ExprEngineC.cpp revision 6a556a42d48cc098fb8dcb5d4ecdd0e03e32c0ec
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (LeftV.getAs<Loc>() &&
71            RHS->getType()->isIntegralOrEnumerationType() &&
72            RightV.isUnknown()) {
73          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
74                                                Count);
75        }
76        if (RightV.getAs<Loc>() &&
77            LHS->getType()->isIntegralOrEnumerationType() &&
78            LeftV.isUnknown()) {
79          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
80                                               Count);
81        }
82      }
83
84      // Process non-assignments except commas or short-circuited
85      // logical expressions (LAnd and LOr).
86      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
87      if (Result.isUnknown()) {
88        Bldr.generateNode(B, *it, state);
89        continue;
90      }
91
92      state = state->BindExpr(B, LCtx, Result);
93      Bldr.generateNode(B, *it, state);
94      continue;
95    }
96
97    assert (B->isCompoundAssignmentOp());
98
99    switch (Op) {
100      default:
101        llvm_unreachable("Invalid opcode for compound assignment.");
102      case BO_MulAssign: Op = BO_Mul; break;
103      case BO_DivAssign: Op = BO_Div; break;
104      case BO_RemAssign: Op = BO_Rem; break;
105      case BO_AddAssign: Op = BO_Add; break;
106      case BO_SubAssign: Op = BO_Sub; break;
107      case BO_ShlAssign: Op = BO_Shl; break;
108      case BO_ShrAssign: Op = BO_Shr; break;
109      case BO_AndAssign: Op = BO_And; break;
110      case BO_XorAssign: Op = BO_Xor; break;
111      case BO_OrAssign:  Op = BO_Or;  break;
112    }
113
114    // Perform a load (the LHS).  This performs the checks for
115    // null dereferences, and so on.
116    ExplodedNodeSet Tmp;
117    SVal location = LeftV;
118    evalLoad(Tmp, B, LHS, *it, state, location);
119
120    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
121         ++I) {
122
123      state = (*I)->getState();
124      const LocationContext *LCtx = (*I)->getLocationContext();
125      SVal V = state->getSVal(LHS, LCtx);
126
127      // Get the computation type.
128      QualType CTy =
129        cast<CompoundAssignOperator>(B)->getComputationResultType();
130      CTy = getContext().getCanonicalType(CTy);
131
132      QualType CLHSTy =
133        cast<CompoundAssignOperator>(B)->getComputationLHSType();
134      CLHSTy = getContext().getCanonicalType(CLHSTy);
135
136      QualType LTy = getContext().getCanonicalType(LHS->getType());
137
138      // Promote LHS.
139      V = svalBuilder.evalCast(V, CLHSTy, LTy);
140
141      // Compute the result of the operation.
142      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
143                                         B->getType(), CTy);
144
145      // EXPERIMENTAL: "Conjured" symbols.
146      // FIXME: Handle structs.
147
148      SVal LHSVal;
149
150      if (Result.isUnknown()) {
151        // The symbolic value is actually for the type of the left-hand side
152        // expression, not the computation type, as this is the value the
153        // LValue on the LHS will bind to.
154        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
155                                              currBldrCtx->blockCount());
156        // However, we need to convert the symbol to the computation type.
157        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
158      }
159      else {
160        // The left-hand side may bind to a different value then the
161        // computation type.
162        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
163      }
164
165      // In C++, assignment and compound assignment operators return an
166      // lvalue.
167      if (B->isGLValue())
168        state = state->BindExpr(B, LCtx, location);
169      else
170        state = state->BindExpr(B, LCtx, Result);
171
172      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
173    }
174  }
175
176  // FIXME: postvisits eventually go in ::Visit()
177  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
178}
179
180void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
181                                ExplodedNodeSet &Dst) {
182
183  CanQualType T = getContext().getCanonicalType(BE->getType());
184
185  // Get the value of the block itself.
186  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
187                                       Pred->getLocationContext());
188
189  ProgramStateRef State = Pred->getState();
190
191  // If we created a new MemRegion for the block, we should explicitly bind
192  // the captured variables.
193  if (const BlockDataRegion *BDR =
194      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
195
196    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
197                                              E = BDR->referenced_vars_end();
198
199    for (; I != E; ++I) {
200      const MemRegion *capturedR = I.getCapturedRegion();
201      const MemRegion *originalR = I.getOriginalRegion();
202      if (capturedR != originalR) {
203        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
204        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
205      }
206    }
207  }
208
209  ExplodedNodeSet Tmp;
210  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
211  Bldr.generateNode(BE, Pred,
212                    State->BindExpr(BE, Pred->getLocationContext(), V),
213                    0, ProgramPoint::PostLValueKind);
214
215  // FIXME: Move all post/pre visits to ::Visit().
216  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
217}
218
219void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
220                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
221
222  ExplodedNodeSet dstPreStmt;
223  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
224
225  if (CastE->getCastKind() == CK_LValueToRValue) {
226    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
227         I!=E; ++I) {
228      ExplodedNode *subExprNode = *I;
229      ProgramStateRef state = subExprNode->getState();
230      const LocationContext *LCtx = subExprNode->getLocationContext();
231      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
232    }
233    return;
234  }
235
236  // All other casts.
237  QualType T = CastE->getType();
238  QualType ExTy = Ex->getType();
239
240  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
241    T = ExCast->getTypeAsWritten();
242
243  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
244  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
245       I != E; ++I) {
246
247    Pred = *I;
248    ProgramStateRef state = Pred->getState();
249    const LocationContext *LCtx = Pred->getLocationContext();
250
251    switch (CastE->getCastKind()) {
252      case CK_LValueToRValue:
253        llvm_unreachable("LValueToRValue casts handled earlier.");
254      case CK_ToVoid:
255        continue;
256        // The analyzer doesn't do anything special with these casts,
257        // since it understands retain/release semantics already.
258      case CK_ARCProduceObject:
259      case CK_ARCConsumeObject:
260      case CK_ARCReclaimReturnedObject:
261      case CK_ARCExtendBlockObject: // Fall-through.
262      case CK_CopyAndAutoreleaseBlockObject:
263        // The analyser can ignore atomic casts for now, although some future
264        // checkers may want to make certain that you're not modifying the same
265        // value through atomic and nonatomic pointers.
266      case CK_AtomicToNonAtomic:
267      case CK_NonAtomicToAtomic:
268        // True no-ops.
269      case CK_NoOp:
270      case CK_ConstructorConversion:
271      case CK_UserDefinedConversion:
272      case CK_FunctionToPointerDecay:
273      case CK_BuiltinFnToFnPtr: {
274        // Copy the SVal of Ex to CastE.
275        ProgramStateRef state = Pred->getState();
276        const LocationContext *LCtx = Pred->getLocationContext();
277        SVal V = state->getSVal(Ex, LCtx);
278        state = state->BindExpr(CastE, LCtx, V);
279        Bldr.generateNode(CastE, Pred, state);
280        continue;
281      }
282      case CK_MemberPointerToBoolean:
283        // FIXME: For now, member pointers are represented by void *.
284        // FALLTHROUGH
285      case CK_Dependent:
286      case CK_ArrayToPointerDecay:
287      case CK_BitCast:
288      case CK_IntegralCast:
289      case CK_NullToPointer:
290      case CK_IntegralToPointer:
291      case CK_PointerToIntegral:
292      case CK_PointerToBoolean:
293      case CK_IntegralToBoolean:
294      case CK_IntegralToFloating:
295      case CK_FloatingToIntegral:
296      case CK_FloatingToBoolean:
297      case CK_FloatingCast:
298      case CK_FloatingRealToComplex:
299      case CK_FloatingComplexToReal:
300      case CK_FloatingComplexToBoolean:
301      case CK_FloatingComplexCast:
302      case CK_FloatingComplexToIntegralComplex:
303      case CK_IntegralRealToComplex:
304      case CK_IntegralComplexToReal:
305      case CK_IntegralComplexToBoolean:
306      case CK_IntegralComplexCast:
307      case CK_IntegralComplexToFloatingComplex:
308      case CK_CPointerToObjCPointerCast:
309      case CK_BlockPointerToObjCPointerCast:
310      case CK_AnyPointerToBlockPointerCast:
311      case CK_ObjCObjectLValueCast:
312      case CK_ZeroToOCLEvent:
313      case CK_LValueBitCast: {
314        // Delegate to SValBuilder to process.
315        SVal V = state->getSVal(Ex, LCtx);
316        V = svalBuilder.evalCast(V, T, ExTy);
317        state = state->BindExpr(CastE, LCtx, V);
318        Bldr.generateNode(CastE, Pred, state);
319        continue;
320      }
321      case CK_DerivedToBase:
322      case CK_UncheckedDerivedToBase: {
323        // For DerivedToBase cast, delegate to the store manager.
324        SVal val = state->getSVal(Ex, LCtx);
325        val = getStoreManager().evalDerivedToBase(val, CastE);
326        state = state->BindExpr(CastE, LCtx, val);
327        Bldr.generateNode(CastE, Pred, state);
328        continue;
329      }
330      // Handle C++ dyn_cast.
331      case CK_Dynamic: {
332        SVal val = state->getSVal(Ex, LCtx);
333
334        // Compute the type of the result.
335        QualType resultType = CastE->getType();
336        if (CastE->isGLValue())
337          resultType = getContext().getPointerType(resultType);
338
339        bool Failed = false;
340
341        // Check if the value being cast evaluates to 0.
342        if (val.isZeroConstant())
343          Failed = true;
344        // Else, evaluate the cast.
345        else
346          val = getStoreManager().evalDynamicCast(val, T, Failed);
347
348        if (Failed) {
349          if (T->isReferenceType()) {
350            // A bad_cast exception is thrown if input value is a reference.
351            // Currently, we model this, by generating a sink.
352            Bldr.generateSink(CastE, Pred, state);
353            continue;
354          } else {
355            // If the cast fails on a pointer, bind to 0.
356            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
357          }
358        } else {
359          // If we don't know if the cast succeeded, conjure a new symbol.
360          if (val.isUnknown()) {
361            DefinedOrUnknownSVal NewSym =
362              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
363                                           currBldrCtx->blockCount());
364            state = state->BindExpr(CastE, LCtx, NewSym);
365          } else
366            // Else, bind to the derived region value.
367            state = state->BindExpr(CastE, LCtx, val);
368        }
369        Bldr.generateNode(CastE, Pred, state);
370        continue;
371      }
372      case CK_NullToMemberPointer: {
373        // FIXME: For now, member pointers are represented by void *.
374        SVal V = svalBuilder.makeNull();
375        state = state->BindExpr(CastE, LCtx, V);
376        Bldr.generateNode(CastE, Pred, state);
377        continue;
378      }
379      // Various C++ casts that are not handled yet.
380      case CK_ToUnion:
381      case CK_BaseToDerived:
382      case CK_BaseToDerivedMemberPointer:
383      case CK_DerivedToBaseMemberPointer:
384      case CK_ReinterpretMemberPointer:
385      case CK_VectorSplat: {
386        // Recover some path-sensitivty by conjuring a new value.
387        QualType resultType = CastE->getType();
388        if (CastE->isGLValue())
389          resultType = getContext().getPointerType(resultType);
390        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
391                                                   resultType,
392                                                   currBldrCtx->blockCount());
393        state = state->BindExpr(CastE, LCtx, result);
394        Bldr.generateNode(CastE, Pred, state);
395        continue;
396      }
397    }
398  }
399}
400
401void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
402                                          ExplodedNode *Pred,
403                                          ExplodedNodeSet &Dst) {
404  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
405
406  ProgramStateRef State = Pred->getState();
407  const LocationContext *LCtx = Pred->getLocationContext();
408
409  const Expr *Init = CL->getInitializer();
410  SVal V = State->getSVal(CL->getInitializer(), LCtx);
411
412  if (isa<CXXConstructExpr>(Init)) {
413    // No work needed. Just pass the value up to this expression.
414  } else {
415    assert(isa<InitListExpr>(Init));
416    Loc CLLoc = State->getLValue(CL, LCtx);
417    State = State->bindLoc(CLLoc, V);
418
419    // Compound literal expressions are a GNU extension in C++.
420    // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
421    // and like temporary objects created by the functional notation T()
422    // CLs are destroyed at the end of the containing full-expression.
423    // HOWEVER, an rvalue of array type is not something the analyzer can
424    // reason about, since we expect all regions to be wrapped in Locs.
425    // So we treat array CLs as lvalues as well, knowing that they will decay
426    // to pointers as soon as they are used.
427    if (CL->isGLValue() || CL->getType()->isArrayType())
428      V = CLLoc;
429  }
430
431  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
432}
433
434void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
435                               ExplodedNodeSet &Dst) {
436  // Assumption: The CFG has one DeclStmt per Decl.
437  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
438
439  if (!VD) {
440    //TODO:AZ: remove explicit insertion after refactoring is done.
441    Dst.insert(Pred);
442    return;
443  }
444
445  // FIXME: all pre/post visits should eventually be handled by ::Visit().
446  ExplodedNodeSet dstPreVisit;
447  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
448
449  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
450  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
451       I!=E; ++I) {
452    ExplodedNode *N = *I;
453    ProgramStateRef state = N->getState();
454    const LocationContext *LC = N->getLocationContext();
455
456    // Decls without InitExpr are not initialized explicitly.
457    if (const Expr *InitEx = VD->getInit()) {
458
459      // Note in the state that the initialization has occurred.
460      ExplodedNode *UpdatedN = N;
461      SVal InitVal = state->getSVal(InitEx, LC);
462
463      if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
464        // We constructed the object directly in the variable.
465        // No need to bind anything.
466        B.generateNode(DS, UpdatedN, state);
467      } else {
468        // We bound the temp obj region to the CXXConstructExpr. Now recover
469        // the lazy compound value when the variable is not a reference.
470        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
471            !VD->getType()->isReferenceType()) {
472          if (Optional<loc::MemRegionVal> M =
473                  InitVal.getAs<loc::MemRegionVal>()) {
474            InitVal = state->getSVal(M->getRegion());
475            assert(InitVal.getAs<nonloc::LazyCompoundVal>());
476          }
477        }
478
479        // Recover some path-sensitivity if a scalar value evaluated to
480        // UnknownVal.
481        if (InitVal.isUnknown()) {
482          QualType Ty = InitEx->getType();
483          if (InitEx->isGLValue()) {
484            Ty = getContext().getPointerType(Ty);
485          }
486
487          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
488                                                 currBldrCtx->blockCount());
489        }
490
491
492        B.takeNodes(UpdatedN);
493        ExplodedNodeSet Dst2;
494        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
495        B.addNodes(Dst2);
496      }
497    }
498    else {
499      B.generateNode(DS, N, state);
500    }
501  }
502}
503
504static ProgramStateRef evaluateLogicalExpression(const Expr *E,
505                                                 const LocationContext *LC,
506                                                 ProgramStateRef State) {
507  SVal X = State->getSVal(E, LC);
508  if (! X.isUnknown())
509    return State;
510
511  const BinaryOperator *B = dyn_cast<BinaryOperator>(E->IgnoreParens());
512  if (!B || (B->getOpcode() != BO_LAnd && B->getOpcode() != BO_LOr))
513    return State;
514
515  State = evaluateLogicalExpression(B->getLHS(), LC, State);
516  X = State->getSVal(B->getLHS(), LC);
517  QualType XType = B->getLHS()->getType();
518
519  assert(X.isConstant());
520  if (!X.isZeroConstant() == (B->getOpcode() == BO_LAnd)) {
521    // LHS not sufficient, we need to check RHS as well
522    State = evaluateLogicalExpression(B->getRHS(), LC, State);
523    X = State->getSVal(B->getRHS(), LC);
524    XType = B->getRHS()->getType();
525  }
526
527  SValBuilder &SVB = State->getStateManager().getSValBuilder();
528  return State->BindExpr(E, LC, SVB.evalCast(X, B->getType(), XType));
529}
530
531void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
532                                  ExplodedNodeSet &Dst) {
533  assert(B->getOpcode() == BO_LAnd ||
534         B->getOpcode() == BO_LOr);
535
536  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
537  ProgramStateRef state = Pred->getState();
538
539  state = evaluateLogicalExpression(B, Pred->getLocationContext(), state);
540  SVal X = state->getSVal(B, Pred->getLocationContext());
541
542  if (!X.isUndef()) {
543    DefinedOrUnknownSVal DefinedRHS = X.castAs<DefinedOrUnknownSVal>();
544    ProgramStateRef StTrue, StFalse;
545    llvm::tie(StTrue, StFalse) = state->assume(DefinedRHS);
546    if (StTrue) {
547      if (!StFalse) {
548        // The value is known to be true.
549        X = getSValBuilder().makeIntVal(1, B->getType());
550      } // else The truth value of X is unknown, just leave it as it is.
551    } else {
552      // The value is known to be false.
553      assert(StFalse && "Infeasible path!");
554      X = getSValBuilder().makeIntVal(0, B->getType());
555    }
556  }
557
558  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
559}
560
561void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
562                                   ExplodedNode *Pred,
563                                   ExplodedNodeSet &Dst) {
564  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
565
566  ProgramStateRef state = Pred->getState();
567  const LocationContext *LCtx = Pred->getLocationContext();
568  QualType T = getContext().getCanonicalType(IE->getType());
569  unsigned NumInitElements = IE->getNumInits();
570
571  if (!IE->isGLValue() &&
572      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
573       T->isAnyComplexType())) {
574    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
575
576    // Handle base case where the initializer has no elements.
577    // e.g: static int* myArray[] = {};
578    if (NumInitElements == 0) {
579      SVal V = svalBuilder.makeCompoundVal(T, vals);
580      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
581      return;
582    }
583
584    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
585         ei = IE->rend(); it != ei; ++it) {
586      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
587      vals = getBasicVals().consVals(V, vals);
588    }
589
590    B.generateNode(IE, Pred,
591                   state->BindExpr(IE, LCtx,
592                                   svalBuilder.makeCompoundVal(T, vals)));
593    return;
594  }
595
596  // Handle scalars: int{5} and int{} and GLvalues.
597  // Note, if the InitListExpr is a GLvalue, it means that there is an address
598  // representing it, so it must have a single init element.
599  assert(NumInitElements <= 1);
600
601  SVal V;
602  if (NumInitElements == 0)
603    V = getSValBuilder().makeZeroVal(T);
604  else
605    V = state->getSVal(IE->getInit(0), LCtx);
606
607  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
608}
609
610void ExprEngine::VisitGuardedExpr(const Expr *Ex,
611                                  const Expr *L,
612                                  const Expr *R,
613                                  ExplodedNode *Pred,
614                                  ExplodedNodeSet &Dst) {
615  assert(L && R);
616
617  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
618  ProgramStateRef state = Pred->getState();
619  const LocationContext *LCtx = Pred->getLocationContext();
620  const CFGBlock *SrcBlock = 0;
621
622  // Find the predecessor block.
623  ProgramStateRef SrcState = state;
624  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
625    ProgramPoint PP = N->getLocation();
626    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
627      assert(N->pred_size() == 1);
628      continue;
629    }
630    SrcBlock = PP.castAs<BlockEdge>().getSrc();
631    SrcState = N->getState();
632    break;
633  }
634
635  assert(SrcBlock && "missing function entry");
636
637  // Find the last expression in the predecessor block.  That is the
638  // expression that is used for the value of the ternary expression.
639  bool hasValue = false;
640  SVal V;
641
642  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
643                                        E = SrcBlock->rend(); I != E; ++I) {
644    CFGElement CE = *I;
645    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
646      const Expr *ValEx = cast<Expr>(CS->getStmt());
647      ValEx = ValEx->IgnoreParens();
648
649      // For GNU extension '?:' operator, the left hand side will be an
650      // OpaqueValueExpr, so get the underlying expression.
651      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
652        L = OpaqueEx->getSourceExpr();
653
654      // If the last expression in the predecessor block matches true or false
655      // subexpression, get its the value.
656      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
657        hasValue = true;
658        V = SrcState->getSVal(ValEx, LCtx);
659      }
660      break;
661    }
662  }
663
664  if (!hasValue)
665    V = svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
666
667  // Generate a new node with the binding from the appropriate path.
668  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
669}
670
671void ExprEngine::
672VisitOffsetOfExpr(const OffsetOfExpr *OOE,
673                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
674  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
675  APSInt IV;
676  if (OOE->EvaluateAsInt(IV, getContext())) {
677    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
678    assert(OOE->getType()->isBuiltinType());
679    assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
680    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
681    SVal X = svalBuilder.makeIntVal(IV);
682    B.generateNode(OOE, Pred,
683                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
684                                              X));
685  }
686  // FIXME: Handle the case where __builtin_offsetof is not a constant.
687}
688
689
690void ExprEngine::
691VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
692                              ExplodedNode *Pred,
693                              ExplodedNodeSet &Dst) {
694  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
695
696  QualType T = Ex->getTypeOfArgument();
697
698  if (Ex->getKind() == UETT_SizeOf) {
699    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
700      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
701
702      // FIXME: Add support for VLA type arguments and VLA expressions.
703      // When that happens, we should probably refactor VLASizeChecker's code.
704      return;
705    }
706    else if (T->getAs<ObjCObjectType>()) {
707      // Some code tries to take the sizeof an ObjCObjectType, relying that
708      // the compiler has laid out its representation.  Just report Unknown
709      // for these.
710      return;
711    }
712  }
713
714  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
715  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
716
717  ProgramStateRef state = Pred->getState();
718  state = state->BindExpr(Ex, Pred->getLocationContext(),
719                          svalBuilder.makeIntVal(amt.getQuantity(),
720                                                     Ex->getType()));
721  Bldr.generateNode(Ex, Pred, state);
722}
723
724void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
725                                    ExplodedNode *Pred,
726                                    ExplodedNodeSet &Dst) {
727  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
728  switch (U->getOpcode()) {
729    default: {
730      Bldr.takeNodes(Pred);
731      ExplodedNodeSet Tmp;
732      VisitIncrementDecrementOperator(U, Pred, Tmp);
733      Bldr.addNodes(Tmp);
734    }
735      break;
736    case UO_Real: {
737      const Expr *Ex = U->getSubExpr()->IgnoreParens();
738
739      // FIXME: We don't have complex SValues yet.
740      if (Ex->getType()->isAnyComplexType()) {
741        // Just report "Unknown."
742        break;
743      }
744
745      // For all other types, UO_Real is an identity operation.
746      assert (U->getType() == Ex->getType());
747      ProgramStateRef state = Pred->getState();
748      const LocationContext *LCtx = Pred->getLocationContext();
749      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
750                                                 state->getSVal(Ex, LCtx)));
751      break;
752    }
753
754    case UO_Imag: {
755      const Expr *Ex = U->getSubExpr()->IgnoreParens();
756      // FIXME: We don't have complex SValues yet.
757      if (Ex->getType()->isAnyComplexType()) {
758        // Just report "Unknown."
759        break;
760      }
761      // For all other types, UO_Imag returns 0.
762      ProgramStateRef state = Pred->getState();
763      const LocationContext *LCtx = Pred->getLocationContext();
764      SVal X = svalBuilder.makeZeroVal(Ex->getType());
765      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
766      break;
767    }
768
769    case UO_Plus:
770      assert(!U->isGLValue());
771      // FALL-THROUGH.
772    case UO_Deref:
773    case UO_AddrOf:
774    case UO_Extension: {
775      // FIXME: We can probably just have some magic in Environment::getSVal()
776      // that propagates values, instead of creating a new node here.
777      //
778      // Unary "+" is a no-op, similar to a parentheses.  We still have places
779      // where it may be a block-level expression, so we need to
780      // generate an extra node that just propagates the value of the
781      // subexpression.
782      const Expr *Ex = U->getSubExpr()->IgnoreParens();
783      ProgramStateRef state = Pred->getState();
784      const LocationContext *LCtx = Pred->getLocationContext();
785      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
786                                                 state->getSVal(Ex, LCtx)));
787      break;
788    }
789
790    case UO_LNot:
791    case UO_Minus:
792    case UO_Not: {
793      assert (!U->isGLValue());
794      const Expr *Ex = U->getSubExpr()->IgnoreParens();
795      ProgramStateRef state = Pred->getState();
796      const LocationContext *LCtx = Pred->getLocationContext();
797
798      // Get the value of the subexpression.
799      SVal V = state->getSVal(Ex, LCtx);
800
801      if (V.isUnknownOrUndef()) {
802        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
803        break;
804      }
805
806      switch (U->getOpcode()) {
807        default:
808          llvm_unreachable("Invalid Opcode.");
809        case UO_Not:
810          // FIXME: Do we need to handle promotions?
811          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
812          break;
813        case UO_Minus:
814          // FIXME: Do we need to handle promotions?
815          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
816          break;
817        case UO_LNot:
818          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
819          //
820          //  Note: technically we do "E == 0", but this is the same in the
821          //    transfer functions as "0 == E".
822          SVal Result;
823          if (Optional<Loc> LV = V.getAs<Loc>()) {
824            Loc X = svalBuilder.makeNull();
825            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
826          }
827          else if (Ex->getType()->isFloatingType()) {
828            // FIXME: handle floating point types.
829            Result = UnknownVal();
830          } else {
831            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
832            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
833                               U->getType());
834          }
835
836          state = state->BindExpr(U, LCtx, Result);
837          break;
838      }
839      Bldr.generateNode(U, Pred, state);
840      break;
841    }
842  }
843
844}
845
846void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
847                                                 ExplodedNode *Pred,
848                                                 ExplodedNodeSet &Dst) {
849  // Handle ++ and -- (both pre- and post-increment).
850  assert (U->isIncrementDecrementOp());
851  const Expr *Ex = U->getSubExpr()->IgnoreParens();
852
853  const LocationContext *LCtx = Pred->getLocationContext();
854  ProgramStateRef state = Pred->getState();
855  SVal loc = state->getSVal(Ex, LCtx);
856
857  // Perform a load.
858  ExplodedNodeSet Tmp;
859  evalLoad(Tmp, U, Ex, Pred, state, loc);
860
861  ExplodedNodeSet Dst2;
862  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
863  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
864
865    state = (*I)->getState();
866    assert(LCtx == (*I)->getLocationContext());
867    SVal V2_untested = state->getSVal(Ex, LCtx);
868
869    // Propagate unknown and undefined values.
870    if (V2_untested.isUnknownOrUndef()) {
871      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
872      continue;
873    }
874    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
875
876    // Handle all other values.
877    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
878
879    // If the UnaryOperator has non-location type, use its type to create the
880    // constant value. If the UnaryOperator has location type, create the
881    // constant with int type and pointer width.
882    SVal RHS;
883
884    if (U->getType()->isAnyPointerType())
885      RHS = svalBuilder.makeArrayIndex(1);
886    else if (U->getType()->isIntegralOrEnumerationType())
887      RHS = svalBuilder.makeIntVal(1, U->getType());
888    else
889      RHS = UnknownVal();
890
891    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
892
893    // Conjure a new symbol if necessary to recover precision.
894    if (Result.isUnknown()){
895      DefinedOrUnknownSVal SymVal =
896        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
897      Result = SymVal;
898
899      // If the value is a location, ++/-- should always preserve
900      // non-nullness.  Check if the original value was non-null, and if so
901      // propagate that constraint.
902      if (Loc::isLocType(U->getType())) {
903        DefinedOrUnknownSVal Constraint =
904        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
905
906        if (!state->assume(Constraint, true)) {
907          // It isn't feasible for the original value to be null.
908          // Propagate this constraint.
909          Constraint = svalBuilder.evalEQ(state, SymVal,
910                                       svalBuilder.makeZeroVal(U->getType()));
911
912
913          state = state->assume(Constraint, false);
914          assert(state);
915        }
916      }
917    }
918
919    // Since the lvalue-to-rvalue conversion is explicit in the AST,
920    // we bind an l-value if the operator is prefix and an lvalue (in C++).
921    if (U->isGLValue())
922      state = state->BindExpr(U, LCtx, loc);
923    else
924      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
925
926    // Perform the store.
927    Bldr.takeNodes(*I);
928    ExplodedNodeSet Dst3;
929    evalStore(Dst3, U, U, *I, state, loc, Result);
930    Bldr.addNodes(Dst3);
931  }
932  Dst.insert(Dst2);
933}
934