ExprEngineC.cpp revision 7a95de68c093991047ed8d339479ccad51b88663
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (LeftV.getAs<Loc>() &&
71            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                Count);
74        }
75        if (RightV.getAs<Loc>() &&
76            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                               Count);
79        }
80      }
81
82      // Process non-assignments except commas or short-circuited
83      // logical expressions (LAnd and LOr).
84      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85      if (Result.isUnknown()) {
86        Bldr.generateNode(B, *it, state);
87        continue;
88      }
89
90      state = state->BindExpr(B, LCtx, Result);
91      Bldr.generateNode(B, *it, state);
92      continue;
93    }
94
95    assert (B->isCompoundAssignmentOp());
96
97    switch (Op) {
98      default:
99        llvm_unreachable("Invalid opcode for compound assignment.");
100      case BO_MulAssign: Op = BO_Mul; break;
101      case BO_DivAssign: Op = BO_Div; break;
102      case BO_RemAssign: Op = BO_Rem; break;
103      case BO_AddAssign: Op = BO_Add; break;
104      case BO_SubAssign: Op = BO_Sub; break;
105      case BO_ShlAssign: Op = BO_Shl; break;
106      case BO_ShrAssign: Op = BO_Shr; break;
107      case BO_AndAssign: Op = BO_And; break;
108      case BO_XorAssign: Op = BO_Xor; break;
109      case BO_OrAssign:  Op = BO_Or;  break;
110    }
111
112    // Perform a load (the LHS).  This performs the checks for
113    // null dereferences, and so on.
114    ExplodedNodeSet Tmp;
115    SVal location = LeftV;
116    evalLoad(Tmp, B, LHS, *it, state, location);
117
118    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119         ++I) {
120
121      state = (*I)->getState();
122      const LocationContext *LCtx = (*I)->getLocationContext();
123      SVal V = state->getSVal(LHS, LCtx);
124
125      // Get the computation type.
126      QualType CTy =
127        cast<CompoundAssignOperator>(B)->getComputationResultType();
128      CTy = getContext().getCanonicalType(CTy);
129
130      QualType CLHSTy =
131        cast<CompoundAssignOperator>(B)->getComputationLHSType();
132      CLHSTy = getContext().getCanonicalType(CLHSTy);
133
134      QualType LTy = getContext().getCanonicalType(LHS->getType());
135
136      // Promote LHS.
137      V = svalBuilder.evalCast(V, CLHSTy, LTy);
138
139      // Compute the result of the operation.
140      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                         B->getType(), CTy);
142
143      // EXPERIMENTAL: "Conjured" symbols.
144      // FIXME: Handle structs.
145
146      SVal LHSVal;
147
148      if (Result.isUnknown()) {
149        // The symbolic value is actually for the type of the left-hand side
150        // expression, not the computation type, as this is the value the
151        // LValue on the LHS will bind to.
152        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                              currBldrCtx->blockCount());
154        // However, we need to convert the symbol to the computation type.
155        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156      }
157      else {
158        // The left-hand side may bind to a different value then the
159        // computation type.
160        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161      }
162
163      // In C++, assignment and compound assignment operators return an
164      // lvalue.
165      if (B->isGLValue())
166        state = state->BindExpr(B, LCtx, location);
167      else
168        state = state->BindExpr(B, LCtx, Result);
169
170      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171    }
172  }
173
174  // FIXME: postvisits eventually go in ::Visit()
175  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176}
177
178void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                ExplodedNodeSet &Dst) {
180
181  CanQualType T = getContext().getCanonicalType(BE->getType());
182
183  // Get the value of the block itself.
184  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                       Pred->getLocationContext());
186
187  ProgramStateRef State = Pred->getState();
188
189  // If we created a new MemRegion for the block, we should explicitly bind
190  // the captured variables.
191  if (const BlockDataRegion *BDR =
192      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193
194    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                              E = BDR->referenced_vars_end();
196
197    for (; I != E; ++I) {
198      const MemRegion *capturedR = I.getCapturedRegion();
199      const MemRegion *originalR = I.getOriginalRegion();
200      if (capturedR != originalR) {
201        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203      }
204    }
205  }
206
207  ExplodedNodeSet Tmp;
208  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209  Bldr.generateNode(BE, Pred,
210                    State->BindExpr(BE, Pred->getLocationContext(), V),
211                    0, ProgramPoint::PostLValueKind);
212
213  // FIXME: Move all post/pre visits to ::Visit().
214  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215}
216
217void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219
220  ExplodedNodeSet dstPreStmt;
221  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222
223  if (CastE->getCastKind() == CK_LValueToRValue) {
224    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225         I!=E; ++I) {
226      ExplodedNode *subExprNode = *I;
227      ProgramStateRef state = subExprNode->getState();
228      const LocationContext *LCtx = subExprNode->getLocationContext();
229      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230    }
231    return;
232  }
233
234  // All other casts.
235  QualType T = CastE->getType();
236  QualType ExTy = Ex->getType();
237
238  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239    T = ExCast->getTypeAsWritten();
240
241  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243       I != E; ++I) {
244
245    Pred = *I;
246    ProgramStateRef state = Pred->getState();
247    const LocationContext *LCtx = Pred->getLocationContext();
248
249    switch (CastE->getCastKind()) {
250      case CK_LValueToRValue:
251        llvm_unreachable("LValueToRValue casts handled earlier.");
252      case CK_ToVoid:
253        continue;
254        // The analyzer doesn't do anything special with these casts,
255        // since it understands retain/release semantics already.
256      case CK_ARCProduceObject:
257      case CK_ARCConsumeObject:
258      case CK_ARCReclaimReturnedObject:
259      case CK_ARCExtendBlockObject: // Fall-through.
260      case CK_CopyAndAutoreleaseBlockObject:
261        // The analyser can ignore atomic casts for now, although some future
262        // checkers may want to make certain that you're not modifying the same
263        // value through atomic and nonatomic pointers.
264      case CK_AtomicToNonAtomic:
265      case CK_NonAtomicToAtomic:
266        // True no-ops.
267      case CK_NoOp:
268      case CK_ConstructorConversion:
269      case CK_UserDefinedConversion:
270      case CK_FunctionToPointerDecay:
271      case CK_BuiltinFnToFnPtr: {
272        // Copy the SVal of Ex to CastE.
273        ProgramStateRef state = Pred->getState();
274        const LocationContext *LCtx = Pred->getLocationContext();
275        SVal V = state->getSVal(Ex, LCtx);
276        state = state->BindExpr(CastE, LCtx, V);
277        Bldr.generateNode(CastE, Pred, state);
278        continue;
279      }
280      case CK_MemberPointerToBoolean:
281        // FIXME: For now, member pointers are represented by void *.
282        // FALLTHROUGH
283      case CK_Dependent:
284      case CK_ArrayToPointerDecay:
285      case CK_BitCast:
286      case CK_IntegralCast:
287      case CK_NullToPointer:
288      case CK_IntegralToPointer:
289      case CK_PointerToIntegral:
290      case CK_PointerToBoolean:
291      case CK_IntegralToBoolean:
292      case CK_IntegralToFloating:
293      case CK_FloatingToIntegral:
294      case CK_FloatingToBoolean:
295      case CK_FloatingCast:
296      case CK_FloatingRealToComplex:
297      case CK_FloatingComplexToReal:
298      case CK_FloatingComplexToBoolean:
299      case CK_FloatingComplexCast:
300      case CK_FloatingComplexToIntegralComplex:
301      case CK_IntegralRealToComplex:
302      case CK_IntegralComplexToReal:
303      case CK_IntegralComplexToBoolean:
304      case CK_IntegralComplexCast:
305      case CK_IntegralComplexToFloatingComplex:
306      case CK_CPointerToObjCPointerCast:
307      case CK_BlockPointerToObjCPointerCast:
308      case CK_AnyPointerToBlockPointerCast:
309      case CK_ObjCObjectLValueCast:
310      case CK_ZeroToOCLEvent: {
311        // Delegate to SValBuilder to process.
312        SVal V = state->getSVal(Ex, LCtx);
313        V = svalBuilder.evalCast(V, T, ExTy);
314        state = state->BindExpr(CastE, LCtx, V);
315        Bldr.generateNode(CastE, Pred, state);
316        continue;
317      }
318      case CK_DerivedToBase:
319      case CK_UncheckedDerivedToBase: {
320        // For DerivedToBase cast, delegate to the store manager.
321        SVal val = state->getSVal(Ex, LCtx);
322        val = getStoreManager().evalDerivedToBase(val, CastE);
323        state = state->BindExpr(CastE, LCtx, val);
324        Bldr.generateNode(CastE, Pred, state);
325        continue;
326      }
327      // Handle C++ dyn_cast.
328      case CK_Dynamic: {
329        SVal val = state->getSVal(Ex, LCtx);
330
331        // Compute the type of the result.
332        QualType resultType = CastE->getType();
333        if (CastE->isGLValue())
334          resultType = getContext().getPointerType(resultType);
335
336        bool Failed = false;
337
338        // Check if the value being cast evaluates to 0.
339        if (val.isZeroConstant())
340          Failed = true;
341        // Else, evaluate the cast.
342        else
343          val = getStoreManager().evalDynamicCast(val, T, Failed);
344
345        if (Failed) {
346          if (T->isReferenceType()) {
347            // A bad_cast exception is thrown if input value is a reference.
348            // Currently, we model this, by generating a sink.
349            Bldr.generateSink(CastE, Pred, state);
350            continue;
351          } else {
352            // If the cast fails on a pointer, bind to 0.
353            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
354          }
355        } else {
356          // If we don't know if the cast succeeded, conjure a new symbol.
357          if (val.isUnknown()) {
358            DefinedOrUnknownSVal NewSym =
359              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
360                                           currBldrCtx->blockCount());
361            state = state->BindExpr(CastE, LCtx, NewSym);
362          } else
363            // Else, bind to the derived region value.
364            state = state->BindExpr(CastE, LCtx, val);
365        }
366        Bldr.generateNode(CastE, Pred, state);
367        continue;
368      }
369      case CK_NullToMemberPointer: {
370        // FIXME: For now, member pointers are represented by void *.
371        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
372        state = state->BindExpr(CastE, LCtx, V);
373        Bldr.generateNode(CastE, Pred, state);
374        continue;
375      }
376      // Various C++ casts that are not handled yet.
377      case CK_ToUnion:
378      case CK_BaseToDerived:
379      case CK_BaseToDerivedMemberPointer:
380      case CK_DerivedToBaseMemberPointer:
381      case CK_ReinterpretMemberPointer:
382      case CK_VectorSplat:
383      case CK_LValueBitCast: {
384        // Recover some path-sensitivty by conjuring a new value.
385        QualType resultType = CastE->getType();
386        if (CastE->isGLValue())
387          resultType = getContext().getPointerType(resultType);
388        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
389                                                   resultType,
390                                                   currBldrCtx->blockCount());
391        state = state->BindExpr(CastE, LCtx, result);
392        Bldr.generateNode(CastE, Pred, state);
393        continue;
394      }
395    }
396  }
397}
398
399void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
400                                          ExplodedNode *Pred,
401                                          ExplodedNodeSet &Dst) {
402  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
403
404  const InitListExpr *ILE
405    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
406
407  ProgramStateRef state = Pred->getState();
408  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
409  const LocationContext *LC = Pred->getLocationContext();
410  state = state->bindCompoundLiteral(CL, LC, ILV);
411
412  // Compound literal expressions are a GNU extension in C++.
413  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
414  // and like temporary objects created by the functional notation T()
415  // CLs are destroyed at the end of the containing full-expression.
416  // HOWEVER, an rvalue of array type is not something the analyzer can
417  // reason about, since we expect all regions to be wrapped in Locs.
418  // So we treat array CLs as lvalues as well, knowing that they will decay
419  // to pointers as soon as they are used.
420  if (CL->isGLValue() || CL->getType()->isArrayType())
421    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
422  else
423    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
424}
425
426/// The GDM component containing the set of global variables which have been
427/// previously initialized with explicit initializers.
428REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
429                                 llvm::ImmutableSet<const VarDecl *> )
430
431void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
432                               ExplodedNodeSet &Dst) {
433  // Assumption: The CFG has one DeclStmt per Decl.
434  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
435
436  if (!VD) {
437    //TODO:AZ: remove explicit insertion after refactoring is done.
438    Dst.insert(Pred);
439    return;
440  }
441
442  // Check if a value has been previously initialized. There will be an entry in
443  // the set for variables with global storage which have been previously
444  // initialized.
445  if (VD->hasGlobalStorage())
446    if (Pred->getState()->contains<InitializedGlobalsSet>(VD)) {
447      Dst.insert(Pred);
448      return;
449    }
450
451  // FIXME: all pre/post visits should eventually be handled by ::Visit().
452  ExplodedNodeSet dstPreVisit;
453  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
454
455  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
456  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
457       I!=E; ++I) {
458    ExplodedNode *N = *I;
459    ProgramStateRef state = N->getState();
460    const LocationContext *LC = N->getLocationContext();
461
462    // Decls without InitExpr are not initialized explicitly.
463    if (const Expr *InitEx = VD->getInit()) {
464
465      // Note in the state that the initialization has occurred.
466      ExplodedNode *UpdatedN = N;
467      if (VD->hasGlobalStorage()) {
468        state = state->add<InitializedGlobalsSet>(VD);
469        UpdatedN = B.generateNode(DS, N, state);
470      }
471
472      SVal InitVal = state->getSVal(InitEx, LC);
473
474      if (InitVal == state->getLValue(VD, LC) ||
475          (VD->getType()->isArrayType() &&
476           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
477        // We constructed the object directly in the variable.
478        // No need to bind anything.
479        B.generateNode(DS, UpdatedN, state);
480      } else {
481        // We bound the temp obj region to the CXXConstructExpr. Now recover
482        // the lazy compound value when the variable is not a reference.
483        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
484            !VD->getType()->isReferenceType()) {
485          if (Optional<loc::MemRegionVal> M =
486                  InitVal.getAs<loc::MemRegionVal>()) {
487            InitVal = state->getSVal(M->getRegion());
488            assert(InitVal.getAs<nonloc::LazyCompoundVal>());
489          }
490        }
491
492        // Recover some path-sensitivity if a scalar value evaluated to
493        // UnknownVal.
494        if (InitVal.isUnknown()) {
495          QualType Ty = InitEx->getType();
496          if (InitEx->isGLValue()) {
497            Ty = getContext().getPointerType(Ty);
498          }
499
500          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
501                                                 currBldrCtx->blockCount());
502        }
503
504
505        B.takeNodes(UpdatedN);
506        ExplodedNodeSet Dst2;
507        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
508        B.addNodes(Dst2);
509      }
510    }
511    else {
512      B.generateNode(DS, N, state);
513    }
514  }
515}
516
517void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
518                                  ExplodedNodeSet &Dst) {
519  assert(B->getOpcode() == BO_LAnd ||
520         B->getOpcode() == BO_LOr);
521
522  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
523  ProgramStateRef state = Pred->getState();
524
525  ExplodedNode *N = Pred;
526  while (!N->getLocation().getAs<BlockEntrance>()) {
527    ProgramPoint P = N->getLocation();
528    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
529    (void) P;
530    assert(N->pred_size() == 1);
531    N = *N->pred_begin();
532  }
533  assert(N->pred_size() == 1);
534  N = *N->pred_begin();
535  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
536  SVal X;
537
538  // Determine the value of the expression by introspecting how we
539  // got this location in the CFG.  This requires looking at the previous
540  // block we were in and what kind of control-flow transfer was involved.
541  const CFGBlock *SrcBlock = BE.getSrc();
542  // The only terminator (if there is one) that makes sense is a logical op.
543  CFGTerminator T = SrcBlock->getTerminator();
544  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
545    (void) Term;
546    assert(Term->isLogicalOp());
547    assert(SrcBlock->succ_size() == 2);
548    // Did we take the true or false branch?
549    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
550    X = svalBuilder.makeIntVal(constant, B->getType());
551  }
552  else {
553    // If there is no terminator, by construction the last statement
554    // in SrcBlock is the value of the enclosing expression.
555    // However, we still need to constrain that value to be 0 or 1.
556    assert(!SrcBlock->empty());
557    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
558    const Expr *RHS = cast<Expr>(Elem.getStmt());
559    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
560
561    if (RHSVal.isUndef()) {
562      X = RHSVal;
563    } else {
564      DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
565      ProgramStateRef StTrue, StFalse;
566      llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
567      if (StTrue) {
568        if (StFalse) {
569          // We can't constrain the value to 0 or 1.
570          // The best we can do is a cast.
571          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
572        } else {
573          // The value is known to be true.
574          X = getSValBuilder().makeIntVal(1, B->getType());
575        }
576      } else {
577        // The value is known to be false.
578        assert(StFalse && "Infeasible path!");
579        X = getSValBuilder().makeIntVal(0, B->getType());
580      }
581    }
582  }
583  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
584}
585
586void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
587                                   ExplodedNode *Pred,
588                                   ExplodedNodeSet &Dst) {
589  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
590
591  ProgramStateRef state = Pred->getState();
592  const LocationContext *LCtx = Pred->getLocationContext();
593  QualType T = getContext().getCanonicalType(IE->getType());
594  unsigned NumInitElements = IE->getNumInits();
595
596  if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
597      T->isAnyComplexType()) {
598    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
599
600    // Handle base case where the initializer has no elements.
601    // e.g: static int* myArray[] = {};
602    if (NumInitElements == 0) {
603      SVal V = svalBuilder.makeCompoundVal(T, vals);
604      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
605      return;
606    }
607
608    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
609         ei = IE->rend(); it != ei; ++it) {
610      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
611      if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
612        V = UnknownVal();
613      vals = getBasicVals().consVals(V, vals);
614    }
615
616    B.generateNode(IE, Pred,
617                   state->BindExpr(IE, LCtx,
618                                   svalBuilder.makeCompoundVal(T, vals)));
619    return;
620  }
621
622  // Handle scalars: int{5} and int{}.
623  assert(NumInitElements <= 1);
624
625  SVal V;
626  if (NumInitElements == 0)
627    V = getSValBuilder().makeZeroVal(T);
628  else
629    V = state->getSVal(IE->getInit(0), LCtx);
630
631  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
632}
633
634void ExprEngine::VisitGuardedExpr(const Expr *Ex,
635                                  const Expr *L,
636                                  const Expr *R,
637                                  ExplodedNode *Pred,
638                                  ExplodedNodeSet &Dst) {
639  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
640  ProgramStateRef state = Pred->getState();
641  const LocationContext *LCtx = Pred->getLocationContext();
642  const CFGBlock *SrcBlock = 0;
643
644  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
645    ProgramPoint PP = N->getLocation();
646    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
647      assert(N->pred_size() == 1);
648      continue;
649    }
650    SrcBlock = PP.castAs<BlockEdge>().getSrc();
651    break;
652  }
653
654  // Find the last expression in the predecessor block.  That is the
655  // expression that is used for the value of the ternary expression.
656  bool hasValue = false;
657  SVal V;
658
659  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
660                                        E = SrcBlock->rend(); I != E; ++I) {
661    CFGElement CE = *I;
662    if (CFGStmt CS = CE.getAs<CFGStmt>()) {
663      const Expr *ValEx = cast<Expr>(CS.getStmt());
664      hasValue = true;
665      V = state->getSVal(ValEx, LCtx);
666      break;
667    }
668  }
669
670  assert(hasValue);
671  (void) hasValue;
672
673  // Generate a new node with the binding from the appropriate path.
674  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
675}
676
677void ExprEngine::
678VisitOffsetOfExpr(const OffsetOfExpr *OOE,
679                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
680  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
681  APSInt IV;
682  if (OOE->EvaluateAsInt(IV, getContext())) {
683    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
684    assert(OOE->getType()->isIntegerType());
685    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
686    SVal X = svalBuilder.makeIntVal(IV);
687    B.generateNode(OOE, Pred,
688                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
689                                              X));
690  }
691  // FIXME: Handle the case where __builtin_offsetof is not a constant.
692}
693
694
695void ExprEngine::
696VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
697                              ExplodedNode *Pred,
698                              ExplodedNodeSet &Dst) {
699  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
700
701  QualType T = Ex->getTypeOfArgument();
702
703  if (Ex->getKind() == UETT_SizeOf) {
704    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
705      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
706
707      // FIXME: Add support for VLA type arguments and VLA expressions.
708      // When that happens, we should probably refactor VLASizeChecker's code.
709      return;
710    }
711    else if (T->getAs<ObjCObjectType>()) {
712      // Some code tries to take the sizeof an ObjCObjectType, relying that
713      // the compiler has laid out its representation.  Just report Unknown
714      // for these.
715      return;
716    }
717  }
718
719  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
720  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
721
722  ProgramStateRef state = Pred->getState();
723  state = state->BindExpr(Ex, Pred->getLocationContext(),
724                          svalBuilder.makeIntVal(amt.getQuantity(),
725                                                     Ex->getType()));
726  Bldr.generateNode(Ex, Pred, state);
727}
728
729void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
730                                    ExplodedNode *Pred,
731                                    ExplodedNodeSet &Dst) {
732  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
733  switch (U->getOpcode()) {
734    default: {
735      Bldr.takeNodes(Pred);
736      ExplodedNodeSet Tmp;
737      VisitIncrementDecrementOperator(U, Pred, Tmp);
738      Bldr.addNodes(Tmp);
739    }
740      break;
741    case UO_Real: {
742      const Expr *Ex = U->getSubExpr()->IgnoreParens();
743
744      // FIXME: We don't have complex SValues yet.
745      if (Ex->getType()->isAnyComplexType()) {
746        // Just report "Unknown."
747        break;
748      }
749
750      // For all other types, UO_Real is an identity operation.
751      assert (U->getType() == Ex->getType());
752      ProgramStateRef state = Pred->getState();
753      const LocationContext *LCtx = Pred->getLocationContext();
754      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
755                                                 state->getSVal(Ex, LCtx)));
756      break;
757    }
758
759    case UO_Imag: {
760      const Expr *Ex = U->getSubExpr()->IgnoreParens();
761      // FIXME: We don't have complex SValues yet.
762      if (Ex->getType()->isAnyComplexType()) {
763        // Just report "Unknown."
764        break;
765      }
766      // For all other types, UO_Imag returns 0.
767      ProgramStateRef state = Pred->getState();
768      const LocationContext *LCtx = Pred->getLocationContext();
769      SVal X = svalBuilder.makeZeroVal(Ex->getType());
770      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
771      break;
772    }
773
774    case UO_Plus:
775      assert(!U->isGLValue());
776      // FALL-THROUGH.
777    case UO_Deref:
778    case UO_AddrOf:
779    case UO_Extension: {
780      // FIXME: We can probably just have some magic in Environment::getSVal()
781      // that propagates values, instead of creating a new node here.
782      //
783      // Unary "+" is a no-op, similar to a parentheses.  We still have places
784      // where it may be a block-level expression, so we need to
785      // generate an extra node that just propagates the value of the
786      // subexpression.
787      const Expr *Ex = U->getSubExpr()->IgnoreParens();
788      ProgramStateRef state = Pred->getState();
789      const LocationContext *LCtx = Pred->getLocationContext();
790      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
791                                                 state->getSVal(Ex, LCtx)));
792      break;
793    }
794
795    case UO_LNot:
796    case UO_Minus:
797    case UO_Not: {
798      assert (!U->isGLValue());
799      const Expr *Ex = U->getSubExpr()->IgnoreParens();
800      ProgramStateRef state = Pred->getState();
801      const LocationContext *LCtx = Pred->getLocationContext();
802
803      // Get the value of the subexpression.
804      SVal V = state->getSVal(Ex, LCtx);
805
806      if (V.isUnknownOrUndef()) {
807        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
808        break;
809      }
810
811      switch (U->getOpcode()) {
812        default:
813          llvm_unreachable("Invalid Opcode.");
814        case UO_Not:
815          // FIXME: Do we need to handle promotions?
816          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
817          break;
818        case UO_Minus:
819          // FIXME: Do we need to handle promotions?
820          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
821          break;
822        case UO_LNot:
823          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
824          //
825          //  Note: technically we do "E == 0", but this is the same in the
826          //    transfer functions as "0 == E".
827          SVal Result;
828          if (Optional<Loc> LV = V.getAs<Loc>()) {
829            Loc X = svalBuilder.makeNull();
830            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
831          }
832          else if (Ex->getType()->isFloatingType()) {
833            // FIXME: handle floating point types.
834            Result = UnknownVal();
835          } else {
836            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
837            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
838                               U->getType());
839          }
840
841          state = state->BindExpr(U, LCtx, Result);
842          break;
843      }
844      Bldr.generateNode(U, Pred, state);
845      break;
846    }
847  }
848
849}
850
851void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
852                                                 ExplodedNode *Pred,
853                                                 ExplodedNodeSet &Dst) {
854  // Handle ++ and -- (both pre- and post-increment).
855  assert (U->isIncrementDecrementOp());
856  const Expr *Ex = U->getSubExpr()->IgnoreParens();
857
858  const LocationContext *LCtx = Pred->getLocationContext();
859  ProgramStateRef state = Pred->getState();
860  SVal loc = state->getSVal(Ex, LCtx);
861
862  // Perform a load.
863  ExplodedNodeSet Tmp;
864  evalLoad(Tmp, U, Ex, Pred, state, loc);
865
866  ExplodedNodeSet Dst2;
867  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
868  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
869
870    state = (*I)->getState();
871    assert(LCtx == (*I)->getLocationContext());
872    SVal V2_untested = state->getSVal(Ex, LCtx);
873
874    // Propagate unknown and undefined values.
875    if (V2_untested.isUnknownOrUndef()) {
876      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
877      continue;
878    }
879    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
880
881    // Handle all other values.
882    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
883
884    // If the UnaryOperator has non-location type, use its type to create the
885    // constant value. If the UnaryOperator has location type, create the
886    // constant with int type and pointer width.
887    SVal RHS;
888
889    if (U->getType()->isAnyPointerType())
890      RHS = svalBuilder.makeArrayIndex(1);
891    else if (U->getType()->isIntegralOrEnumerationType())
892      RHS = svalBuilder.makeIntVal(1, U->getType());
893    else
894      RHS = UnknownVal();
895
896    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
897
898    // Conjure a new symbol if necessary to recover precision.
899    if (Result.isUnknown()){
900      DefinedOrUnknownSVal SymVal =
901        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
902      Result = SymVal;
903
904      // If the value is a location, ++/-- should always preserve
905      // non-nullness.  Check if the original value was non-null, and if so
906      // propagate that constraint.
907      if (Loc::isLocType(U->getType())) {
908        DefinedOrUnknownSVal Constraint =
909        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
910
911        if (!state->assume(Constraint, true)) {
912          // It isn't feasible for the original value to be null.
913          // Propagate this constraint.
914          Constraint = svalBuilder.evalEQ(state, SymVal,
915                                       svalBuilder.makeZeroVal(U->getType()));
916
917
918          state = state->assume(Constraint, false);
919          assert(state);
920        }
921      }
922    }
923
924    // Since the lvalue-to-rvalue conversion is explicit in the AST,
925    // we bind an l-value if the operator is prefix and an lvalue (in C++).
926    if (U->isGLValue())
927      state = state->BindExpr(U, LCtx, loc);
928    else
929      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
930
931    // Perform the store.
932    Bldr.takeNodes(*I);
933    ExplodedNodeSet Dst3;
934    evalStore(Dst3, U, U, *I, state, loc, Result);
935    Bldr.addNodes(Dst3);
936  }
937  Dst.insert(Dst2);
938}
939