrCtx->blockCount());
189
190  ProgramStateRef State = Pred->getState();
191
192  // If we created a new MemRegion for the block, we should explicitly bind
193  // the captured variables.
194  if (const BlockDataRegion *BDR =
195      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
196
197    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
198                                              E = BDR->referenced_vars_end();
199
200    for (; I != E; ++I) {
201      const MemRegion *capturedR = I.getCapturedRegion();
202      const MemRegion *originalR = I.getOriginalRegion();
203      if (capturedR != originalR) {
204        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
205        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
206      }
207    }
208  }
209
210  ExplodedNodeSet Tmp;
211  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
212  Bldr.generateNode(BE, Pred,
213                    State->BindExpr(BE, Pred->getLocationContext(), V),
214                    0, ProgramPoint::PostLValueKind);
215
216  // FIXME: Move all post/pre visits to ::Visit().
217  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
218}
219
220void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
221                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
222
223  ExplodedNodeSet dstPreStmt;
224  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
225
226  if (CastE->getCastKind() == CK_LValueToRValue) {
227    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
228         I!=E; ++I) {
229      ExplodedNode *subExprNode = *I;
230      ProgramStateRef state = subExprNode->getState();
231      const LocationContext *LCtx = subExprNode->getLocationContext();
232      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
233    }
234    return;
235  }
236
237  // All other casts.
238  QualType T = CastE->getType();
239  QualType ExTy = Ex->getType();
240
241  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
242    T = ExCast->getTypeAsWritten();
243
244  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
245  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
246       I != E; ++I) {
247
248    Pred = *I;
249    ProgramStateRef state = Pred->getState();
250    const LocationContext *LCtx = Pred->getLocationContext();
251
252    switch (CastE->getCastKind()) {
253      case CK_LValueToRValue:
254        llvm_unreachable("LValueToRValue casts handled earlier.");
255      case CK_ToVoid:
256        continue;
257        // The analyzer doesn't do anything special with these casts,
258        // since it understands retain/release semantics already.
259      case CK_ARCProduceObject:
260      case CK_ARCConsumeObject:
261      case CK_ARCReclaimReturnedObject:
262      case CK_ARCExtendBlockObject: // Fall-through.
263      case CK_CopyAndAutoreleaseBlockObject:
264        // The analyser can ignore atomic casts for now, although some future
265        // checkers may want to make certain that you're not modifying the same
266        // value through atomic and nonatomic pointers.
267      case CK_AtomicToNonAtomic:
268      case CK_NonAtomicToAtomic:
269        // True no-ops.
270      case CK_NoOp:
271      case CK_ConstructorConversion:
272      case CK_UserDefinedConversion:
273      case CK_FunctionToPointerDecay:
274      case CK_BuiltinFnToFnPtr: {
275        // Copy the SVal of Ex to CastE.
276        ProgramStateRef state = Pred->getState();
277        const LocationContext *LCtx = Pred->getLocationContext();
278        SVal V = state->getSVal(Ex, LCtx);
279        state = state->BindExpr(CastE, LCtx, V);
280        Bldr.generateNode(CastE, Pred, state);
281        continue;
282      }
283      case CK_MemberPointerToBoolean:
284        // FIXME: For now, member pointers are represented by void *.
285        // FALLTHROUGH
286      case CK_Dependent:
287      case CK_ArrayToPointerDecay:
288      case CK_BitCast:
289      case CK_AddressSpaceConversion:
290      case CK_IntegralCast:
291      case CK_NullToPointer:
292      case CK_IntegralToPointer:
293      case CK_PointerToIntegral:
294      case CK_PointerToBoolean:
295      case CK_IntegralToBoolean:
296      case CK_IntegralToFloating:
297      case CK_FloatingToIntegral:
298      case CK_FloatingToBoolean:
299      case CK_FloatingCast:
300      case CK_FloatingRealToComplex:
301      case CK_FloatingComplexToReal:
302      case CK_FloatingComplexToBoolean:
303      case CK_FloatingComplexCast:
304      case CK_FloatingComplexToIntegralComplex:
305      case CK_IntegralRealToComplex:
306      case CK_IntegralComplexToReal:
307      case CK_IntegralComplexToBoolean:
308      case CK_IntegralComplexCast:
309      case CK_IntegralComplexToFloatingComplex:
310      case CK_CPointerToObjCPointerCast:
311      case CK_BlockPointerToObjCPointerCast:
312      case CK_AnyPointerToBlockPointerCast:
313      case CK_ObjCObjectLValueCast:
314      case CK_ZeroToOCLEvent:
315      case CK_LValueBitCast: {
316        // Delegate to SValBuilder to process.
317        SVal V = state->getSVal(Ex, LCtx);
318        V = svalBuilder.evalCast(V, T, ExTy);
319        state = state->BindExpr(CastE, LCtx, V);
320        Bldr.generateNode(CastE, Pred, state);
321        continue;
322      }
323      case CK_DerivedToBase:
324      case CK_UncheckedDerivedToBase: {
325        // For DerivedToBase cast, delegate to the store manager.
326        SVal val = state->getSVal(Ex, LCtx);
327        val = getStoreManager().evalDerivedToBase(val, CastE);
328        state = state->BindExpr(CastE, LCtx, val);
329        Bldr.generateNode(CastE, Pred, state);
330        continue;
331      }
332      // Handle C++ dyn_cast.
333      case CK_Dynamic: {
334        SVal val = state->getSVal(Ex, LCtx);
335
336        // Compute the type of the result.
337        QualType resultType = CastE->getType();
338        if (CastE->isGLValue())
339          resultType = getContext().getPointerType(resultType);
340
341        bool Failed = false;
342
343        // Check if the value being cast evaluates to 0.
344        if (val.isZeroConstant())
345          Failed = true;
346        // Else, evaluate the cast.
347        else
348          val = getStoreManager().evalDynamicCast(val, T, Failed);
349
350        if (Failed) {
351          if (T->isReferenceType()) {
352            // A bad_cast exception is thrown if input value is a reference.
353            // Currently, we model this, by generating a sink.
354            Bldr.generateSink(CastE, Pred, state);
355            continue;
356          } else {
357            // If the cast fails on a pointer, bind to 0.
358            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
359          }
360        } else {
361          // If we don't know if the cast succeeded, conjure a new symbol.
362          if (val.isUnknown()) {
363            DefinedOrUnknownSVal NewSym =
364              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
365                                           currBldrCtx->blockCount());
366            state = state->BindExpr(CastE, LCtx, NewSym);
367          } else
368            // Else, bind to the derived region value.
369            state = state->BindExpr(CastE, LCtx, val);
370        }
371        Bldr.generateNode(CastE, Pred, state);
372        continue;
373      }
374      case CK_NullToMemberPointer: {
375        // FIXME: For now, member pointers are represented by void *.
376        SVal V = svalBuilder.makeNull();
377        state = state->BindExpr(CastE, LCtx, V);
378        Bldr.generateNode(CastE, Pred, state);
379        continue;
380      }
381      // Various C++ casts that are not handled yet.
382      case CK_ToUnion:
383      case CK_BaseToDerived:
384      case CK_BaseToDerivedMemberPointer:
385      case CK_DerivedToBaseMemberPointer:
386      case CK_ReinterpretMemberPointer:
387      case CK_VectorSplat: {
388        // Recover some path-sensitivty by conjuring a new value.
389        QualType resultType = CastE->getType();
390        if (CastE->isGLValue())
391          resultType = getContext().getPointerType(resultType);
392        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
393                                                   resultType,
394                                                   currBldrCtx->blockCount());
395        state = state->BindExpr(CastE, LCtx, result);
396        Bldr.generateNode(CastE, Pred, state);
397        continue;
398      }
399    }
400  }
401}
402
403void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
404                                          ExplodedNode *Pred,
405                                          ExplodedNodeSet &Dst) {
406  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
407
408  ProgramStateRef State = Pred->getState();
409  const LocationContext *LCtx = Pred->getLocationContext();
410
411  const Expr *Init = CL->getInitializer();
412  SVal V = State->getSVal(CL->getInitializer(), LCtx);
413
414  if (isa<CXXConstructExpr>(Init)) {
415    // No work needed. Just pass the value up to this expression.
416  } else {
417    assert(isa<InitListExpr>(Init));
418    Loc CLLoc = State->getLValue(CL, LCtx);
419    State = State->bindLoc(CLLoc, V);
420
421    // Compound literal expressions are a GNU extension in C++.
422    // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
423    // and like temporary objects created by the functional notation T()
424    // CLs are destroyed at the end of the containing full-expression.
425    // HOWEVER, an rvalue of array type is not something the analyzer can
426    // reason about, since we expect all regions to be wrapped in Locs.
427    // So we treat array CLs as lvalues as well, knowing that they will decay
428    // to pointers as soon as they are used.
429    if (CL->isGLValue() || CL->getType()->isArrayType())
430      V = CLLoc;
431  }
432
433  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
434}
435
436void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
437                               ExplodedNodeSet &Dst) {
438  // Assumption: The CFG has one DeclStmt per Decl.
439  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
440
441  if (!VD) {
442    //TODO:AZ: remove explicit insertion after refactoring is done.
443    Dst.insert(Pred);
444    return;
445  }
446
447  // FIXME: all pre/post visits should eventually be handled by ::Visit().
448  ExplodedNodeSet dstPreVisit;
449  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
450
451  ExplodedNodeSet dstEvaluated;
452  StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
453  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
454       I!=E; ++I) {
455    ExplodedNode *N = *I;
456    ProgramStateRef state = N->getState();
457    const LocationContext *LC = N->getLocationContext();
458
459    // Decls without InitExpr are not initialized explicitly.
460    if (const Expr *InitEx = VD->getInit()) {
461
462      // Note in the state that the initialization has occurred.
463      ExplodedNode *UpdatedN = N;
464      SVal InitVal = state->getSVal(InitEx, LC);
465
466      if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
467        // We constructed the object directly in the variable.
468        // No need to bind anything.
469        B.generateNode(DS, UpdatedN, state);
470      } else {
471        // We bound the temp obj region to the CXXConstructExpr. Now recover
472        // the lazy compound value when the variable is not a reference.
473        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
474            !VD->getType()->isReferenceType()) {
475          if (Optional<loc::MemRegionVal> M =
476                  InitVal.getAs<loc::MemRegionVal>()) {
477            InitVal = state->getSVal(M->getRegion());
478            assert(InitVal.getAs<nonloc::LazyCompoundVal>());
479          }
480        }
481
482        // Recover some path-sensitivity if a scalar value evaluated to
483        // UnknownVal.
484        if (InitVal.isUnknown()) {
485          QualType Ty = InitEx->getType();
486          if (InitEx->isGLValue()) {
487            Ty = getContext().getPointerType(Ty);
488          }
489
490          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
491                                                 currBldrCtx->blockCount());
492        }
493
494
495        B.takeNodes(UpdatedN);
496        ExplodedNodeSet Dst2;
497        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
498        B.addNodes(Dst2);
499      }
500    }
501    else {
502      B.generateNode(DS, N, state);
503    }
504  }
505
506  getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
507}
508
509void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
510                                  ExplodedNodeSet &Dst) {
511  assert(B->getOpcode() == BO_LAnd ||
512         B->getOpcode() == BO_LOr);
513
514  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
515  ProgramStateRef state = Pred->getState();
516
517  ExplodedNode *N = Pred;
518  while (!N->getLocation().getAs<BlockEntrance>()) {
519    ProgramPoint P = N->getLocation();
520    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
521    (void) P;
522    assert(N->pred_size() == 1);
523    N = *N->pred_begin();
524  }
525  assert(N->pred_size() == 1);
526  N = *N->pred_begin();
527  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
528  SVal X;
529
530  // Determine the value of the expression by introspecting how we
531  // got this location in the CFG.  This requires looking at the previous
532  // block we were in and what kind of control-flow transfer was involved.
533  const CFGBlock *SrcBlock = BE.getSrc();
534  // The only terminator (if there is one) that makes sense is a logical op.
535  CFGTerminator T = SrcBlock->getTerminator();
536  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
537    (void) Term;
538    assert(Term->isLogicalOp());
539    assert(SrcBlock->succ_size() == 2);
540    // Did we take the true or false branch?
541    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
542    X = svalBuilder.makeIntVal(constant, B->getType());
543  }
544  else {
545    // If there is no terminator, by construction the last statement
546    // in SrcBlock is the value of the enclosing expression.
547    // However, we still need to constrain that value to be 0 or 1.
548    assert(!SrcBlock->empty());
549    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
550    const Expr *RHS = cast<Expr>(Elem.getStmt());
551    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
552
553    if (RHSVal.isUndef()) {
554      X = RHSVal;
555    } else {
556      DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
557      ProgramStateRef StTrue, StFalse;
558      std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
559      if (StTrue) {
560        if (StFalse) {
561          // We can't constrain the value to 0 or 1.
562          // The best we can do is a cast.
563          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
564        } else {
565          // The value is known to be true.
566          X = getSValBuilder().makeIntVal(1, B->getType());
567        }
568      } else {
569        // The value is known to be false.
570        assert(StFalse && "Infeasible path!");
571        X = getSValBuilder().makeIntVal(0, B->getType());
572      }
573    }
574  }
575  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
576}
577
578void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
579                                   ExplodedNode *Pred,
580                                   ExplodedNodeSet &Dst) {
581  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
582
583  ProgramStateRef state = Pred->getState();
584  const LocationContext *LCtx = Pred->getLocationContext();
585  QualType T = getContext().getCanonicalType(IE->getType());
586  unsigned NumInitElements = IE->getNumInits();
587
588  if (!IE->isGLValue() &&
589      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
590       T->isAnyComplexType())) {
591    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
592
593    // Handle base case where the initializer has no elements.
594    // e.g: static int* myArray[] = {};
595    if (NumInitElements == 0) {
596      SVal V = svalBuilder.makeCompoundVal(T, vals);
597      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
598      return;
599    }
600
601    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
602         ei = IE->rend(); it != ei; ++it) {
603      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
604      vals = getBasicVals().consVals(V, vals);
605    }
606
607    B.generateNode(IE, Pred,
608                   state->BindExpr(IE, LCtx,
609                                   svalBuilder.makeCompoundVal(T, vals)));
610    return;
611  }
612
613  // Handle scalars: int{5} and int{} and GLvalues.
614  // Note, if the InitListExpr is a GLvalue, it means that there is an address
615  // representing it, so it must have a single init element.
616  assert(NumInitElements <= 1);
617
618  SVal V;
619  if (NumInitElements == 0)
620    V = getSValBuilder().makeZeroVal(T);
621  else
622    V = state->getSVal(IE->getInit(0), LCtx);
623
624  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
625}
626
627void ExprEngine::VisitGuardedExpr(const Expr *Ex,
628                                  const Expr *L,
629                                  const Expr *R,
630                                  ExplodedNode *Pred,
631                                  ExplodedNodeSet &Dst) {
632  assert(L && R);
633
634  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
635  ProgramStateRef state = Pred->getState();
636  const LocationContext *LCtx = Pred->getLocationContext();
637  const CFGBlock *SrcBlock = 0;
638
639  // Find the predecessor block.
640  ProgramStateRef SrcState = state;
641  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
642    ProgramPoint PP = N->getLocation();
643    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
644      assert(N->pred_size() == 1);
645      continue;
646    }
647    SrcBlock = PP.castAs<BlockEdge>().getSrc();
648    SrcState = N->getState();
649    break;
650  }
651
652  assert(SrcBlock && "missing function entry");
653
654  // Find the last expression in the predecessor block.  That is the
655  // expression that is used for the value of the ternary expression.
656  bool hasValue = false;
657  SVal V;
658
659  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
660                                        E = SrcBlock->rend(); I != E; ++I) {
661    CFGElement CE = *I;
662    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
663      const Expr *ValEx = cast<Expr>(CS->getStmt());
664      ValEx = ValEx->IgnoreParens();
665
666      // For GNU extension '?:' operator, the left hand side will be an
667      // OpaqueValueExpr, so get the underlying expression.
668      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
669        L = OpaqueEx->getSourceExpr();
670
671      // If the last expression in the predecessor block matches true or false
672      // subexpression, get its the value.
673      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
674        hasValue = true;
675        V = SrcState->getSVal(ValEx, LCtx);
676      }
677      break;
678    }
679  }
680
681  if (!hasValue)
682    V = svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
683
684  // Generate a new node with the binding from the appropriate path.
685  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
686}
687
688void ExprEngine::
689VisitOffsetOfExpr(const OffsetOfExpr *OOE,
690                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
691  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
692  APSInt IV;
693  if (OOE->EvaluateAsInt(IV, getContext())) {
694    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
695    assert(OOE->getType()->isBuiltinType());
696    assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
697    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
698    SVal X = svalBuilder.makeIntVal(IV);
699    B.generateNode(OOE, Pred,
700                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
701                                              X));
702  }
703  // FIXME: Handle the case where __builtin_offsetof is not a constant.
704}
705
706
707void ExprEngine::
708VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
709                              ExplodedNode *Pred,
710                              ExplodedNodeSet &Dst) {
711  // FIXME: Prechecks eventually go in ::Visit().
712  ExplodedNodeSet CheckedSet;
713  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
714
715  ExplodedNodeSet EvalSet;
716  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
717
718  QualType T = Ex->getTypeOfArgument();
719
720  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
721       I != E; ++I) {
722    if (Ex->getKind() == UETT_SizeOf) {
723      if (!T->isIncompleteType() && !T->isConstantSizeType()) {
724        assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
725
726        // FIXME: Add support for VLA type arguments and VLA expressions.
727        // When that happens, we should probably refactor VLASizeChecker's code.
728        continue;
729      } else if (T->getAs<ObjCObjectType>()) {
730        // Some code tries to take the sizeof an ObjCObjectType, relying that
731        // the compiler has laid out its representation.  Just report Unknown
732        // for these.
733        continue;
734      }
735    }
736
737    APSInt Value = Ex->EvaluateKnownConstInt(getContext());
738    CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
739
740    ProgramStateRef state = (*I)->getState();
741    state = state->BindExpr(Ex, (*I)->getLocationContext(),
742                            svalBuilder.makeIntVal(amt.getQuantity(),
743                                                   Ex->getType()));
744    Bldr.generateNode(Ex, *I, state);
745  }
746
747  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
748}
749
750void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
751                                    ExplodedNode *Pred,
752                                    ExplodedNodeSet &Dst) {
753  // FIXME: Prechecks eventually go in ::Visit().
754  ExplodedNodeSet CheckedSet;
755  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
756
757  ExplodedNodeSet EvalSet;
758  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
759
760  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
761       I != E; ++I) {
762    switch (U->getOpcode()) {
763    default: {
764      Bldr.takeNodes(*I);
765      ExplodedNodeSet Tmp;
766      VisitIncrementDecrementOperator(U, *I, Tmp);
767      Bldr.addNodes(Tmp);
768      break;
769    }
770    case UO_Real: {
771      const Expr *Ex = U->getSubExpr()->IgnoreParens();
772
773      // FIXME: We don't have complex SValues yet.
774      if (Ex->getType()->isAnyComplexType()) {
775        // Just report "Unknown."
776        break;
777      }
778
779      // For all other types, UO_Real is an identity operation.
780      assert (U->getType() == Ex->getType());
781      ProgramStateRef state = (*I)->getState();
782      const LocationContext *LCtx = (*I)->getLocationContext();
783      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
784                                               state->getSVal(Ex, LCtx)));
785      break;
786    }
787
788    case UO_Imag: {
789      const Expr *Ex = U->getSubExpr()->IgnoreParens();
790      // FIXME: We don't have complex SValues yet.
791      if (Ex->getType()->isAnyComplexType()) {
792        // Just report "Unknown."
793        break;
794      }
795      // For all other types, UO_Imag returns 0.
796      ProgramStateRef state = (*I)->getState();
797      const LocationContext *LCtx = (*I)->getLocationContext();
798      SVal X = svalBuilder.makeZeroVal(Ex->getType());
799      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
800      break;
801    }
802
803    case UO_Plus:
804      assert(!U->isGLValue());
805      // FALL-THROUGH.
806    case UO_Deref:
807    case UO_AddrOf:
808    case UO_Extension: {
809      // FIXME: We can probably just have some magic in Environment::getSVal()
810      // that propagates values, instead of creating a new node here.
811      //
812      // Unary "+" is a no-op, similar to a parentheses.  We still have places
813      // where it may be a block-level expression, so we need to
814      // generate an extra node that just propagates the value of the
815      // subexpression.
816      const Expr *Ex = U->getSubExpr()->IgnoreParens();
817      ProgramStateRef state = (*I)->getState();
818      const LocationContext *LCtx = (*I)->getLocationContext();
819      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
820                                               state->getSVal(Ex, LCtx)));
821      break;
822    }
823
824    case UO_LNot:
825    case UO_Minus:
826    case UO_Not: {
827      assert (!U->isGLValue());
828      const Expr *Ex = U->getSubExpr()->IgnoreParens();
829      ProgramStateRef state = (*I)->getState();
830      const LocationContext *LCtx = (*I)->getLocationContext();
831
832      // Get the value of the subexpression.
833      SVal V = state->getSVal(Ex, LCtx);
834
835      if (V.isUnknownOrUndef()) {
836        Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
837        break;
838      }
839
840      switch (U->getOpcode()) {
841        default:
842          llvm_unreachable("Invalid Opcode.");
843        case UO_Not:
844          // FIXME: Do we need to handle promotions?
845          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
846          break;
847        case UO_Minus:
848          // FIXME: Do we need to handle promotions?
849          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
850          break;
851        case UO_LNot:
852          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
853          //
854          //  Note: technically we do "E == 0", but this is the same in the
855          //    transfer functions as "0 == E".
856          SVal Result;
857          if (Optional<Loc> LV = V.getAs<Loc>()) {
858            Loc X = svalBuilder.makeNull();
859            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
860          }
861          else if (Ex->getType()->isFloatingType()) {
862            // FIXME: handle floating point types.
863            Result = UnknownVal();
864          } else {
865            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
866            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
867                               U->getType());
868          }
869
870          state = state->BindExpr(U, LCtx, Result);
871          break;
872      }
873      Bldr.generateNode(U, *I, state);
874      break;
875    }
876    }
877  }
878
879  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
880}
881
882void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
883                                                 ExplodedNode *Pred,
884                                                 ExplodedNodeSet &Dst) {
885  // Handle ++ and -- (both pre- and post-increment).
886  assert (U->isIncrementDecrementOp());
887  const Expr *Ex = U->getSubExpr()->IgnoreParens();
888
889  const LocationContext *LCtx = Pred->getLocationContext();
890  ProgramStateRef state = Pred->getState();
891  SVal loc = state->getSVal(Ex, LCtx);
892
893  // Perform a load.
894  ExplodedNodeSet Tmp;
895  evalLoad(Tmp, U, Ex, Pred, state, loc);
896
897  ExplodedNodeSet Dst2;
898  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
899  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
900
901    state = (*I)->getState();
902    assert(LCtx == (*I)->getLocationContext());
903    SVal V2_untested = state->getSVal(Ex, LCtx);
904
905    // Propagate unknown and undefined values.
906    if (V2_untested.isUnknownOrUndef()) {
907      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
908      continue;
909    }
910    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
911
912    // Handle all other values.
913    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
914
915    // If the UnaryOperator has non-location type, use its type to create the
916    // constant value. If the UnaryOperator has location type, create the
917    // constant with int type and pointer width.
918    SVal RHS;
919
920    if (U->getType()->isAnyPointerType())
921      RHS = svalBuilder.makeArrayIndex(1);
922    else if (U->getType()->isIntegralOrEnumerationType())
923      RHS = svalBuilder.makeIntVal(1, U->getType());
924    else
925      RHS = UnknownVal();
926
927    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
928
929    // Conjure a new symbol if necessary to recover precision.
930    if (Result.isUnknown()){
931      DefinedOrUnknownSVal SymVal =
932        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
933      Result = SymVal;
934
935      // If the value is a location, ++/-- should always preserve
936      // non-nullness.  Check if the original value was non-null, and if so
937      // propagate that constraint.
938      if (Loc::isLocType(U->getType())) {
939        DefinedOrUnknownSVal Constraint =
940        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
941
942        if (!state->assume(Constraint, true)) {
943          // It isn't feasible for the original value to be null.
944          // Propagate this constraint.
945          Constraint = svalBuilder.evalEQ(state, SymVal,
946                                       svalBuilder.makeZeroVal(U->getType()));
947
948
949          state = state->assume(Constraint, false);
950          assert(state);
951        }
952      }
953    }
954
955    // Since the lvalue-to-rvalue conversion is explicit in the AST,
956    // we bind an l-value if the operator is prefix and an lvalue (in C++).
957    if (U->isGLValue())
958      state = state->BindExpr(U, LCtx, loc);
959    else
960      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
961
962    // Perform the store.
963    Bldr.takeNodes(*I);
964    ExplodedNodeSet Dst3;
965    evalStore(Dst3, U, U, *I, state, loc, Result);
966    Bldr.addNodes(Dst3);
967  }
968  Dst.insert(Dst2);
969}
970