ExprEngineC.cpp revision 707a8659a546d32cf976d4c3927c793a643b18e1
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (isa<Loc>(LeftV) &&
71            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                Count);
74        }
75        if (isa<Loc>(RightV) &&
76            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                               Count);
79        }
80      }
81
82      // Process non-assignments except commas or short-circuited
83      // logical expressions (LAnd and LOr).
84      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85      if (Result.isUnknown()) {
86        Bldr.generateNode(B, *it, state);
87        continue;
88      }
89
90      state = state->BindExpr(B, LCtx, Result);
91      Bldr.generateNode(B, *it, state);
92      continue;
93    }
94
95    assert (B->isCompoundAssignmentOp());
96
97    switch (Op) {
98      default:
99        llvm_unreachable("Invalid opcode for compound assignment.");
100      case BO_MulAssign: Op = BO_Mul; break;
101      case BO_DivAssign: Op = BO_Div; break;
102      case BO_RemAssign: Op = BO_Rem; break;
103      case BO_AddAssign: Op = BO_Add; break;
104      case BO_SubAssign: Op = BO_Sub; break;
105      case BO_ShlAssign: Op = BO_Shl; break;
106      case BO_ShrAssign: Op = BO_Shr; break;
107      case BO_AndAssign: Op = BO_And; break;
108      case BO_XorAssign: Op = BO_Xor; break;
109      case BO_OrAssign:  Op = BO_Or;  break;
110    }
111
112    // Perform a load (the LHS).  This performs the checks for
113    // null dereferences, and so on.
114    ExplodedNodeSet Tmp;
115    SVal location = LeftV;
116    evalLoad(Tmp, B, LHS, *it, state, location);
117
118    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119         ++I) {
120
121      state = (*I)->getState();
122      const LocationContext *LCtx = (*I)->getLocationContext();
123      SVal V = state->getSVal(LHS, LCtx);
124
125      // Get the computation type.
126      QualType CTy =
127        cast<CompoundAssignOperator>(B)->getComputationResultType();
128      CTy = getContext().getCanonicalType(CTy);
129
130      QualType CLHSTy =
131        cast<CompoundAssignOperator>(B)->getComputationLHSType();
132      CLHSTy = getContext().getCanonicalType(CLHSTy);
133
134      QualType LTy = getContext().getCanonicalType(LHS->getType());
135
136      // Promote LHS.
137      V = svalBuilder.evalCast(V, CLHSTy, LTy);
138
139      // Compute the result of the operation.
140      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                         B->getType(), CTy);
142
143      // EXPERIMENTAL: "Conjured" symbols.
144      // FIXME: Handle structs.
145
146      SVal LHSVal;
147
148      if (Result.isUnknown()) {
149        // The symbolic value is actually for the type of the left-hand side
150        // expression, not the computation type, as this is the value the
151        // LValue on the LHS will bind to.
152        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                              currBldrCtx->blockCount());
154        // However, we need to convert the symbol to the computation type.
155        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156      }
157      else {
158        // The left-hand side may bind to a different value then the
159        // computation type.
160        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161      }
162
163      // In C++, assignment and compound assignment operators return an
164      // lvalue.
165      if (B->isGLValue())
166        state = state->BindExpr(B, LCtx, location);
167      else
168        state = state->BindExpr(B, LCtx, Result);
169
170      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171    }
172  }
173
174  // FIXME: postvisits eventually go in ::Visit()
175  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176}
177
178void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                ExplodedNodeSet &Dst) {
180
181  CanQualType T = getContext().getCanonicalType(BE->getType());
182
183  // Get the value of the block itself.
184  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                       Pred->getLocationContext());
186
187  ProgramStateRef State = Pred->getState();
188
189  // If we created a new MemRegion for the block, we should explicitly bind
190  // the captured variables.
191  if (const BlockDataRegion *BDR =
192      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193
194    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                              E = BDR->referenced_vars_end();
196
197    for (; I != E; ++I) {
198      const MemRegion *capturedR = I.getCapturedRegion();
199      const MemRegion *originalR = I.getOriginalRegion();
200      if (capturedR != originalR) {
201        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203      }
204    }
205  }
206
207  ExplodedNodeSet Tmp;
208  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209  Bldr.generateNode(BE, Pred,
210                    State->BindExpr(BE, Pred->getLocationContext(), V),
211                    0, ProgramPoint::PostLValueKind);
212
213  // FIXME: Move all post/pre visits to ::Visit().
214  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215}
216
217void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219
220  ExplodedNodeSet dstPreStmt;
221  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222
223  if (CastE->getCastKind() == CK_LValueToRValue) {
224    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225         I!=E; ++I) {
226      ExplodedNode *subExprNode = *I;
227      ProgramStateRef state = subExprNode->getState();
228      const LocationContext *LCtx = subExprNode->getLocationContext();
229      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230    }
231    return;
232  }
233
234  // All other casts.
235  QualType T = CastE->getType();
236  QualType ExTy = Ex->getType();
237
238  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239    T = ExCast->getTypeAsWritten();
240
241  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243       I != E; ++I) {
244
245    Pred = *I;
246    ProgramStateRef state = Pred->getState();
247    const LocationContext *LCtx = Pred->getLocationContext();
248
249    switch (CastE->getCastKind()) {
250      case CK_LValueToRValue:
251        llvm_unreachable("LValueToRValue casts handled earlier.");
252      case CK_ToVoid:
253        continue;
254        // The analyzer doesn't do anything special with these casts,
255        // since it understands retain/release semantics already.
256      case CK_ARCProduceObject:
257      case CK_ARCConsumeObject:
258      case CK_ARCReclaimReturnedObject:
259      case CK_ARCExtendBlockObject: // Fall-through.
260      case CK_CopyAndAutoreleaseBlockObject:
261        // The analyser can ignore atomic casts for now, although some future
262        // checkers may want to make certain that you're not modifying the same
263        // value through atomic and nonatomic pointers.
264      case CK_AtomicToNonAtomic:
265      case CK_NonAtomicToAtomic:
266        // True no-ops.
267      case CK_NoOp:
268      case CK_ConstructorConversion:
269      case CK_UserDefinedConversion:
270      case CK_FunctionToPointerDecay:
271      case CK_BuiltinFnToFnPtr: {
272        // Copy the SVal of Ex to CastE.
273        ProgramStateRef state = Pred->getState();
274        const LocationContext *LCtx = Pred->getLocationContext();
275        SVal V = state->getSVal(Ex, LCtx);
276        state = state->BindExpr(CastE, LCtx, V);
277        Bldr.generateNode(CastE, Pred, state);
278        continue;
279      }
280      case CK_MemberPointerToBoolean:
281        // FIXME: For now, member pointers are represented by void *.
282        // FALLTHROUGH
283      case CK_Dependent:
284      case CK_ArrayToPointerDecay:
285      case CK_BitCast:
286      case CK_IntegralCast:
287      case CK_NullToPointer:
288      case CK_IntegralToPointer:
289      case CK_PointerToIntegral:
290      case CK_PointerToBoolean:
291      case CK_IntegralToBoolean:
292      case CK_IntegralToFloating:
293      case CK_FloatingToIntegral:
294      case CK_FloatingToBoolean:
295      case CK_FloatingCast:
296      case CK_FloatingRealToComplex:
297      case CK_FloatingComplexToReal:
298      case CK_FloatingComplexToBoolean:
299      case CK_FloatingComplexCast:
300      case CK_FloatingComplexToIntegralComplex:
301      case CK_IntegralRealToComplex:
302      case CK_IntegralComplexToReal:
303      case CK_IntegralComplexToBoolean:
304      case CK_IntegralComplexCast:
305      case CK_IntegralComplexToFloatingComplex:
306      case CK_CPointerToObjCPointerCast:
307      case CK_BlockPointerToObjCPointerCast:
308      case CK_AnyPointerToBlockPointerCast:
309      case CK_ObjCObjectLValueCast: {
310        // Delegate to SValBuilder to process.
311        SVal V = state->getSVal(Ex, LCtx);
312        V = svalBuilder.evalCast(V, T, ExTy);
313        state = state->BindExpr(CastE, LCtx, V);
314        Bldr.generateNode(CastE, Pred, state);
315        continue;
316      }
317      case CK_DerivedToBase:
318      case CK_UncheckedDerivedToBase: {
319        // For DerivedToBase cast, delegate to the store manager.
320        SVal val = state->getSVal(Ex, LCtx);
321        val = getStoreManager().evalDerivedToBase(val, CastE);
322        state = state->BindExpr(CastE, LCtx, val);
323        Bldr.generateNode(CastE, Pred, state);
324        continue;
325      }
326      // Handle C++ dyn_cast.
327      case CK_Dynamic: {
328        SVal val = state->getSVal(Ex, LCtx);
329
330        // Compute the type of the result.
331        QualType resultType = CastE->getType();
332        if (CastE->isGLValue())
333          resultType = getContext().getPointerType(resultType);
334
335        bool Failed = false;
336
337        // Check if the value being cast evaluates to 0.
338        if (val.isZeroConstant())
339          Failed = true;
340        // Else, evaluate the cast.
341        else
342          val = getStoreManager().evalDynamicCast(val, T, Failed);
343
344        if (Failed) {
345          if (T->isReferenceType()) {
346            // A bad_cast exception is thrown if input value is a reference.
347            // Currently, we model this, by generating a sink.
348            Bldr.generateSink(CastE, Pred, state);
349            continue;
350          } else {
351            // If the cast fails on a pointer, bind to 0.
352            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
353          }
354        } else {
355          // If we don't know if the cast succeeded, conjure a new symbol.
356          if (val.isUnknown()) {
357            DefinedOrUnknownSVal NewSym =
358              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
359                                           currBldrCtx->blockCount());
360            state = state->BindExpr(CastE, LCtx, NewSym);
361          } else
362            // Else, bind to the derived region value.
363            state = state->BindExpr(CastE, LCtx, val);
364        }
365        Bldr.generateNode(CastE, Pred, state);
366        continue;
367      }
368      case CK_NullToMemberPointer: {
369        // FIXME: For now, member pointers are represented by void *.
370        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
371        state = state->BindExpr(CastE, LCtx, V);
372        Bldr.generateNode(CastE, Pred, state);
373        continue;
374      }
375      // Various C++ casts that are not handled yet.
376      case CK_ToUnion:
377      case CK_BaseToDerived:
378      case CK_BaseToDerivedMemberPointer:
379      case CK_DerivedToBaseMemberPointer:
380      case CK_ReinterpretMemberPointer:
381      case CK_VectorSplat:
382      case CK_LValueBitCast: {
383        // Recover some path-sensitivty by conjuring a new value.
384        QualType resultType = CastE->getType();
385        if (CastE->isGLValue())
386          resultType = getContext().getPointerType(resultType);
387        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
388                                                   resultType,
389                                                   currBldrCtx->blockCount());
390        state = state->BindExpr(CastE, LCtx, result);
391        Bldr.generateNode(CastE, Pred, state);
392        continue;
393      }
394    }
395  }
396}
397
398void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
399                                          ExplodedNode *Pred,
400                                          ExplodedNodeSet &Dst) {
401  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
402
403  const InitListExpr *ILE
404    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
405
406  ProgramStateRef state = Pred->getState();
407  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
408  const LocationContext *LC = Pred->getLocationContext();
409  state = state->bindCompoundLiteral(CL, LC, ILV);
410
411  // Compound literal expressions are a GNU extension in C++.
412  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
413  // and like temporary objects created by the functional notation T()
414  // CLs are destroyed at the end of the containing full-expression.
415  // HOWEVER, an rvalue of array type is not something the analyzer can
416  // reason about, since we expect all regions to be wrapped in Locs.
417  // So we treat array CLs as lvalues as well, knowing that they will decay
418  // to pointers as soon as they are used.
419  if (CL->isGLValue() || CL->getType()->isArrayType())
420    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
421  else
422    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
423}
424
425void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
426                               ExplodedNodeSet &Dst) {
427
428  // FIXME: static variables may have an initializer, but the second
429  //  time a function is called those values may not be current.
430  //  This may need to be reflected in the CFG.
431
432  // Assumption: The CFG has one DeclStmt per Decl.
433  const Decl *D = *DS->decl_begin();
434
435  if (!D || !isa<VarDecl>(D)) {
436    //TODO:AZ: remove explicit insertion after refactoring is done.
437    Dst.insert(Pred);
438    return;
439  }
440
441  // FIXME: all pre/post visits should eventually be handled by ::Visit().
442  ExplodedNodeSet dstPreVisit;
443  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
444
445  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
446  const VarDecl *VD = dyn_cast<VarDecl>(D);
447  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
448       I!=E; ++I) {
449    ExplodedNode *N = *I;
450    ProgramStateRef state = N->getState();
451
452    // Decls without InitExpr are not initialized explicitly.
453    const LocationContext *LC = N->getLocationContext();
454
455    if (const Expr *InitEx = VD->getInit()) {
456      SVal InitVal = state->getSVal(InitEx, LC);
457
458      if (InitVal == state->getLValue(VD, LC) ||
459          (VD->getType()->isArrayType() &&
460           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
461        // We constructed the object directly in the variable.
462        // No need to bind anything.
463        B.generateNode(DS, N, state);
464      } else {
465        // We bound the temp obj region to the CXXConstructExpr. Now recover
466        // the lazy compound value when the variable is not a reference.
467        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
468            !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
469          InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
470          assert(isa<nonloc::LazyCompoundVal>(InitVal));
471        }
472
473        // Recover some path-sensitivity if a scalar value evaluated to
474        // UnknownVal.
475        if (InitVal.isUnknown()) {
476          QualType Ty = InitEx->getType();
477          if (InitEx->isGLValue()) {
478            Ty = getContext().getPointerType(Ty);
479          }
480
481          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
482                                                 currBldrCtx->blockCount());
483        }
484        B.takeNodes(N);
485        ExplodedNodeSet Dst2;
486        evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
487        B.addNodes(Dst2);
488      }
489    }
490    else {
491      B.generateNode(DS, N, state);
492    }
493  }
494}
495
496void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
497                                  ExplodedNodeSet &Dst) {
498  assert(B->getOpcode() == BO_LAnd ||
499         B->getOpcode() == BO_LOr);
500
501  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
502  ProgramStateRef state = Pred->getState();
503
504  ExplodedNode *N = Pred;
505  while (!isa<BlockEntrance>(N->getLocation())) {
506    ProgramPoint P = N->getLocation();
507    assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
508    (void) P;
509    assert(N->pred_size() == 1);
510    N = *N->pred_begin();
511  }
512  assert(N->pred_size() == 1);
513  N = *N->pred_begin();
514  BlockEdge BE = cast<BlockEdge>(N->getLocation());
515  SVal X;
516
517  // Determine the value of the expression by introspecting how we
518  // got this location in the CFG.  This requires looking at the previous
519  // block we were in and what kind of control-flow transfer was involved.
520  const CFGBlock *SrcBlock = BE.getSrc();
521  // The only terminator (if there is one) that makes sense is a logical op.
522  CFGTerminator T = SrcBlock->getTerminator();
523  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
524    (void) Term;
525    assert(Term->isLogicalOp());
526    assert(SrcBlock->succ_size() == 2);
527    // Did we take the true or false branch?
528    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
529    X = svalBuilder.makeIntVal(constant, B->getType());
530  }
531  else {
532    // If there is no terminator, by construction the last statement
533    // in SrcBlock is the value of the enclosing expression.
534    // However, we still need to constrain that value to be 0 or 1.
535    assert(!SrcBlock->empty());
536    CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
537    const Expr *RHS = cast<Expr>(Elem.getStmt());
538    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
539
540    if (RHSVal.isUndef()) {
541      X = RHSVal;
542    } else {
543      DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
544      ProgramStateRef StTrue, StFalse;
545      llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
546      if (StTrue) {
547        if (StFalse) {
548          // We can't constrain the value to 0 or 1.
549          // The best we can do is a cast.
550          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
551        } else {
552          // The value is known to be true.
553          X = getSValBuilder().makeIntVal(1, B->getType());
554        }
555      } else {
556        // The value is known to be false.
557        assert(StFalse && "Infeasible path!");
558        X = getSValBuilder().makeIntVal(0, B->getType());
559      }
560    }
561  }
562  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
563}
564
565void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
566                                   ExplodedNode *Pred,
567                                   ExplodedNodeSet &Dst) {
568  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
569
570  ProgramStateRef state = Pred->getState();
571  const LocationContext *LCtx = Pred->getLocationContext();
572  QualType T = getContext().getCanonicalType(IE->getType());
573  unsigned NumInitElements = IE->getNumInits();
574
575  if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
576      T->isAnyComplexType()) {
577    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
578
579    // Handle base case where the initializer has no elements.
580    // e.g: static int* myArray[] = {};
581    if (NumInitElements == 0) {
582      SVal V = svalBuilder.makeCompoundVal(T, vals);
583      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
584      return;
585    }
586
587    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
588         ei = IE->rend(); it != ei; ++it) {
589      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
590      if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
591        V = UnknownVal();
592      vals = getBasicVals().consVals(V, vals);
593    }
594
595    B.generateNode(IE, Pred,
596                   state->BindExpr(IE, LCtx,
597                                   svalBuilder.makeCompoundVal(T, vals)));
598    return;
599  }
600
601  // Handle scalars: int{5} and int{}.
602  assert(NumInitElements <= 1);
603
604  SVal V;
605  if (NumInitElements == 0)
606    V = getSValBuilder().makeZeroVal(T);
607  else
608    V = state->getSVal(IE->getInit(0), LCtx);
609
610  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
611}
612
613void ExprEngine::VisitGuardedExpr(const Expr *Ex,
614                                  const Expr *L,
615                                  const Expr *R,
616                                  ExplodedNode *Pred,
617                                  ExplodedNodeSet &Dst) {
618  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
619  ProgramStateRef state = Pred->getState();
620  const LocationContext *LCtx = Pred->getLocationContext();
621  const CFGBlock *SrcBlock = 0;
622
623  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
624    ProgramPoint PP = N->getLocation();
625    if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
626      assert(N->pred_size() == 1);
627      continue;
628    }
629    SrcBlock = cast<BlockEdge>(&PP)->getSrc();
630    break;
631  }
632
633  // Find the last expression in the predecessor block.  That is the
634  // expression that is used for the value of the ternary expression.
635  bool hasValue = false;
636  SVal V;
637
638  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
639                                        E = SrcBlock->rend(); I != E; ++I) {
640    CFGElement CE = *I;
641    if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
642      const Expr *ValEx = cast<Expr>(CS->getStmt());
643      hasValue = true;
644      V = state->getSVal(ValEx, LCtx);
645      break;
646    }
647  }
648
649  assert(hasValue);
650  (void) hasValue;
651
652  // Generate a new node with the binding from the appropriate path.
653  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
654}
655
656void ExprEngine::
657VisitOffsetOfExpr(const OffsetOfExpr *OOE,
658                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
659  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
660  APSInt IV;
661  if (OOE->EvaluateAsInt(IV, getContext())) {
662    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
663    assert(OOE->getType()->isIntegerType());
664    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
665    SVal X = svalBuilder.makeIntVal(IV);
666    B.generateNode(OOE, Pred,
667                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
668                                              X));
669  }
670  // FIXME: Handle the case where __builtin_offsetof is not a constant.
671}
672
673
674void ExprEngine::
675VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
676                              ExplodedNode *Pred,
677                              ExplodedNodeSet &Dst) {
678  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
679
680  QualType T = Ex->getTypeOfArgument();
681
682  if (Ex->getKind() == UETT_SizeOf) {
683    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
684      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
685
686      // FIXME: Add support for VLA type arguments and VLA expressions.
687      // When that happens, we should probably refactor VLASizeChecker's code.
688      return;
689    }
690    else if (T->getAs<ObjCObjectType>()) {
691      // Some code tries to take the sizeof an ObjCObjectType, relying that
692      // the compiler has laid out its representation.  Just report Unknown
693      // for these.
694      return;
695    }
696  }
697
698  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
699  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
700
701  ProgramStateRef state = Pred->getState();
702  state = state->BindExpr(Ex, Pred->getLocationContext(),
703                          svalBuilder.makeIntVal(amt.getQuantity(),
704                                                     Ex->getType()));
705  Bldr.generateNode(Ex, Pred, state);
706}
707
708void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
709                                    ExplodedNode *Pred,
710                                    ExplodedNodeSet &Dst) {
711  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
712  switch (U->getOpcode()) {
713    default: {
714      Bldr.takeNodes(Pred);
715      ExplodedNodeSet Tmp;
716      VisitIncrementDecrementOperator(U, Pred, Tmp);
717      Bldr.addNodes(Tmp);
718    }
719      break;
720    case UO_Real: {
721      const Expr *Ex = U->getSubExpr()->IgnoreParens();
722
723      // FIXME: We don't have complex SValues yet.
724      if (Ex->getType()->isAnyComplexType()) {
725        // Just report "Unknown."
726        break;
727      }
728
729      // For all other types, UO_Real is an identity operation.
730      assert (U->getType() == Ex->getType());
731      ProgramStateRef state = Pred->getState();
732      const LocationContext *LCtx = Pred->getLocationContext();
733      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
734                                                 state->getSVal(Ex, LCtx)));
735      break;
736    }
737
738    case UO_Imag: {
739      const Expr *Ex = U->getSubExpr()->IgnoreParens();
740      // FIXME: We don't have complex SValues yet.
741      if (Ex->getType()->isAnyComplexType()) {
742        // Just report "Unknown."
743        break;
744      }
745      // For all other types, UO_Imag returns 0.
746      ProgramStateRef state = Pred->getState();
747      const LocationContext *LCtx = Pred->getLocationContext();
748      SVal X = svalBuilder.makeZeroVal(Ex->getType());
749      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
750      break;
751    }
752
753    case UO_Plus:
754      assert(!U->isGLValue());
755      // FALL-THROUGH.
756    case UO_Deref:
757    case UO_AddrOf:
758    case UO_Extension: {
759      // FIXME: We can probably just have some magic in Environment::getSVal()
760      // that propagates values, instead of creating a new node here.
761      //
762      // Unary "+" is a no-op, similar to a parentheses.  We still have places
763      // where it may be a block-level expression, so we need to
764      // generate an extra node that just propagates the value of the
765      // subexpression.
766      const Expr *Ex = U->getSubExpr()->IgnoreParens();
767      ProgramStateRef state = Pred->getState();
768      const LocationContext *LCtx = Pred->getLocationContext();
769      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
770                                                 state->getSVal(Ex, LCtx)));
771      break;
772    }
773
774    case UO_LNot:
775    case UO_Minus:
776    case UO_Not: {
777      assert (!U->isGLValue());
778      const Expr *Ex = U->getSubExpr()->IgnoreParens();
779      ProgramStateRef state = Pred->getState();
780      const LocationContext *LCtx = Pred->getLocationContext();
781
782      // Get the value of the subexpression.
783      SVal V = state->getSVal(Ex, LCtx);
784
785      if (V.isUnknownOrUndef()) {
786        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
787        break;
788      }
789
790      switch (U->getOpcode()) {
791        default:
792          llvm_unreachable("Invalid Opcode.");
793        case UO_Not:
794          // FIXME: Do we need to handle promotions?
795          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
796          break;
797        case UO_Minus:
798          // FIXME: Do we need to handle promotions?
799          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
800          break;
801        case UO_LNot:
802          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
803          //
804          //  Note: technically we do "E == 0", but this is the same in the
805          //    transfer functions as "0 == E".
806          SVal Result;
807          if (isa<Loc>(V)) {
808            Loc X = svalBuilder.makeNull();
809            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
810                               U->getType());
811          }
812          else {
813            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
814            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
815                               U->getType());
816          }
817
818          state = state->BindExpr(U, LCtx, Result);
819          break;
820      }
821      Bldr.generateNode(U, Pred, state);
822      break;
823    }
824  }
825
826}
827
828void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
829                                                 ExplodedNode *Pred,
830                                                 ExplodedNodeSet &Dst) {
831  // Handle ++ and -- (both pre- and post-increment).
832  assert (U->isIncrementDecrementOp());
833  const Expr *Ex = U->getSubExpr()->IgnoreParens();
834
835  const LocationContext *LCtx = Pred->getLocationContext();
836  ProgramStateRef state = Pred->getState();
837  SVal loc = state->getSVal(Ex, LCtx);
838
839  // Perform a load.
840  ExplodedNodeSet Tmp;
841  evalLoad(Tmp, U, Ex, Pred, state, loc);
842
843  ExplodedNodeSet Dst2;
844  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
845  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
846
847    state = (*I)->getState();
848    assert(LCtx == (*I)->getLocationContext());
849    SVal V2_untested = state->getSVal(Ex, LCtx);
850
851    // Propagate unknown and undefined values.
852    if (V2_untested.isUnknownOrUndef()) {
853      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
854      continue;
855    }
856    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
857
858    // Handle all other values.
859    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
860
861    // If the UnaryOperator has non-location type, use its type to create the
862    // constant value. If the UnaryOperator has location type, create the
863    // constant with int type and pointer width.
864    SVal RHS;
865
866    if (U->getType()->isAnyPointerType())
867      RHS = svalBuilder.makeArrayIndex(1);
868    else if (U->getType()->isIntegralOrEnumerationType())
869      RHS = svalBuilder.makeIntVal(1, U->getType());
870    else
871      RHS = UnknownVal();
872
873    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
874
875    // Conjure a new symbol if necessary to recover precision.
876    if (Result.isUnknown()){
877      DefinedOrUnknownSVal SymVal =
878        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
879      Result = SymVal;
880
881      // If the value is a location, ++/-- should always preserve
882      // non-nullness.  Check if the original value was non-null, and if so
883      // propagate that constraint.
884      if (Loc::isLocType(U->getType())) {
885        DefinedOrUnknownSVal Constraint =
886        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
887
888        if (!state->assume(Constraint, true)) {
889          // It isn't feasible for the original value to be null.
890          // Propagate this constraint.
891          Constraint = svalBuilder.evalEQ(state, SymVal,
892                                       svalBuilder.makeZeroVal(U->getType()));
893
894
895          state = state->assume(Constraint, false);
896          assert(state);
897        }
898      }
899    }
900
901    // Since the lvalue-to-rvalue conversion is explicit in the AST,
902    // we bind an l-value if the operator is prefix and an lvalue (in C++).
903    if (U->isGLValue())
904      state = state->BindExpr(U, LCtx, loc);
905    else
906      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
907
908    // Perform the store.
909    Bldr.takeNodes(*I);
910    ExplodedNodeSet Dst3;
911    evalStore(Dst3, U, U, *I, state, loc, Result);
912    Bldr.addNodes(Dst3);
913  }
914  Dst.insert(Dst2);
915}
916