ExprEngineC.cpp revision e6b9d802fb7b16d93474c4f1c179ab36202e8a8b
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (isa<Loc>(LeftV) &&
71            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                Count);
74        }
75        if (isa<Loc>(RightV) &&
76            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                               Count);
79        }
80      }
81
82      // Process non-assignments except commas or short-circuited
83      // logical expressions (LAnd and LOr).
84      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85      if (Result.isUnknown()) {
86        Bldr.generateNode(B, *it, state);
87        continue;
88      }
89
90      state = state->BindExpr(B, LCtx, Result);
91      Bldr.generateNode(B, *it, state);
92      continue;
93    }
94
95    assert (B->isCompoundAssignmentOp());
96
97    switch (Op) {
98      default:
99        llvm_unreachable("Invalid opcode for compound assignment.");
100      case BO_MulAssign: Op = BO_Mul; break;
101      case BO_DivAssign: Op = BO_Div; break;
102      case BO_RemAssign: Op = BO_Rem; break;
103      case BO_AddAssign: Op = BO_Add; break;
104      case BO_SubAssign: Op = BO_Sub; break;
105      case BO_ShlAssign: Op = BO_Shl; break;
106      case BO_ShrAssign: Op = BO_Shr; break;
107      case BO_AndAssign: Op = BO_And; break;
108      case BO_XorAssign: Op = BO_Xor; break;
109      case BO_OrAssign:  Op = BO_Or;  break;
110    }
111
112    // Perform a load (the LHS).  This performs the checks for
113    // null dereferences, and so on.
114    ExplodedNodeSet Tmp;
115    SVal location = LeftV;
116    evalLoad(Tmp, B, LHS, *it, state, location);
117
118    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119         ++I) {
120
121      state = (*I)->getState();
122      const LocationContext *LCtx = (*I)->getLocationContext();
123      SVal V = state->getSVal(LHS, LCtx);
124
125      // Get the computation type.
126      QualType CTy =
127        cast<CompoundAssignOperator>(B)->getComputationResultType();
128      CTy = getContext().getCanonicalType(CTy);
129
130      QualType CLHSTy =
131        cast<CompoundAssignOperator>(B)->getComputationLHSType();
132      CLHSTy = getContext().getCanonicalType(CLHSTy);
133
134      QualType LTy = getContext().getCanonicalType(LHS->getType());
135
136      // Promote LHS.
137      V = svalBuilder.evalCast(V, CLHSTy, LTy);
138
139      // Compute the result of the operation.
140      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                         B->getType(), CTy);
142
143      // EXPERIMENTAL: "Conjured" symbols.
144      // FIXME: Handle structs.
145
146      SVal LHSVal;
147
148      if (Result.isUnknown()) {
149        // The symbolic value is actually for the type of the left-hand side
150        // expression, not the computation type, as this is the value the
151        // LValue on the LHS will bind to.
152        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                              currBldrCtx->blockCount());
154        // However, we need to convert the symbol to the computation type.
155        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156      }
157      else {
158        // The left-hand side may bind to a different value then the
159        // computation type.
160        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161      }
162
163      // In C++, assignment and compound assignment operators return an
164      // lvalue.
165      if (B->isGLValue())
166        state = state->BindExpr(B, LCtx, location);
167      else
168        state = state->BindExpr(B, LCtx, Result);
169
170      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171    }
172  }
173
174  // FIXME: postvisits eventually go in ::Visit()
175  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176}
177
178void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                ExplodedNodeSet &Dst) {
180
181  CanQualType T = getContext().getCanonicalType(BE->getType());
182
183  // Get the value of the block itself.
184  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                       Pred->getLocationContext());
186
187  ProgramStateRef State = Pred->getState();
188
189  // If we created a new MemRegion for the block, we should explicitly bind
190  // the captured variables.
191  if (const BlockDataRegion *BDR =
192      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193
194    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                              E = BDR->referenced_vars_end();
196
197    for (; I != E; ++I) {
198      const MemRegion *capturedR = I.getCapturedRegion();
199      const MemRegion *originalR = I.getOriginalRegion();
200      if (capturedR != originalR) {
201        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203      }
204    }
205  }
206
207  ExplodedNodeSet Tmp;
208  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209  Bldr.generateNode(BE, Pred,
210                    State->BindExpr(BE, Pred->getLocationContext(), V),
211                    0, ProgramPoint::PostLValueKind);
212
213  // FIXME: Move all post/pre visits to ::Visit().
214  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215}
216
217void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219
220  ExplodedNodeSet dstPreStmt;
221  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222
223  if (CastE->getCastKind() == CK_LValueToRValue) {
224    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225         I!=E; ++I) {
226      ExplodedNode *subExprNode = *I;
227      ProgramStateRef state = subExprNode->getState();
228      const LocationContext *LCtx = subExprNode->getLocationContext();
229      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230    }
231    return;
232  }
233
234  // All other casts.
235  QualType T = CastE->getType();
236  QualType ExTy = Ex->getType();
237
238  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239    T = ExCast->getTypeAsWritten();
240
241  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243       I != E; ++I) {
244
245    Pred = *I;
246    ProgramStateRef state = Pred->getState();
247    const LocationContext *LCtx = Pred->getLocationContext();
248
249    switch (CastE->getCastKind()) {
250      case CK_LValueToRValue:
251        llvm_unreachable("LValueToRValue casts handled earlier.");
252      case CK_ToVoid:
253        continue;
254        // The analyzer doesn't do anything special with these casts,
255        // since it understands retain/release semantics already.
256      case CK_ARCProduceObject:
257      case CK_ARCConsumeObject:
258      case CK_ARCReclaimReturnedObject:
259      case CK_ARCExtendBlockObject: // Fall-through.
260      case CK_CopyAndAutoreleaseBlockObject:
261        // The analyser can ignore atomic casts for now, although some future
262        // checkers may want to make certain that you're not modifying the same
263        // value through atomic and nonatomic pointers.
264      case CK_AtomicToNonAtomic:
265      case CK_NonAtomicToAtomic:
266        // True no-ops.
267      case CK_NoOp:
268      case CK_ConstructorConversion:
269      case CK_UserDefinedConversion:
270      case CK_FunctionToPointerDecay:
271      case CK_BuiltinFnToFnPtr: {
272        // Copy the SVal of Ex to CastE.
273        ProgramStateRef state = Pred->getState();
274        const LocationContext *LCtx = Pred->getLocationContext();
275        SVal V = state->getSVal(Ex, LCtx);
276        state = state->BindExpr(CastE, LCtx, V);
277        Bldr.generateNode(CastE, Pred, state);
278        continue;
279      }
280      case CK_MemberPointerToBoolean:
281        // FIXME: For now, member pointers are represented by void *.
282        // FALLTHROUGH
283      case CK_Dependent:
284      case CK_ArrayToPointerDecay:
285      case CK_BitCast:
286      case CK_IntegralCast:
287      case CK_NullToPointer:
288      case CK_IntegralToPointer:
289      case CK_PointerToIntegral:
290      case CK_PointerToBoolean:
291      case CK_IntegralToBoolean:
292      case CK_IntegralToFloating:
293      case CK_FloatingToIntegral:
294      case CK_FloatingToBoolean:
295      case CK_FloatingCast:
296      case CK_FloatingRealToComplex:
297      case CK_FloatingComplexToReal:
298      case CK_FloatingComplexToBoolean:
299      case CK_FloatingComplexCast:
300      case CK_FloatingComplexToIntegralComplex:
301      case CK_IntegralRealToComplex:
302      case CK_IntegralComplexToReal:
303      case CK_IntegralComplexToBoolean:
304      case CK_IntegralComplexCast:
305      case CK_IntegralComplexToFloatingComplex:
306      case CK_CPointerToObjCPointerCast:
307      case CK_BlockPointerToObjCPointerCast:
308      case CK_AnyPointerToBlockPointerCast:
309      case CK_ObjCObjectLValueCast:
310      case CK_ZeroToOCLEvent: {
311        // Delegate to SValBuilder to process.
312        SVal V = state->getSVal(Ex, LCtx);
313        V = svalBuilder.evalCast(V, T, ExTy);
314        state = state->BindExpr(CastE, LCtx, V);
315        Bldr.generateNode(CastE, Pred, state);
316        continue;
317      }
318      case CK_DerivedToBase:
319      case CK_UncheckedDerivedToBase: {
320        // For DerivedToBase cast, delegate to the store manager.
321        SVal val = state->getSVal(Ex, LCtx);
322        val = getStoreManager().evalDerivedToBase(val, CastE);
323        state = state->BindExpr(CastE, LCtx, val);
324        Bldr.generateNode(CastE, Pred, state);
325        continue;
326      }
327      // Handle C++ dyn_cast.
328      case CK_Dynamic: {
329        SVal val = state->getSVal(Ex, LCtx);
330
331        // Compute the type of the result.
332        QualType resultType = CastE->getType();
333        if (CastE->isGLValue())
334          resultType = getContext().getPointerType(resultType);
335
336        bool Failed = false;
337
338        // Check if the value being cast evaluates to 0.
339        if (val.isZeroConstant())
340          Failed = true;
341        // Else, evaluate the cast.
342        else
343          val = getStoreManager().evalDynamicCast(val, T, Failed);
344
345        if (Failed) {
346          if (T->isReferenceType()) {
347            // A bad_cast exception is thrown if input value is a reference.
348            // Currently, we model this, by generating a sink.
349            Bldr.generateSink(CastE, Pred, state);
350            continue;
351          } else {
352            // If the cast fails on a pointer, bind to 0.
353            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
354          }
355        } else {
356          // If we don't know if the cast succeeded, conjure a new symbol.
357          if (val.isUnknown()) {
358            DefinedOrUnknownSVal NewSym =
359              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
360                                           currBldrCtx->blockCount());
361            state = state->BindExpr(CastE, LCtx, NewSym);
362          } else
363            // Else, bind to the derived region value.
364            state = state->BindExpr(CastE, LCtx, val);
365        }
366        Bldr.generateNode(CastE, Pred, state);
367        continue;
368      }
369      case CK_NullToMemberPointer: {
370        // FIXME: For now, member pointers are represented by void *.
371        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
372        state = state->BindExpr(CastE, LCtx, V);
373        Bldr.generateNode(CastE, Pred, state);
374        continue;
375      }
376      // Various C++ casts that are not handled yet.
377      case CK_ToUnion:
378      case CK_BaseToDerived:
379      case CK_BaseToDerivedMemberPointer:
380      case CK_DerivedToBaseMemberPointer:
381      case CK_ReinterpretMemberPointer:
382      case CK_VectorSplat:
383      case CK_LValueBitCast: {
384        // Recover some path-sensitivty by conjuring a new value.
385        QualType resultType = CastE->getType();
386        if (CastE->isGLValue())
387          resultType = getContext().getPointerType(resultType);
388        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
389                                                   resultType,
390                                                   currBldrCtx->blockCount());
391        state = state->BindExpr(CastE, LCtx, result);
392        Bldr.generateNode(CastE, Pred, state);
393        continue;
394      }
395    }
396  }
397}
398
399void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
400                                          ExplodedNode *Pred,
401                                          ExplodedNodeSet &Dst) {
402  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
403
404  const InitListExpr *ILE
405    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
406
407  ProgramStateRef state = Pred->getState();
408  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
409  const LocationContext *LC = Pred->getLocationContext();
410  state = state->bindCompoundLiteral(CL, LC, ILV);
411
412  // Compound literal expressions are a GNU extension in C++.
413  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
414  // and like temporary objects created by the functional notation T()
415  // CLs are destroyed at the end of the containing full-expression.
416  // HOWEVER, an rvalue of array type is not something the analyzer can
417  // reason about, since we expect all regions to be wrapped in Locs.
418  // So we treat array CLs as lvalues as well, knowing that they will decay
419  // to pointers as soon as they are used.
420  if (CL->isGLValue() || CL->getType()->isArrayType())
421    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
422  else
423    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
424}
425
426void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
427                               ExplodedNodeSet &Dst) {
428
429  // FIXME: static variables may have an initializer, but the second
430  //  time a function is called those values may not be current.
431  //  This may need to be reflected in the CFG.
432
433  // Assumption: The CFG has one DeclStmt per Decl.
434  const Decl *D = *DS->decl_begin();
435
436  if (!D || !isa<VarDecl>(D)) {
437    //TODO:AZ: remove explicit insertion after refactoring is done.
438    Dst.insert(Pred);
439    return;
440  }
441
442  // FIXME: all pre/post visits should eventually be handled by ::Visit().
443  ExplodedNodeSet dstPreVisit;
444  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
445
446  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
447  const VarDecl *VD = dyn_cast<VarDecl>(D);
448  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
449       I!=E; ++I) {
450    ExplodedNode *N = *I;
451    ProgramStateRef state = N->getState();
452
453    // Decls without InitExpr are not initialized explicitly.
454    const LocationContext *LC = N->getLocationContext();
455
456    if (const Expr *InitEx = VD->getInit()) {
457      SVal InitVal = state->getSVal(InitEx, LC);
458
459      if (InitVal == state->getLValue(VD, LC) ||
460          (VD->getType()->isArrayType() &&
461           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
462        // We constructed the object directly in the variable.
463        // No need to bind anything.
464        B.generateNode(DS, N, state);
465      } else {
466        // We bound the temp obj region to the CXXConstructExpr. Now recover
467        // the lazy compound value when the variable is not a reference.
468        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
469            !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
470          InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
471          assert(isa<nonloc::LazyCompoundVal>(InitVal));
472        }
473
474        // Recover some path-sensitivity if a scalar value evaluated to
475        // UnknownVal.
476        if (InitVal.isUnknown()) {
477          QualType Ty = InitEx->getType();
478          if (InitEx->isGLValue()) {
479            Ty = getContext().getPointerType(Ty);
480          }
481
482          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
483                                                 currBldrCtx->blockCount());
484        }
485        B.takeNodes(N);
486        ExplodedNodeSet Dst2;
487        evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
488        B.addNodes(Dst2);
489      }
490    }
491    else {
492      B.generateNode(DS, N, state);
493    }
494  }
495}
496
497void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
498                                  ExplodedNodeSet &Dst) {
499  assert(B->getOpcode() == BO_LAnd ||
500         B->getOpcode() == BO_LOr);
501
502  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
503  ProgramStateRef state = Pred->getState();
504
505  ExplodedNode *N = Pred;
506  while (!isa<BlockEntrance>(N->getLocation())) {
507    ProgramPoint P = N->getLocation();
508    assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
509    (void) P;
510    assert(N->pred_size() == 1);
511    N = *N->pred_begin();
512  }
513  assert(N->pred_size() == 1);
514  N = *N->pred_begin();
515  BlockEdge BE = cast<BlockEdge>(N->getLocation());
516  SVal X;
517
518  // Determine the value of the expression by introspecting how we
519  // got this location in the CFG.  This requires looking at the previous
520  // block we were in and what kind of control-flow transfer was involved.
521  const CFGBlock *SrcBlock = BE.getSrc();
522  // The only terminator (if there is one) that makes sense is a logical op.
523  CFGTerminator T = SrcBlock->getTerminator();
524  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
525    (void) Term;
526    assert(Term->isLogicalOp());
527    assert(SrcBlock->succ_size() == 2);
528    // Did we take the true or false branch?
529    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
530    X = svalBuilder.makeIntVal(constant, B->getType());
531  }
532  else {
533    // If there is no terminator, by construction the last statement
534    // in SrcBlock is the value of the enclosing expression.
535    // However, we still need to constrain that value to be 0 or 1.
536    assert(!SrcBlock->empty());
537    CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
538    const Expr *RHS = cast<Expr>(Elem.getStmt());
539    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
540
541    if (RHSVal.isUndef()) {
542      X = RHSVal;
543    } else {
544      DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
545      ProgramStateRef StTrue, StFalse;
546      llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
547      if (StTrue) {
548        if (StFalse) {
549          // We can't constrain the value to 0 or 1.
550          // The best we can do is a cast.
551          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
552        } else {
553          // The value is known to be true.
554          X = getSValBuilder().makeIntVal(1, B->getType());
555        }
556      } else {
557        // The value is known to be false.
558        assert(StFalse && "Infeasible path!");
559        X = getSValBuilder().makeIntVal(0, B->getType());
560      }
561    }
562  }
563  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
564}
565
566void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
567                                   ExplodedNode *Pred,
568                                   ExplodedNodeSet &Dst) {
569  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
570
571  ProgramStateRef state = Pred->getState();
572  const LocationContext *LCtx = Pred->getLocationContext();
573  QualType T = getContext().getCanonicalType(IE->getType());
574  unsigned NumInitElements = IE->getNumInits();
575
576  if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
577      T->isAnyComplexType()) {
578    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
579
580    // Handle base case where the initializer has no elements.
581    // e.g: static int* myArray[] = {};
582    if (NumInitElements == 0) {
583      SVal V = svalBuilder.makeCompoundVal(T, vals);
584      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
585      return;
586    }
587
588    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
589         ei = IE->rend(); it != ei; ++it) {
590      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
591      if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
592        V = UnknownVal();
593      vals = getBasicVals().consVals(V, vals);
594    }
595
596    B.generateNode(IE, Pred,
597                   state->BindExpr(IE, LCtx,
598                                   svalBuilder.makeCompoundVal(T, vals)));
599    return;
600  }
601
602  // Handle scalars: int{5} and int{}.
603  assert(NumInitElements <= 1);
604
605  SVal V;
606  if (NumInitElements == 0)
607    V = getSValBuilder().makeZeroVal(T);
608  else
609    V = state->getSVal(IE->getInit(0), LCtx);
610
611  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
612}
613
614void ExprEngine::VisitGuardedExpr(const Expr *Ex,
615                                  const Expr *L,
616                                  const Expr *R,
617                                  ExplodedNode *Pred,
618                                  ExplodedNodeSet &Dst) {
619  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
620  ProgramStateRef state = Pred->getState();
621  const LocationContext *LCtx = Pred->getLocationContext();
622  const CFGBlock *SrcBlock = 0;
623
624  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
625    ProgramPoint PP = N->getLocation();
626    if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
627      assert(N->pred_size() == 1);
628      continue;
629    }
630    SrcBlock = cast<BlockEdge>(&PP)->getSrc();
631    break;
632  }
633
634  // Find the last expression in the predecessor block.  That is the
635  // expression that is used for the value of the ternary expression.
636  bool hasValue = false;
637  SVal V;
638
639  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
640                                        E = SrcBlock->rend(); I != E; ++I) {
641    CFGElement CE = *I;
642    if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
643      const Expr *ValEx = cast<Expr>(CS->getStmt());
644      hasValue = true;
645      V = state->getSVal(ValEx, LCtx);
646      break;
647    }
648  }
649
650  assert(hasValue);
651  (void) hasValue;
652
653  // Generate a new node with the binding from the appropriate path.
654  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
655}
656
657void ExprEngine::
658VisitOffsetOfExpr(const OffsetOfExpr *OOE,
659                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
660  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
661  APSInt IV;
662  if (OOE->EvaluateAsInt(IV, getContext())) {
663    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
664    assert(OOE->getType()->isIntegerType());
665    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
666    SVal X = svalBuilder.makeIntVal(IV);
667    B.generateNode(OOE, Pred,
668                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
669                                              X));
670  }
671  // FIXME: Handle the case where __builtin_offsetof is not a constant.
672}
673
674
675void ExprEngine::
676VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
677                              ExplodedNode *Pred,
678                              ExplodedNodeSet &Dst) {
679  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
680
681  QualType T = Ex->getTypeOfArgument();
682
683  if (Ex->getKind() == UETT_SizeOf) {
684    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
685      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
686
687      // FIXME: Add support for VLA type arguments and VLA expressions.
688      // When that happens, we should probably refactor VLASizeChecker's code.
689      return;
690    }
691    else if (T->getAs<ObjCObjectType>()) {
692      // Some code tries to take the sizeof an ObjCObjectType, relying that
693      // the compiler has laid out its representation.  Just report Unknown
694      // for these.
695      return;
696    }
697  }
698
699  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
700  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
701
702  ProgramStateRef state = Pred->getState();
703  state = state->BindExpr(Ex, Pred->getLocationContext(),
704                          svalBuilder.makeIntVal(amt.getQuantity(),
705                                                     Ex->getType()));
706  Bldr.generateNode(Ex, Pred, state);
707}
708
709void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
710                                    ExplodedNode *Pred,
711                                    ExplodedNodeSet &Dst) {
712  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
713  switch (U->getOpcode()) {
714    default: {
715      Bldr.takeNodes(Pred);
716      ExplodedNodeSet Tmp;
717      VisitIncrementDecrementOperator(U, Pred, Tmp);
718      Bldr.addNodes(Tmp);
719    }
720      break;
721    case UO_Real: {
722      const Expr *Ex = U->getSubExpr()->IgnoreParens();
723
724      // FIXME: We don't have complex SValues yet.
725      if (Ex->getType()->isAnyComplexType()) {
726        // Just report "Unknown."
727        break;
728      }
729
730      // For all other types, UO_Real is an identity operation.
731      assert (U->getType() == Ex->getType());
732      ProgramStateRef state = Pred->getState();
733      const LocationContext *LCtx = Pred->getLocationContext();
734      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
735                                                 state->getSVal(Ex, LCtx)));
736      break;
737    }
738
739    case UO_Imag: {
740      const Expr *Ex = U->getSubExpr()->IgnoreParens();
741      // FIXME: We don't have complex SValues yet.
742      if (Ex->getType()->isAnyComplexType()) {
743        // Just report "Unknown."
744        break;
745      }
746      // For all other types, UO_Imag returns 0.
747      ProgramStateRef state = Pred->getState();
748      const LocationContext *LCtx = Pred->getLocationContext();
749      SVal X = svalBuilder.makeZeroVal(Ex->getType());
750      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
751      break;
752    }
753
754    case UO_Plus:
755      assert(!U->isGLValue());
756      // FALL-THROUGH.
757    case UO_Deref:
758    case UO_AddrOf:
759    case UO_Extension: {
760      // FIXME: We can probably just have some magic in Environment::getSVal()
761      // that propagates values, instead of creating a new node here.
762      //
763      // Unary "+" is a no-op, similar to a parentheses.  We still have places
764      // where it may be a block-level expression, so we need to
765      // generate an extra node that just propagates the value of the
766      // subexpression.
767      const Expr *Ex = U->getSubExpr()->IgnoreParens();
768      ProgramStateRef state = Pred->getState();
769      const LocationContext *LCtx = Pred->getLocationContext();
770      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
771                                                 state->getSVal(Ex, LCtx)));
772      break;
773    }
774
775    case UO_LNot:
776    case UO_Minus:
777    case UO_Not: {
778      assert (!U->isGLValue());
779      const Expr *Ex = U->getSubExpr()->IgnoreParens();
780      ProgramStateRef state = Pred->getState();
781      const LocationContext *LCtx = Pred->getLocationContext();
782
783      // Get the value of the subexpression.
784      SVal V = state->getSVal(Ex, LCtx);
785
786      if (V.isUnknownOrUndef()) {
787        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
788        break;
789      }
790
791      switch (U->getOpcode()) {
792        default:
793          llvm_unreachable("Invalid Opcode.");
794        case UO_Not:
795          // FIXME: Do we need to handle promotions?
796          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
797          break;
798        case UO_Minus:
799          // FIXME: Do we need to handle promotions?
800          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
801          break;
802        case UO_LNot:
803          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
804          //
805          //  Note: technically we do "E == 0", but this is the same in the
806          //    transfer functions as "0 == E".
807          SVal Result;
808          if (isa<Loc>(V)) {
809            Loc X = svalBuilder.makeNull();
810            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
811                               U->getType());
812          }
813          else if (Ex->getType()->isFloatingType()) {
814            // FIXME: handle floating point types.
815            Result = UnknownVal();
816          } else {
817            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
818            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
819                               U->getType());
820          }
821
822          state = state->BindExpr(U, LCtx, Result);
823          break;
824      }
825      Bldr.generateNode(U, Pred, state);
826      break;
827    }
828  }
829
830}
831
832void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
833                                                 ExplodedNode *Pred,
834                                                 ExplodedNodeSet &Dst) {
835  // Handle ++ and -- (both pre- and post-increment).
836  assert (U->isIncrementDecrementOp());
837  const Expr *Ex = U->getSubExpr()->IgnoreParens();
838
839  const LocationContext *LCtx = Pred->getLocationContext();
840  ProgramStateRef state = Pred->getState();
841  SVal loc = state->getSVal(Ex, LCtx);
842
843  // Perform a load.
844  ExplodedNodeSet Tmp;
845  evalLoad(Tmp, U, Ex, Pred, state, loc);
846
847  ExplodedNodeSet Dst2;
848  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
849  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
850
851    state = (*I)->getState();
852    assert(LCtx == (*I)->getLocationContext());
853    SVal V2_untested = state->getSVal(Ex, LCtx);
854
855    // Propagate unknown and undefined values.
856    if (V2_untested.isUnknownOrUndef()) {
857      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
858      continue;
859    }
860    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
861
862    // Handle all other values.
863    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
864
865    // If the UnaryOperator has non-location type, use its type to create the
866    // constant value. If the UnaryOperator has location type, create the
867    // constant with int type and pointer width.
868    SVal RHS;
869
870    if (U->getType()->isAnyPointerType())
871      RHS = svalBuilder.makeArrayIndex(1);
872    else if (U->getType()->isIntegralOrEnumerationType())
873      RHS = svalBuilder.makeIntVal(1, U->getType());
874    else
875      RHS = UnknownVal();
876
877    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
878
879    // Conjure a new symbol if necessary to recover precision.
880    if (Result.isUnknown()){
881      DefinedOrUnknownSVal SymVal =
882        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
883      Result = SymVal;
884
885      // If the value is a location, ++/-- should always preserve
886      // non-nullness.  Check if the original value was non-null, and if so
887      // propagate that constraint.
888      if (Loc::isLocType(U->getType())) {
889        DefinedOrUnknownSVal Constraint =
890        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
891
892        if (!state->assume(Constraint, true)) {
893          // It isn't feasible for the original value to be null.
894          // Propagate this constraint.
895          Constraint = svalBuilder.evalEQ(state, SymVal,
896                                       svalBuilder.makeZeroVal(U->getType()));
897
898
899          state = state->assume(Constraint, false);
900          assert(state);
901        }
902      }
903    }
904
905    // Since the lvalue-to-rvalue conversion is explicit in the AST,
906    // we bind an l-value if the operator is prefix and an lvalue (in C++).
907    if (U->isGLValue())
908      state = state->BindExpr(U, LCtx, loc);
909    else
910      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
911
912    // Perform the store.
913    Bldr.takeNodes(*I);
914    ExplodedNodeSet Dst3;
915    evalStore(Dst3, U, U, *I, state, loc, Result);
916    Bldr.addNodes(Dst3);
917  }
918  Dst.insert(Dst2);
919}
920