ExprEngineCallAndReturn.cpp revision 7229d0011766c174beffe6a846d78f448f845b39
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/Analysis/Analyses/LiveVariables.h"
17#include "clang/StaticAnalyzer/Core/CheckerManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/ParentMap.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/SaveAndRestore.h"
25
26using namespace clang;
27using namespace ento;
28
29STATISTIC(NumOfDynamicDispatchPathSplits,
30  "The # of times we split the path due to imprecise dynamic dispatch info");
31
32STATISTIC(NumInlinedCalls,
33  "The # of times we inlined a call");
34
35void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
36  // Get the entry block in the CFG of the callee.
37  const StackFrameContext *calleeCtx = CE.getCalleeContext();
38  const CFG *CalleeCFG = calleeCtx->getCFG();
39  const CFGBlock *Entry = &(CalleeCFG->getEntry());
40
41  // Validate the CFG.
42  assert(Entry->empty());
43  assert(Entry->succ_size() == 1);
44
45  // Get the solitary sucessor.
46  const CFGBlock *Succ = *(Entry->succ_begin());
47
48  // Construct an edge representing the starting location in the callee.
49  BlockEdge Loc(Entry, Succ, calleeCtx);
50
51  ProgramStateRef state = Pred->getState();
52
53  // Construct a new node and add it to the worklist.
54  bool isNew;
55  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
56  Node->addPredecessor(Pred, G);
57  if (isNew)
58    Engine.getWorkList()->enqueue(Node);
59}
60
61// Find the last statement on the path to the exploded node and the
62// corresponding Block.
63static std::pair<const Stmt*,
64                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
65  const Stmt *S = 0;
66  const StackFrameContext *SF =
67          Node->getLocation().getLocationContext()->getCurrentStackFrame();
68
69  // Back up through the ExplodedGraph until we reach a statement node in this
70  // stack frame.
71  while (Node) {
72    const ProgramPoint &PP = Node->getLocation();
73
74    if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
75      if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
76        S = SP->getStmt();
77        break;
78      } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
79        S = CEE->getCalleeContext()->getCallSite();
80        if (S)
81          break;
82
83        // If there is no statement, this is an implicitly-generated call.
84        // We'll walk backwards over it and then continue the loop to find
85        // an actual statement.
86        const CallEnter *CE;
87        do {
88          Node = Node->getFirstPred();
89          CE = Node->getLocationAs<CallEnter>();
90        } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
91
92        // Continue searching the graph.
93      }
94    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
95      // If we reached the CallEnter for this function, it has no statements.
96      if (CE->getCalleeContext() == SF)
97        break;
98    }
99
100    Node = *Node->pred_begin();
101  }
102
103  const CFGBlock *Blk = 0;
104  if (S) {
105    // Now, get the enclosing basic block.
106    while (Node && Node->pred_size() >=1 ) {
107      const ProgramPoint &PP = Node->getLocation();
108      if (isa<BlockEdge>(PP) &&
109          (PP.getLocationContext()->getCurrentStackFrame() == SF)) {
110        BlockEdge &EPP = cast<BlockEdge>(PP);
111        Blk = EPP.getDst();
112        break;
113      }
114      Node = *Node->pred_begin();
115    }
116  }
117
118  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
119}
120
121/// The call exit is simulated with a sequence of nodes, which occur between
122/// CallExitBegin and CallExitEnd. The following operations occur between the
123/// two program points:
124/// 1. CallExitBegin (triggers the start of call exit sequence)
125/// 2. Bind the return value
126/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
127/// 4. CallExitEnd (switch to the caller context)
128/// 5. PostStmt<CallExpr>
129void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
130  // Step 1 CEBNode was generated before the call.
131
132  const StackFrameContext *calleeCtx =
133      CEBNode->getLocationContext()->getCurrentStackFrame();
134
135  // The parent context might not be a stack frame, so make sure we
136  // look up the first enclosing stack frame.
137  const StackFrameContext *callerCtx =
138    calleeCtx->getParent()->getCurrentStackFrame();
139
140  const Stmt *CE = calleeCtx->getCallSite();
141  ProgramStateRef state = CEBNode->getState();
142  // Find the last statement in the function and the corresponding basic block.
143  const Stmt *LastSt = 0;
144  const CFGBlock *Blk = 0;
145  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
146
147  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
148
149  // If the callee returns an expression, bind its value to CallExpr.
150  if (CE) {
151    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
152      const LocationContext *LCtx = CEBNode->getLocationContext();
153      SVal V = state->getSVal(RS, LCtx);
154      state = state->BindExpr(CE, callerCtx, V);
155    }
156
157    // Bind the constructed object value to CXXConstructExpr.
158    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
159      loc::MemRegionVal This =
160        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
161      SVal ThisV = state->getSVal(This);
162
163      // Always bind the region to the CXXConstructExpr.
164      state = state->BindExpr(CCE, callerCtx, ThisV);
165    }
166  }
167
168  // Generate a CallEvent /before/ cleaning the state, so that we can get the
169  // correct value for 'this' (if necessary).
170  CallEventManager &CEMgr = getStateManager().getCallEventManager();
171  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
172
173  // Step 3: BindedRetNode -> CleanedNodes
174  // If we can find a statement and a block in the inlined function, run remove
175  // dead bindings before returning from the call. This is important to ensure
176  // that we report the issues such as leaks in the stack contexts in which
177  // they occurred.
178  ExplodedNodeSet CleanedNodes;
179  if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
180    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
181    PostStmt Loc(LastSt, calleeCtx, &retValBind);
182    bool isNew;
183    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
184    BindedRetNode->addPredecessor(CEBNode, G);
185    if (!isNew)
186      return;
187
188    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
189    currBldrCtx = &Ctx;
190    // Here, we call the Symbol Reaper with 0 statement and caller location
191    // context, telling it to clean up everything in the callee's context
192    // (and it's children). We use LastStmt as a diagnostic statement, which
193    // which the PreStmtPurge Dead point will be associated.
194    removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
195               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
196    currBldrCtx = 0;
197  } else {
198    CleanedNodes.Add(CEBNode);
199  }
200
201  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
202                                 E = CleanedNodes.end(); I != E; ++I) {
203
204    // Step 4: Generate the CallExit and leave the callee's context.
205    // CleanedNodes -> CEENode
206    CallExitEnd Loc(calleeCtx, callerCtx);
207    bool isNew;
208    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
209    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
210    CEENode->addPredecessor(*I, G);
211    if (!isNew)
212      return;
213
214    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
215    // result onto the work list.
216    // CEENode -> Dst -> WorkList
217    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
218    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
219        &Ctx);
220    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
221
222    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
223
224    ExplodedNodeSet DstPostCall;
225    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
226                                               *UpdatedCall, *this,
227                                               /*WasInlined=*/true);
228
229    ExplodedNodeSet Dst;
230    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
231      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
232                                                        *this,
233                                                        /*WasInlined=*/true);
234    } else if (CE) {
235      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
236                                                 *this, /*WasInlined=*/true);
237    } else {
238      Dst.insert(DstPostCall);
239    }
240
241    // Enqueue the next element in the block.
242    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
243                                   PSI != PSE; ++PSI) {
244      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
245                                    calleeCtx->getIndex()+1);
246    }
247  }
248}
249
250static void examineStackFrames(const Decl *D, const LocationContext *LCtx,
251                               bool &IsRecursive, unsigned &StackDepth) {
252  IsRecursive = false;
253  StackDepth = 0;
254  while (LCtx) {
255    if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
256      ++StackDepth;
257      if (SFC->getDecl() == D)
258        IsRecursive = true;
259    }
260    LCtx = LCtx->getParent();
261  }
262}
263
264static bool IsInStdNamespace(const FunctionDecl *FD) {
265  const DeclContext *DC = FD->getEnclosingNamespaceContext();
266  const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
267  if (!ND)
268    return false;
269
270  while (const DeclContext *Parent = ND->getParent()) {
271    if (!isa<NamespaceDecl>(Parent))
272      break;
273    ND = cast<NamespaceDecl>(Parent);
274  }
275
276  return ND->getName() == "std";
277}
278
279// Determine if we should inline the call.
280bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
281  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
282  const CFG *CalleeCFG = CalleeADC->getCFG();
283
284  // It is possible that the CFG cannot be constructed.
285  // Be safe, and check if the CalleeCFG is valid.
286  if (!CalleeCFG)
287    return false;
288
289  bool IsRecursive = false;
290  unsigned StackDepth = 0;
291  examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
292  if ((StackDepth >= AMgr.options.InlineMaxStackDepth) &&
293       ((CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
294         || IsRecursive))
295    return false;
296
297  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
298    return false;
299
300  if (CalleeCFG->getNumBlockIDs() > AMgr.options.InlineMaxFunctionSize)
301    return false;
302
303  // Do not inline variadic calls (for now).
304  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
305    if (BD->isVariadic())
306      return false;
307  }
308  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
309    if (FD->isVariadic())
310      return false;
311  }
312
313  if (getContext().getLangOpts().CPlusPlus) {
314    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
315      // Conditionally allow the inlining of template functions.
316      if (!getAnalysisManager().options.mayInlineTemplateFunctions())
317        if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
318          return false;
319
320      // Conditionally allow the inlining of C++ standard library functions.
321      if (!getAnalysisManager().options.mayInlineCXXStandardLibrary())
322        if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
323          if (IsInStdNamespace(FD))
324            return false;
325    }
326  }
327
328  // It is possible that the live variables analysis cannot be
329  // run.  If so, bail out.
330  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
331    return false;
332
333  return true;
334}
335
336/// The GDM component containing the dynamic dispatch bifurcation info. When
337/// the exact type of the receiver is not known, we want to explore both paths -
338/// one on which we do inline it and the other one on which we don't. This is
339/// done to ensure we do not drop coverage.
340/// This is the map from the receiver region to a bool, specifying either we
341/// consider this region's information precise or not along the given path.
342namespace clang {
343namespace ento {
344enum DynamicDispatchMode { DynamicDispatchModeInlined = 1,
345                           DynamicDispatchModeConservative };
346
347struct DynamicDispatchBifurcationMap {};
348typedef llvm::ImmutableMap<const MemRegion*,
349                           unsigned int> DynamicDispatchBifur;
350template<> struct ProgramStateTrait<DynamicDispatchBifurcationMap>
351    :  public ProgramStatePartialTrait<DynamicDispatchBifur> {
352  static void *GDMIndex() { static int index; return &index; }
353};
354
355}}
356
357bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
358                            NodeBuilder &Bldr, ExplodedNode *Pred,
359                            ProgramStateRef State) {
360  assert(D);
361
362  const LocationContext *CurLC = Pred->getLocationContext();
363  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
364  const LocationContext *ParentOfCallee = 0;
365
366  const AnalyzerOptions &Opts = getAnalysisManager().options;
367
368  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
369  switch (Call.getKind()) {
370  case CE_Function:
371    break;
372  case CE_CXXMember:
373  case CE_CXXMemberOperator:
374    if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
375      return false;
376    break;
377  case CE_CXXConstructor: {
378    if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
379      return false;
380
381    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
382
383    // FIXME: We don't handle constructors or destructors for arrays properly.
384    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
385    if (Target && isa<ElementRegion>(Target))
386      return false;
387
388    // FIXME: This is a hack. We don't use the correct region for a new
389    // expression, so if we inline the constructor its result will just be
390    // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
391    // and the longer-term possible fix is discussed in PR12014.
392    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
393    if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
394      if (isa<CXXNewExpr>(Parent))
395        return false;
396
397    // Inlining constructors requires including initializers in the CFG.
398    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
399    assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
400    (void)ADC;
401
402    // If the destructor is trivial, it's always safe to inline the constructor.
403    if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
404      break;
405
406    // For other types, only inline constructors if destructor inlining is
407    // also enabled.
408    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
409      return false;
410
411    // FIXME: This is a hack. We don't handle temporary destructors
412    // right now, so we shouldn't inline their constructors.
413    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
414      if (!Target || !isa<DeclRegion>(Target))
415        return false;
416
417    break;
418  }
419  case CE_CXXDestructor: {
420    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
421      return false;
422
423    // Inlining destructors requires building the CFG correctly.
424    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
425    assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
426    (void)ADC;
427
428    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
429
430    // FIXME: We don't handle constructors or destructors for arrays properly.
431    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
432    if (Target && isa<ElementRegion>(Target))
433      return false;
434
435    break;
436  }
437  case CE_CXXAllocator:
438    // Do not inline allocators until we model deallocators.
439    // This is unfortunate, but basically necessary for smart pointers and such.
440    return false;
441  case CE_Block: {
442    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
443    assert(BR && "If we have the block definition we should have its region");
444    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
445    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
446                                                         cast<BlockDecl>(D),
447                                                         BR);
448    break;
449  }
450  case CE_ObjCMessage:
451    if (!(getAnalysisManager().options.IPAMode == DynamicDispatch ||
452          getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate))
453      return false;
454    break;
455  }
456
457  if (!shouldInlineDecl(D, Pred))
458    return false;
459
460  if (!ParentOfCallee)
461    ParentOfCallee = CallerSFC;
462
463  // This may be NULL, but that's fine.
464  const Expr *CallE = Call.getOriginExpr();
465
466  // Construct a new stack frame for the callee.
467  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
468  const StackFrameContext *CalleeSFC =
469    CalleeADC->getStackFrame(ParentOfCallee, CallE,
470                             currBldrCtx->getBlock(),
471                             currStmtIdx);
472
473  CallEnter Loc(CallE, CalleeSFC, CurLC);
474
475  // Construct a new state which contains the mapping from actual to
476  // formal arguments.
477  State = State->enterStackFrame(Call, CalleeSFC);
478
479  bool isNew;
480  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
481    N->addPredecessor(Pred, G);
482    if (isNew)
483      Engine.getWorkList()->enqueue(N);
484  }
485
486  // If we decided to inline the call, the successor has been manually
487  // added onto the work list so remove it from the node builder.
488  Bldr.takeNodes(Pred);
489
490  NumInlinedCalls++;
491
492  // Mark the decl as visited.
493  if (VisitedCallees)
494    VisitedCallees->insert(D);
495
496  return true;
497}
498
499static ProgramStateRef getInlineFailedState(ProgramStateRef State,
500                                            const Stmt *CallE) {
501  void *ReplayState = State->get<ReplayWithoutInlining>();
502  if (!ReplayState)
503    return 0;
504
505  assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
506  (void)CallE;
507
508  return State->remove<ReplayWithoutInlining>();
509}
510
511void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
512                               ExplodedNodeSet &dst) {
513  // Perform the previsit of the CallExpr.
514  ExplodedNodeSet dstPreVisit;
515  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
516
517  // Get the call in its initial state. We use this as a template to perform
518  // all the checks.
519  CallEventManager &CEMgr = getStateManager().getCallEventManager();
520  CallEventRef<> CallTemplate
521    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
522
523  // Evaluate the function call.  We try each of the checkers
524  // to see if the can evaluate the function call.
525  ExplodedNodeSet dstCallEvaluated;
526  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
527       I != E; ++I) {
528    evalCall(dstCallEvaluated, *I, *CallTemplate);
529  }
530
531  // Finally, perform the post-condition check of the CallExpr and store
532  // the created nodes in 'Dst'.
533  // Note that if the call was inlined, dstCallEvaluated will be empty.
534  // The post-CallExpr check will occur in processCallExit.
535  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
536                                             *this);
537}
538
539void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
540                          const CallEvent &Call) {
541  // WARNING: At this time, the state attached to 'Call' may be older than the
542  // state in 'Pred'. This is a minor optimization since CheckerManager will
543  // use an updated CallEvent instance when calling checkers, but if 'Call' is
544  // ever used directly in this function all callers should be updated to pass
545  // the most recent state. (It is probably not worth doing the work here since
546  // for some callers this will not be necessary.)
547
548  // Run any pre-call checks using the generic call interface.
549  ExplodedNodeSet dstPreVisit;
550  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
551
552  // Actually evaluate the function call.  We try each of the checkers
553  // to see if the can evaluate the function call, and get a callback at
554  // defaultEvalCall if all of them fail.
555  ExplodedNodeSet dstCallEvaluated;
556  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
557                                             Call, *this);
558
559  // Finally, run any post-call checks.
560  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
561                                             Call, *this);
562}
563
564ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
565                                            const LocationContext *LCtx,
566                                            ProgramStateRef State) {
567  const Expr *E = Call.getOriginExpr();
568  if (!E)
569    return State;
570
571  // Some method families have known return values.
572  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
573    switch (Msg->getMethodFamily()) {
574    default:
575      break;
576    case OMF_autorelease:
577    case OMF_retain:
578    case OMF_self: {
579      // These methods return their receivers.
580      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
581    }
582    }
583  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
584    return State->BindExpr(E, LCtx, C->getCXXThisVal());
585  }
586
587  // Conjure a symbol if the return value is unknown.
588  QualType ResultTy = Call.getResultType();
589  SValBuilder &SVB = getSValBuilder();
590  unsigned Count = currBldrCtx->blockCount();
591  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
592  return State->BindExpr(E, LCtx, R);
593}
594
595// Conservatively evaluate call by invalidating regions and binding
596// a conjured return value.
597void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
598                                      ExplodedNode *Pred, ProgramStateRef State) {
599  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
600  State = bindReturnValue(Call, Pred->getLocationContext(), State);
601
602  // And make the result node.
603  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
604}
605
606void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
607                                 const CallEvent &CallTemplate) {
608  // Make sure we have the most recent state attached to the call.
609  ProgramStateRef State = Pred->getState();
610  CallEventRef<> Call = CallTemplate.cloneWithState(State);
611
612  if (!getAnalysisManager().shouldInlineCall()) {
613    conservativeEvalCall(*Call, Bldr, Pred, State);
614    return;
615  }
616  // Try to inline the call.
617  // The origin expression here is just used as a kind of checksum;
618  // this should still be safe even for CallEvents that don't come from exprs.
619  const Expr *E = Call->getOriginExpr();
620  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
621
622  if (InlinedFailedState) {
623    // If we already tried once and failed, make sure we don't retry later.
624    State = InlinedFailedState;
625  } else {
626    RuntimeDefinition RD = Call->getRuntimeDefinition();
627    const Decl *D = RD.getDecl();
628    if (D) {
629      if (RD.mayHaveOtherDefinitions()) {
630        // Explore with and without inlining the call.
631        if (getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate) {
632          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
633          return;
634        }
635
636        // Don't inline if we're not in any dynamic dispatch mode.
637        if (getAnalysisManager().options.IPAMode != DynamicDispatch) {
638          conservativeEvalCall(*Call, Bldr, Pred, State);
639          return;
640        }
641      }
642
643      // We are not bifurcating and we do have a Decl, so just inline.
644      if (inlineCall(*Call, D, Bldr, Pred, State))
645        return;
646    }
647  }
648
649  // If we can't inline it, handle the return value and invalidate the regions.
650  conservativeEvalCall(*Call, Bldr, Pred, State);
651}
652
653void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
654                               const CallEvent &Call, const Decl *D,
655                               NodeBuilder &Bldr, ExplodedNode *Pred) {
656  assert(BifurReg);
657  BifurReg = BifurReg->StripCasts();
658
659  // Check if we've performed the split already - note, we only want
660  // to split the path once per memory region.
661  ProgramStateRef State = Pred->getState();
662  const unsigned int *BState =
663                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
664  if (BState) {
665    // If we are on "inline path", keep inlining if possible.
666    if (*BState == DynamicDispatchModeInlined)
667      if (inlineCall(Call, D, Bldr, Pred, State))
668        return;
669    // If inline failed, or we are on the path where we assume we
670    // don't have enough info about the receiver to inline, conjure the
671    // return value and invalidate the regions.
672    conservativeEvalCall(Call, Bldr, Pred, State);
673    return;
674  }
675
676  // If we got here, this is the first time we process a message to this
677  // region, so split the path.
678  ProgramStateRef IState =
679      State->set<DynamicDispatchBifurcationMap>(BifurReg,
680                                               DynamicDispatchModeInlined);
681  inlineCall(Call, D, Bldr, Pred, IState);
682
683  ProgramStateRef NoIState =
684      State->set<DynamicDispatchBifurcationMap>(BifurReg,
685                                               DynamicDispatchModeConservative);
686  conservativeEvalCall(Call, Bldr, Pred, NoIState);
687
688  NumOfDynamicDispatchPathSplits++;
689  return;
690}
691
692
693void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
694                                 ExplodedNodeSet &Dst) {
695
696  ExplodedNodeSet dstPreVisit;
697  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
698
699  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
700
701  if (RS->getRetValue()) {
702    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
703                                  ei = dstPreVisit.end(); it != ei; ++it) {
704      B.generateNode(RS, *it, (*it)->getState());
705    }
706  }
707}
708