ExprEngineC.cpp revision c7ecc43c33a21b82c49664910b19fcc1f555aa51
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  This file defines ExprEngine's support for C expressions.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/CheckerManager.h"
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace clang;
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace ento;
19using llvm::APSInt;
20
21void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
22                                     ExplodedNode *Pred,
23                                     ExplodedNodeSet &Dst) {
24
25  Expr *LHS = B->getLHS()->IgnoreParens();
26  Expr *RHS = B->getRHS()->IgnoreParens();
27
28  // FIXME: Prechecks eventually go in ::Visit().
29  ExplodedNodeSet CheckedSet;
30  ExplodedNodeSet Tmp2;
31  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
32
33  // With both the LHS and RHS evaluated, process the operation itself.
34  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
35         it != ei; ++it) {
36
37    ProgramStateRef state = (*it)->getState();
38    const LocationContext *LCtx = (*it)->getLocationContext();
39    SVal LeftV = state->getSVal(LHS, LCtx);
40    SVal RightV = state->getSVal(RHS, LCtx);
41
42    BinaryOperator::Opcode Op = B->getOpcode();
43
44    if (Op == BO_Assign) {
45      // EXPERIMENTAL: "Conjured" symbols.
46      // FIXME: Handle structs.
47      if (RightV.isUnknown()) {
48        unsigned Count = currentBuilderContext->getCurrentBlockCount();
49        RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx, Count);
50      }
51      // Simulate the effects of a "store":  bind the value of the RHS
52      // to the L-Value represented by the LHS.
53      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
54      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
55                LeftV, RightV);
56      continue;
57    }
58
59    if (!B->isAssignmentOp()) {
60      StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
61
62      if (B->isAdditiveOp()) {
63        // If one of the operands is a location, conjure a symbol for the other
64        // one (offset) if it's unknown so that memory arithmetic always
65        // results in an ElementRegion.
66        // TODO: This can be removed after we enable history tracking with
67        // SymSymExpr.
68        unsigned Count = currentBuilderContext->getCurrentBlockCount();
69        if (isa<Loc>(LeftV) &&
70            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
71          RightV = svalBuilder.getConjuredSymbolVal(RHS, LCtx,
72                                                    RHS->getType(), Count);
73        }
74        if (isa<Loc>(RightV) &&
75            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
76          LeftV = svalBuilder.getConjuredSymbolVal(LHS, LCtx,
77                                                   LHS->getType(), Count);
78        }
79      }
80
81      // Process non-assignments except commas or short-circuited
82      // logical expressions (LAnd and LOr).
83      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
84      if (Result.isUnknown()) {
85        Bldr.generateNode(B, *it, state);
86        continue;
87      }
88
89      state = state->BindExpr(B, LCtx, Result);
90      Bldr.generateNode(B, *it, state);
91      continue;
92    }
93
94    assert (B->isCompoundAssignmentOp());
95
96    switch (Op) {
97      default:
98        llvm_unreachable("Invalid opcode for compound assignment.");
99      case BO_MulAssign: Op = BO_Mul; break;
100      case BO_DivAssign: Op = BO_Div; break;
101      case BO_RemAssign: Op = BO_Rem; break;
102      case BO_AddAssign: Op = BO_Add; break;
103      case BO_SubAssign: Op = BO_Sub; break;
104      case BO_ShlAssign: Op = BO_Shl; break;
105      case BO_ShrAssign: Op = BO_Shr; break;
106      case BO_AndAssign: Op = BO_And; break;
107      case BO_XorAssign: Op = BO_Xor; break;
108      case BO_OrAssign:  Op = BO_Or;  break;
109    }
110
111    // Perform a load (the LHS).  This performs the checks for
112    // null dereferences, and so on.
113    ExplodedNodeSet Tmp;
114    SVal location = LeftV;
115    evalLoad(Tmp, B, LHS, *it, state, location);
116
117    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
118         ++I) {
119
120      state = (*I)->getState();
121      const LocationContext *LCtx = (*I)->getLocationContext();
122      SVal V = state->getSVal(LHS, LCtx);
123
124      // Get the computation type.
125      QualType CTy =
126        cast<CompoundAssignOperator>(B)->getComputationResultType();
127      CTy = getContext().getCanonicalType(CTy);
128
129      QualType CLHSTy =
130        cast<CompoundAssignOperator>(B)->getComputationLHSType();
131      CLHSTy = getContext().getCanonicalType(CLHSTy);
132
133      QualType LTy = getContext().getCanonicalType(LHS->getType());
134
135      // Promote LHS.
136      V = svalBuilder.evalCast(V, CLHSTy, LTy);
137
138      // Compute the result of the operation.
139      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
140                                         B->getType(), CTy);
141
142      // EXPERIMENTAL: "Conjured" symbols.
143      // FIXME: Handle structs.
144
145      SVal LHSVal;
146
147      if (Result.isUnknown()) {
148
149        unsigned Count = currentBuilderContext->getCurrentBlockCount();
150
151        // The symbolic value is actually for the type of the left-hand side
152        // expression, not the computation type, as this is the value the
153        // LValue on the LHS will bind to.
154        LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx,
155						  LTy, Count);
156
157        // However, we need to convert the symbol to the computation type.
158        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
159      }
160      else {
161        // The left-hand side may bind to a different value then the
162        // computation type.
163        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
164      }
165
166      // In C++, assignment and compound assignment operators return an
167      // lvalue.
168      if (B->isGLValue())
169        state = state->BindExpr(B, LCtx, location);
170      else
171        state = state->BindExpr(B, LCtx, Result);
172
173      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
174    }
175  }
176
177  // FIXME: postvisits eventually go in ::Visit()
178  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
179}
180
181void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
182                                ExplodedNodeSet &Dst) {
183
184  CanQualType T = getContext().getCanonicalType(BE->getType());
185
186  // Get the value of the block itself.
187  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
188                                       Pred->getLocationContext());
189
190  ProgramStateRef State = Pred->getState();
191
192  // If we created a new MemRegion for the block, we should explicitly bind
193  // the captured variables.
194  if (const BlockDataRegion *BDR =
195      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
196
197    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
198                                              E = BDR->referenced_vars_end();
199
200    for (; I != E; ++I) {
201      const MemRegion *capturedR = I.getCapturedRegion();
202      const MemRegion *originalR = I.getOriginalRegion();
203      if (capturedR != originalR) {
204        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
205        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
206      }
207    }
208  }
209
210  ExplodedNodeSet Tmp;
211  StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
212  Bldr.generateNode(BE, Pred,
213                    State->BindExpr(BE, Pred->getLocationContext(), V),
214                    false, 0,
215                    ProgramPoint::PostLValueKind);
216
217  // FIXME: Move all post/pre visits to ::Visit().
218  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
219}
220
221void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
222                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
223
224  ExplodedNodeSet dstPreStmt;
225  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
226
227  if (CastE->getCastKind() == CK_LValueToRValue) {
228    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
229         I!=E; ++I) {
230      ExplodedNode *subExprNode = *I;
231      ProgramStateRef state = subExprNode->getState();
232      const LocationContext *LCtx = subExprNode->getLocationContext();
233      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
234    }
235    return;
236  }
237
238  // All other casts.
239  QualType T = CastE->getType();
240  QualType ExTy = Ex->getType();
241
242  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
243    T = ExCast->getTypeAsWritten();
244
245  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
246  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
247       I != E; ++I) {
248
249    Pred = *I;
250
251    switch (CastE->getCastKind()) {
252      case CK_LValueToRValue:
253        llvm_unreachable("LValueToRValue casts handled earlier.");
254      case CK_ToVoid:
255        continue;
256        // The analyzer doesn't do anything special with these casts,
257        // since it understands retain/release semantics already.
258      case CK_ARCProduceObject:
259      case CK_ARCConsumeObject:
260      case CK_ARCReclaimReturnedObject:
261      case CK_ARCExtendBlockObject: // Fall-through.
262      case CK_CopyAndAutoreleaseBlockObject:
263        // The analyser can ignore atomic casts for now, although some future
264        // checkers may want to make certain that you're not modifying the same
265        // value through atomic and nonatomic pointers.
266      case CK_AtomicToNonAtomic:
267      case CK_NonAtomicToAtomic:
268        // True no-ops.
269      case CK_NoOp:
270      case CK_FunctionToPointerDecay: {
271        // Copy the SVal of Ex to CastE.
272        ProgramStateRef state = Pred->getState();
273        const LocationContext *LCtx = Pred->getLocationContext();
274        SVal V = state->getSVal(Ex, LCtx);
275        state = state->BindExpr(CastE, LCtx, V);
276        Bldr.generateNode(CastE, Pred, state);
277        continue;
278      }
279      case CK_Dependent:
280      case CK_ArrayToPointerDecay:
281      case CK_BitCast:
282      case CK_IntegralCast:
283      case CK_NullToPointer:
284      case CK_IntegralToPointer:
285      case CK_PointerToIntegral:
286      case CK_PointerToBoolean:
287      case CK_IntegralToBoolean:
288      case CK_IntegralToFloating:
289      case CK_FloatingToIntegral:
290      case CK_FloatingToBoolean:
291      case CK_FloatingCast:
292      case CK_FloatingRealToComplex:
293      case CK_FloatingComplexToReal:
294      case CK_FloatingComplexToBoolean:
295      case CK_FloatingComplexCast:
296      case CK_FloatingComplexToIntegralComplex:
297      case CK_IntegralRealToComplex:
298      case CK_IntegralComplexToReal:
299      case CK_IntegralComplexToBoolean:
300      case CK_IntegralComplexCast:
301      case CK_IntegralComplexToFloatingComplex:
302      case CK_CPointerToObjCPointerCast:
303      case CK_BlockPointerToObjCPointerCast:
304      case CK_AnyPointerToBlockPointerCast:
305      case CK_ObjCObjectLValueCast: {
306        // Delegate to SValBuilder to process.
307        ProgramStateRef state = Pred->getState();
308        const LocationContext *LCtx = Pred->getLocationContext();
309        SVal V = state->getSVal(Ex, LCtx);
310        V = svalBuilder.evalCast(V, T, ExTy);
311        state = state->BindExpr(CastE, LCtx, V);
312        Bldr.generateNode(CastE, Pred, state);
313        continue;
314      }
315      case CK_DerivedToBase:
316      case CK_UncheckedDerivedToBase: {
317        // For DerivedToBase cast, delegate to the store manager.
318        ProgramStateRef state = Pred->getState();
319        const LocationContext *LCtx = Pred->getLocationContext();
320        SVal val = state->getSVal(Ex, LCtx);
321        val = getStoreManager().evalDerivedToBase(val, T);
322        state = state->BindExpr(CastE, LCtx, val);
323        Bldr.generateNode(CastE, Pred, state);
324        continue;
325      }
326      // Handle C++ dyn_cast.
327      case CK_Dynamic: {
328        ProgramStateRef state = Pred->getState();
329        const LocationContext *LCtx = Pred->getLocationContext();
330        SVal val = state->getSVal(Ex, LCtx);
331
332        // Compute the type of the result.
333        QualType resultType = CastE->getType();
334        if (CastE->isGLValue())
335          resultType = getContext().getPointerType(resultType);
336
337        bool Failed = false;
338
339        // Check if the value being cast evaluates to 0.
340        if (val.isZeroConstant())
341          Failed = true;
342        // Else, evaluate the cast.
343        else
344          val = getStoreManager().evalDynamicCast(val, T, Failed);
345
346        if (Failed) {
347          if (T->isReferenceType()) {
348            // A bad_cast exception is thrown if input value is a reference.
349            // Currently, we model this, by generating a sink.
350            Bldr.generateNode(CastE, Pred, state, true);
351            continue;
352          } else {
353            // If the cast fails on a pointer, bind to 0.
354            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
355          }
356        } else {
357          // If we don't know if the cast succeeded, conjure a new symbol.
358          if (val.isUnknown()) {
359            DefinedOrUnknownSVal NewSym = svalBuilder.getConjuredSymbolVal(NULL,
360                                 CastE, LCtx, resultType,
361                                 currentBuilderContext->getCurrentBlockCount());
362            state = state->BindExpr(CastE, LCtx, NewSym);
363          } else
364            // Else, bind to the derived region value.
365            state = state->BindExpr(CastE, LCtx, val);
366        }
367        Bldr.generateNode(CastE, Pred, state);
368        continue;
369      }
370      // Various C++ casts that are not handled yet.
371      case CK_ToUnion:
372      case CK_BaseToDerived:
373      case CK_NullToMemberPointer:
374      case CK_BaseToDerivedMemberPointer:
375      case CK_DerivedToBaseMemberPointer:
376      case CK_ReinterpretMemberPointer:
377      case CK_UserDefinedConversion:
378      case CK_ConstructorConversion:
379      case CK_VectorSplat:
380      case CK_MemberPointerToBoolean:
381      case CK_LValueBitCast: {
382        // Recover some path-sensitivty by conjuring a new value.
383        QualType resultType = CastE->getType();
384        if (CastE->isGLValue())
385          resultType = getContext().getPointerType(resultType);
386        const LocationContext *LCtx = Pred->getLocationContext();
387        SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, LCtx,
388                    resultType, currentBuilderContext->getCurrentBlockCount());
389        ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
390                                                               result);
391        Bldr.generateNode(CastE, Pred, state);
392        continue;
393      }
394    }
395  }
396}
397
398void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
399                                          ExplodedNode *Pred,
400                                          ExplodedNodeSet &Dst) {
401  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
402
403  const InitListExpr *ILE
404    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
405
406  ProgramStateRef state = Pred->getState();
407  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
408  const LocationContext *LC = Pred->getLocationContext();
409  state = state->bindCompoundLiteral(CL, LC, ILV);
410
411  // Compound literal expressions are a GNU extension in C++.
412  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
413  // and like temporary objects created by the functional notation T()
414  // CLs are destroyed at the end of the containing full-expression.
415  // HOWEVER, an rvalue of array type is not something the analyzer can
416  // reason about, since we expect all regions to be wrapped in Locs.
417  // So we treat array CLs as lvalues as well, knowing that they will decay
418  // to pointers as soon as they are used.
419  if (CL->isGLValue() || CL->getType()->isArrayType())
420    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
421  else
422    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
423}
424
425void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
426                               ExplodedNodeSet &Dst) {
427
428  // FIXME: static variables may have an initializer, but the second
429  //  time a function is called those values may not be current.
430  //  This may need to be reflected in the CFG.
431
432  // Assumption: The CFG has one DeclStmt per Decl.
433  const Decl *D = *DS->decl_begin();
434
435  if (!D || !isa<VarDecl>(D)) {
436    //TODO:AZ: remove explicit insertion after refactoring is done.
437    Dst.insert(Pred);
438    return;
439  }
440
441  // FIXME: all pre/post visits should eventually be handled by ::Visit().
442  ExplodedNodeSet dstPreVisit;
443  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
444
445  StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
446  const VarDecl *VD = dyn_cast<VarDecl>(D);
447  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
448       I!=E; ++I) {
449    ExplodedNode *N = *I;
450    ProgramStateRef state = N->getState();
451
452    // Decls without InitExpr are not initialized explicitly.
453    const LocationContext *LC = N->getLocationContext();
454
455    if (const Expr *InitEx = VD->getInit()) {
456      SVal InitVal = state->getSVal(InitEx, LC);
457
458      if (InitVal == state->getLValue(VD, LC) ||
459          (VD->getType()->isArrayType() &&
460           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
461        // We constructed the object directly in the variable.
462        // No need to bind anything.
463        B.generateNode(DS, N, state);
464      } else {
465        // We bound the temp obj region to the CXXConstructExpr. Now recover
466        // the lazy compound value when the variable is not a reference.
467        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
468            !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
469          InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
470          assert(isa<nonloc::LazyCompoundVal>(InitVal));
471        }
472
473        // Recover some path-sensitivity if a scalar value evaluated to
474        // UnknownVal.
475        if (InitVal.isUnknown()) {
476          QualType Ty = InitEx->getType();
477          if (InitEx->isGLValue()) {
478            Ty = getContext().getPointerType(Ty);
479          }
480
481          InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, LC, Ty,
482                                   currentBuilderContext->getCurrentBlockCount());
483        }
484        B.takeNodes(N);
485        ExplodedNodeSet Dst2;
486        evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
487        B.addNodes(Dst2);
488      }
489    }
490    else {
491      B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
492    }
493  }
494}
495
496void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
497                                  ExplodedNodeSet &Dst) {
498  assert(B->getOpcode() == BO_LAnd ||
499         B->getOpcode() == BO_LOr);
500
501  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
502  ProgramStateRef state = Pred->getState();
503
504  ExplodedNode *N = Pred;
505  while (!isa<BlockEntrance>(N->getLocation())) {
506    ProgramPoint P = N->getLocation();
507    assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
508    (void) P;
509    assert(N->pred_size() == 1);
510    N = *N->pred_begin();
511  }
512  assert(N->pred_size() == 1);
513  N = *N->pred_begin();
514  BlockEdge BE = cast<BlockEdge>(N->getLocation());
515  SVal X;
516
517  // Determine the value of the expression by introspecting how we
518  // got this location in the CFG.  This requires looking at the previous
519  // block we were in and what kind of control-flow transfer was involved.
520  const CFGBlock *SrcBlock = BE.getSrc();
521  // The only terminator (if there is one) that makes sense is a logical op.
522  CFGTerminator T = SrcBlock->getTerminator();
523  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
524    (void) Term;
525    assert(Term->isLogicalOp());
526    assert(SrcBlock->succ_size() == 2);
527    // Did we take the true or false branch?
528    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
529    X = svalBuilder.makeIntVal(constant, B->getType());
530  }
531  else {
532    // If there is no terminator, by construction the last statement
533    // in SrcBlock is the value of the enclosing expression.
534    assert(!SrcBlock->empty());
535    CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
536    const Stmt *S = Elem.getStmt();
537    X = N->getState()->getSVal(S, Pred->getLocationContext());
538  }
539
540  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
541}
542
543void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
544                                   ExplodedNode *Pred,
545                                   ExplodedNodeSet &Dst) {
546  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
547
548  ProgramStateRef state = Pred->getState();
549  const LocationContext *LCtx = Pred->getLocationContext();
550  QualType T = getContext().getCanonicalType(IE->getType());
551  unsigned NumInitElements = IE->getNumInits();
552
553  if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
554    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
555
556    // Handle base case where the initializer has no elements.
557    // e.g: static int* myArray[] = {};
558    if (NumInitElements == 0) {
559      SVal V = svalBuilder.makeCompoundVal(T, vals);
560      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
561      return;
562    }
563
564    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
565         ei = IE->rend(); it != ei; ++it) {
566      vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
567                                     vals);
568    }
569
570    B.generateNode(IE, Pred,
571                   state->BindExpr(IE, LCtx,
572                                   svalBuilder.makeCompoundVal(T, vals)));
573    return;
574  }
575
576  // Handle scalars: int{5} and int{}.
577  assert(NumInitElements <= 1);
578
579  SVal V;
580  if (NumInitElements == 0)
581    V = getSValBuilder().makeZeroVal(T);
582  else
583    V = state->getSVal(IE->getInit(0), LCtx);
584
585  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
586}
587
588void ExprEngine::VisitGuardedExpr(const Expr *Ex,
589                                  const Expr *L,
590                                  const Expr *R,
591                                  ExplodedNode *Pred,
592                                  ExplodedNodeSet &Dst) {
593  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
594  ProgramStateRef state = Pred->getState();
595  const LocationContext *LCtx = Pred->getLocationContext();
596  const CFGBlock *SrcBlock = 0;
597
598  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
599    ProgramPoint PP = N->getLocation();
600    if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
601      assert(N->pred_size() == 1);
602      continue;
603    }
604    SrcBlock = cast<BlockEdge>(&PP)->getSrc();
605    break;
606  }
607
608  // Find the last expression in the predecessor block.  That is the
609  // expression that is used for the value of the ternary expression.
610  bool hasValue = false;
611  SVal V;
612
613  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
614                                        E = SrcBlock->rend(); I != E; ++I) {
615    CFGElement CE = *I;
616    if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
617      const Expr *ValEx = cast<Expr>(CS->getStmt());
618      hasValue = true;
619      V = state->getSVal(ValEx, LCtx);
620      break;
621    }
622  }
623
624  assert(hasValue);
625  (void) hasValue;
626
627  // Generate a new node with the binding from the appropriate path.
628  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
629}
630
631void ExprEngine::
632VisitOffsetOfExpr(const OffsetOfExpr *OOE,
633                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
634  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
635  APSInt IV;
636  if (OOE->EvaluateAsInt(IV, getContext())) {
637    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
638    assert(OOE->getType()->isIntegerType());
639    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
640    SVal X = svalBuilder.makeIntVal(IV);
641    B.generateNode(OOE, Pred,
642                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
643                                              X));
644  }
645  // FIXME: Handle the case where __builtin_offsetof is not a constant.
646}
647
648
649void ExprEngine::
650VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
651                              ExplodedNode *Pred,
652                              ExplodedNodeSet &Dst) {
653  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
654
655  QualType T = Ex->getTypeOfArgument();
656
657  if (Ex->getKind() == UETT_SizeOf) {
658    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
659      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
660
661      // FIXME: Add support for VLA type arguments and VLA expressions.
662      // When that happens, we should probably refactor VLASizeChecker's code.
663      return;
664    }
665    else if (T->getAs<ObjCObjectType>()) {
666      // Some code tries to take the sizeof an ObjCObjectType, relying that
667      // the compiler has laid out its representation.  Just report Unknown
668      // for these.
669      return;
670    }
671  }
672
673  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
674  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
675
676  ProgramStateRef state = Pred->getState();
677  state = state->BindExpr(Ex, Pred->getLocationContext(),
678                          svalBuilder.makeIntVal(amt.getQuantity(),
679                                                     Ex->getType()));
680  Bldr.generateNode(Ex, Pred, state);
681}
682
683void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
684                                    ExplodedNode *Pred,
685                                    ExplodedNodeSet &Dst) {
686  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
687  switch (U->getOpcode()) {
688    default: {
689      Bldr.takeNodes(Pred);
690      ExplodedNodeSet Tmp;
691      VisitIncrementDecrementOperator(U, Pred, Tmp);
692      Bldr.addNodes(Tmp);
693    }
694      break;
695    case UO_Real: {
696      const Expr *Ex = U->getSubExpr()->IgnoreParens();
697
698      // FIXME: We don't have complex SValues yet.
699      if (Ex->getType()->isAnyComplexType()) {
700        // Just report "Unknown."
701        break;
702      }
703
704      // For all other types, UO_Real is an identity operation.
705      assert (U->getType() == Ex->getType());
706      ProgramStateRef state = Pred->getState();
707      const LocationContext *LCtx = Pred->getLocationContext();
708      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
709                                                 state->getSVal(Ex, LCtx)));
710      break;
711    }
712
713    case UO_Imag: {
714      const Expr *Ex = U->getSubExpr()->IgnoreParens();
715      // FIXME: We don't have complex SValues yet.
716      if (Ex->getType()->isAnyComplexType()) {
717        // Just report "Unknown."
718        break;
719      }
720      // For all other types, UO_Imag returns 0.
721      ProgramStateRef state = Pred->getState();
722      const LocationContext *LCtx = Pred->getLocationContext();
723      SVal X = svalBuilder.makeZeroVal(Ex->getType());
724      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
725      break;
726    }
727
728    case UO_Plus:
729      assert(!U->isGLValue());
730      // FALL-THROUGH.
731    case UO_Deref:
732    case UO_AddrOf:
733    case UO_Extension: {
734      // FIXME: We can probably just have some magic in Environment::getSVal()
735      // that propagates values, instead of creating a new node here.
736      //
737      // Unary "+" is a no-op, similar to a parentheses.  We still have places
738      // where it may be a block-level expression, so we need to
739      // generate an extra node that just propagates the value of the
740      // subexpression.
741      const Expr *Ex = U->getSubExpr()->IgnoreParens();
742      ProgramStateRef state = Pred->getState();
743      const LocationContext *LCtx = Pred->getLocationContext();
744      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
745                                                 state->getSVal(Ex, LCtx)));
746      break;
747    }
748
749    case UO_LNot:
750    case UO_Minus:
751    case UO_Not: {
752      assert (!U->isGLValue());
753      const Expr *Ex = U->getSubExpr()->IgnoreParens();
754      ProgramStateRef state = Pred->getState();
755      const LocationContext *LCtx = Pred->getLocationContext();
756
757      // Get the value of the subexpression.
758      SVal V = state->getSVal(Ex, LCtx);
759
760      if (V.isUnknownOrUndef()) {
761        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
762        break;
763      }
764
765      switch (U->getOpcode()) {
766        default:
767          llvm_unreachable("Invalid Opcode.");
768        case UO_Not:
769          // FIXME: Do we need to handle promotions?
770          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
771          break;
772        case UO_Minus:
773          // FIXME: Do we need to handle promotions?
774          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
775          break;
776        case UO_LNot:
777          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
778          //
779          //  Note: technically we do "E == 0", but this is the same in the
780          //    transfer functions as "0 == E".
781          SVal Result;
782          if (isa<Loc>(V)) {
783            Loc X = svalBuilder.makeNull();
784            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
785                               U->getType());
786          }
787          else {
788            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
789            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
790                               U->getType());
791          }
792
793          state = state->BindExpr(U, LCtx, Result);
794          break;
795      }
796      Bldr.generateNode(U, Pred, state);
797      break;
798    }
799  }
800
801}
802
803void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
804                                                 ExplodedNode *Pred,
805                                                 ExplodedNodeSet &Dst) {
806  // Handle ++ and -- (both pre- and post-increment).
807  assert (U->isIncrementDecrementOp());
808  const Expr *Ex = U->getSubExpr()->IgnoreParens();
809
810  const LocationContext *LCtx = Pred->getLocationContext();
811  ProgramStateRef state = Pred->getState();
812  SVal loc = state->getSVal(Ex, LCtx);
813
814  // Perform a load.
815  ExplodedNodeSet Tmp;
816  evalLoad(Tmp, U, Ex, Pred, state, loc);
817
818  ExplodedNodeSet Dst2;
819  StmtNodeBuilder Bldr(Tmp, Dst2, *currentBuilderContext);
820  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
821
822    state = (*I)->getState();
823    assert(LCtx == (*I)->getLocationContext());
824    SVal V2_untested = state->getSVal(Ex, LCtx);
825
826    // Propagate unknown and undefined values.
827    if (V2_untested.isUnknownOrUndef()) {
828      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
829      continue;
830    }
831    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
832
833    // Handle all other values.
834    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
835
836    // If the UnaryOperator has non-location type, use its type to create the
837    // constant value. If the UnaryOperator has location type, create the
838    // constant with int type and pointer width.
839    SVal RHS;
840
841    if (U->getType()->isAnyPointerType())
842      RHS = svalBuilder.makeArrayIndex(1);
843    else
844      RHS = svalBuilder.makeIntVal(1, U->getType());
845
846    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
847
848    // Conjure a new symbol if necessary to recover precision.
849    if (Result.isUnknown()){
850      DefinedOrUnknownSVal SymVal =
851	svalBuilder.getConjuredSymbolVal(NULL, Ex, LCtx,
852                               currentBuilderContext->getCurrentBlockCount());
853      Result = SymVal;
854
855      // If the value is a location, ++/-- should always preserve
856      // non-nullness.  Check if the original value was non-null, and if so
857      // propagate that constraint.
858      if (Loc::isLocType(U->getType())) {
859        DefinedOrUnknownSVal Constraint =
860        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
861
862        if (!state->assume(Constraint, true)) {
863          // It isn't feasible for the original value to be null.
864          // Propagate this constraint.
865          Constraint = svalBuilder.evalEQ(state, SymVal,
866                                       svalBuilder.makeZeroVal(U->getType()));
867
868
869          state = state->assume(Constraint, false);
870          assert(state);
871        }
872      }
873    }
874
875    // Since the lvalue-to-rvalue conversion is explicit in the AST,
876    // we bind an l-value if the operator is prefix and an lvalue (in C++).
877    if (U->isGLValue())
878      state = state->BindExpr(U, LCtx, loc);
879    else
880      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
881
882    // Perform the store.
883    Bldr.takeNodes(*I);
884    ExplodedNodeSet Dst3;
885    evalStore(Dst3, U, U, *I, state, loc, Result);
886    Bldr.addNodes(Dst3);
887  }
888  Dst.insert(Dst2);
889}
890