ExprEngineCallAndReturn.cpp revision 07d39a479cf8f20294407e749f9933da34ebecb7
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/CheckerManager.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
17#include "llvm/ADT/SaveAndRestore.h"
18#include "clang/AST/DeclCXX.h"
19
20using namespace clang;
21using namespace ento;
22
23void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
24  // Get the entry block in the CFG of the callee.
25  const StackFrameContext *calleeCtx = CE.getCalleeContext();
26  const CFG *CalleeCFG = calleeCtx->getCFG();
27  const CFGBlock *Entry = &(CalleeCFG->getEntry());
28
29  // Validate the CFG.
30  assert(Entry->empty());
31  assert(Entry->succ_size() == 1);
32
33  // Get the solitary sucessor.
34  const CFGBlock *Succ = *(Entry->succ_begin());
35
36  // Construct an edge representing the starting location in the callee.
37  BlockEdge Loc(Entry, Succ, calleeCtx);
38
39  // Construct a new state which contains the mapping from actual to
40  // formal arguments.
41  const LocationContext *callerCtx = Pred->getLocationContext();
42  ProgramStateRef state = Pred->getState()->enterStackFrame(callerCtx,
43                                                                calleeCtx);
44
45  // Construct a new node and add it to the worklist.
46  bool isNew;
47  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
48  Node->addPredecessor(Pred, G);
49  if (isNew)
50    Engine.getWorkList()->enqueue(Node);
51}
52
53static const ReturnStmt *getReturnStmt(const ExplodedNode *Node) {
54  while (Node) {
55    const ProgramPoint &PP = Node->getLocation();
56    // Skip any BlockEdges.
57    if (isa<BlockEdge>(PP) || isa<CallExit>(PP)) {
58      assert(Node->pred_size() == 1);
59      Node = *Node->pred_begin();
60      continue;
61    }
62    if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
63      const Stmt *S = SP->getStmt();
64      return dyn_cast<ReturnStmt>(S);
65    }
66    break;
67  }
68  return 0;
69}
70
71void ExprEngine::processCallExit(ExplodedNode *Pred) {
72  ProgramStateRef state = Pred->getState();
73  const StackFrameContext *calleeCtx =
74    Pred->getLocationContext()->getCurrentStackFrame();
75  const LocationContext *callerCtx = calleeCtx->getParent();
76  const Stmt *CE = calleeCtx->getCallSite();
77
78  // If the callee returns an expression, bind its value to CallExpr.
79  if (const ReturnStmt *RS = getReturnStmt(Pred)) {
80    const LocationContext *LCtx = Pred->getLocationContext();
81    SVal V = state->getSVal(RS, LCtx);
82    state = state->BindExpr(CE, callerCtx, V);
83  }
84
85  // Bind the constructed object value to CXXConstructExpr.
86  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
87    const CXXThisRegion *ThisR =
88    getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx);
89
90    SVal ThisV = state->getSVal(ThisR);
91    // Always bind the region to the CXXConstructExpr.
92    state = state->BindExpr(CCE, Pred->getLocationContext(), ThisV);
93  }
94
95  static SimpleProgramPointTag returnTag("ExprEngine : Call Return");
96  PostStmt Loc(CE, callerCtx, &returnTag);
97  bool isNew;
98  ExplodedNode *N = G.getNode(Loc, state, false, &isNew);
99  N->addPredecessor(Pred, G);
100  if (!isNew)
101    return;
102
103  // Perform the post-condition check of the CallExpr.
104  ExplodedNodeSet Dst;
105  NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), N);
106  SaveAndRestore<const NodeBuilderContext*> NBCSave(currentBuilderContext,
107                                                    &Ctx);
108  SaveAndRestore<unsigned> CBISave(currentStmtIdx, calleeCtx->getIndex());
109
110  getCheckerManager().runCheckersForPostStmt(Dst, N, CE, *this);
111
112  // Enqueue the next element in the block.
113  for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I) {
114    Engine.getWorkList()->enqueue(*I,
115                                  calleeCtx->getCallSiteBlock(),
116                                  calleeCtx->getIndex()+1);
117  }
118}
119
120static unsigned getNumberStackFrames(const LocationContext *LCtx) {
121  unsigned count = 0;
122  while (LCtx) {
123    if (isa<StackFrameContext>(LCtx))
124      ++count;
125    LCtx = LCtx->getParent();
126  }
127  return count;
128}
129
130bool ExprEngine::InlineCall(ExplodedNodeSet &Dst,
131                            const CallExpr *CE,
132                            ExplodedNode *Pred) {
133  ProgramStateRef state = Pred->getState();
134  const Expr *Callee = CE->getCallee();
135  const FunctionDecl *FD =
136  state->getSVal(Callee, Pred->getLocationContext()).getAsFunctionDecl();
137  if (!FD || !FD->hasBody(FD))
138    return false;
139
140  switch (CE->getStmtClass()) {
141    default:
142      // FIXME: Handle C++.
143      break;
144    case Stmt::CallExprClass: {
145      // Cap the stack depth at 4 calls (5 stack frames, base + 4 calls).
146      // These heuristics are a WIP.
147      if (getNumberStackFrames(Pred->getLocationContext()) == 5)
148        return false;
149
150      // Construct a new stack frame for the callee.
151      AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(FD);
152      const StackFrameContext *CallerSFC =
153      Pred->getLocationContext()->getCurrentStackFrame();
154      const StackFrameContext *CalleeSFC =
155      CalleeADC->getStackFrame(CallerSFC, CE,
156                               currentBuilderContext->getBlock(),
157                               currentStmtIdx);
158
159      CallEnter Loc(CE, CalleeSFC, Pred->getLocationContext());
160      bool isNew;
161      ExplodedNode *N = G.getNode(Loc, state, false, &isNew);
162      N->addPredecessor(Pred, G);
163      if (isNew)
164        Engine.getWorkList()->enqueue(N);
165      return true;
166    }
167  }
168  return false;
169}
170
171static bool isPointerToConst(const ParmVarDecl *ParamDecl) {
172  QualType PointeeTy = ParamDecl->getOriginalType()->getPointeeType();
173  if (PointeeTy != QualType() && PointeeTy.isConstQualified() &&
174      !PointeeTy->isAnyPointerType() && !PointeeTy->isReferenceType()) {
175    return true;
176  }
177  return false;
178}
179
180// Try to retrieve the function declaration and find the function parameter
181// types which are pointers/references to a non-pointer const.
182// We do not invalidate the corresponding argument regions.
183static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
184                       const CallOrObjCMessage &Call) {
185  const Decl *CallDecl = Call.getDecl();
186  if (!CallDecl)
187    return;
188
189  if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(CallDecl)) {
190    const IdentifierInfo *II = FDecl->getIdentifier();
191
192    // List the cases, where the region should be invalidated even if the
193    // argument is const.
194    if (II) {
195      StringRef FName = II->getName();
196      //  - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
197      // value into thread local storage. The value can later be retrieved with
198      // 'void *ptheread_getspecific(pthread_key)'. So even thought the
199      // parameter is 'const void *', the region escapes through the call.
200      //  - ObjC functions that end with "NoCopy" can free memory, of the passed
201      // in buffer.
202      if (FName == "pthread_setspecific" ||
203          FName.endswith("NoCopy"))
204        return;
205    }
206
207    for (unsigned Idx = 0, E = Call.getNumArgs(); Idx != E; ++Idx) {
208      if (FDecl && Idx < FDecl->getNumParams()) {
209        if (isPointerToConst(FDecl->getParamDecl(Idx)))
210          PreserveArgs.insert(Idx);
211      }
212    }
213    return;
214  }
215
216  if (const ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(CallDecl)) {
217    assert(MDecl->param_size() <= Call.getNumArgs());
218    unsigned Idx = 0;
219    for (clang::ObjCMethodDecl::param_const_iterator
220         I = MDecl->param_begin(), E = MDecl->param_end(); I != E; ++I, ++Idx) {
221      if (isPointerToConst(*I))
222        PreserveArgs.insert(Idx);
223    }
224    return;
225  }
226}
227
228ProgramStateRef
229ExprEngine::invalidateArguments(ProgramStateRef State,
230                                const CallOrObjCMessage &Call,
231                                const LocationContext *LC) {
232  SmallVector<const MemRegion *, 8> RegionsToInvalidate;
233
234  if (Call.isObjCMessage()) {
235    // Invalidate all instance variables of the receiver of an ObjC message.
236    // FIXME: We should be able to do better with inter-procedural analysis.
237    if (const MemRegion *MR = Call.getInstanceMessageReceiver(LC).getAsRegion())
238      RegionsToInvalidate.push_back(MR);
239
240  } else if (Call.isCXXCall()) {
241    // Invalidate all instance variables for the callee of a C++ method call.
242    // FIXME: We should be able to do better with inter-procedural analysis.
243    // FIXME: We can probably do better for const versus non-const methods.
244    if (const MemRegion *Callee = Call.getCXXCallee().getAsRegion())
245      RegionsToInvalidate.push_back(Callee);
246
247  } else if (Call.isFunctionCall()) {
248    // Block calls invalidate all captured-by-reference values.
249    SVal CalleeVal = Call.getFunctionCallee();
250    if (const MemRegion *Callee = CalleeVal.getAsRegion()) {
251      if (isa<BlockDataRegion>(Callee))
252        RegionsToInvalidate.push_back(Callee);
253    }
254  }
255
256  // Indexes of arguments whose values will be preserved by the call.
257  llvm::SmallSet<unsigned, 1> PreserveArgs;
258  findPtrToConstParams(PreserveArgs, Call);
259
260  for (unsigned idx = 0, e = Call.getNumArgs(); idx != e; ++idx) {
261    if (PreserveArgs.count(idx))
262      continue;
263
264    SVal V = Call.getArgSVal(idx);
265
266    // If we are passing a location wrapped as an integer, unwrap it and
267    // invalidate the values referred by the location.
268    if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
269      V = Wrapped->getLoc();
270    else if (!isa<Loc>(V))
271      continue;
272
273    if (const MemRegion *R = V.getAsRegion()) {
274      // Invalidate the value of the variable passed by reference.
275
276      // Are we dealing with an ElementRegion?  If the element type is
277      // a basic integer type (e.g., char, int) and the underlying region
278      // is a variable region then strip off the ElementRegion.
279      // FIXME: We really need to think about this for the general case
280      //   as sometimes we are reasoning about arrays and other times
281      //   about (char*), etc., is just a form of passing raw bytes.
282      //   e.g., void *p = alloca(); foo((char*)p);
283      if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
284        // Checking for 'integral type' is probably too promiscuous, but
285        // we'll leave it in for now until we have a systematic way of
286        // handling all of these cases.  Eventually we need to come up
287        // with an interface to StoreManager so that this logic can be
288        // appropriately delegated to the respective StoreManagers while
289        // still allowing us to do checker-specific logic (e.g.,
290        // invalidating reference counts), probably via callbacks.
291        if (ER->getElementType()->isIntegralOrEnumerationType()) {
292          const MemRegion *superReg = ER->getSuperRegion();
293          if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
294              isa<ObjCIvarRegion>(superReg))
295            R = cast<TypedRegion>(superReg);
296        }
297        // FIXME: What about layers of ElementRegions?
298      }
299
300      // Mark this region for invalidation.  We batch invalidate regions
301      // below for efficiency.
302      RegionsToInvalidate.push_back(R);
303    } else {
304      // Nuke all other arguments passed by reference.
305      // FIXME: is this necessary or correct? This handles the non-Region
306      //  cases.  Is it ever valid to store to these?
307      State = State->unbindLoc(cast<Loc>(V));
308    }
309  }
310
311  // Invalidate designated regions using the batch invalidation API.
312
313  // FIXME: We can have collisions on the conjured symbol if the
314  //  expression *I also creates conjured symbols.  We probably want
315  //  to identify conjured symbols by an expression pair: the enclosing
316  //  expression (the context) and the expression itself.  This should
317  //  disambiguate conjured symbols.
318  unsigned Count = currentBuilderContext->getCurrentBlockCount();
319  StoreManager::InvalidatedSymbols IS;
320
321  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
322  //  global variables.
323  return State->invalidateRegions(RegionsToInvalidate,
324                                  Call.getOriginExpr(), Count, LC,
325                                  &IS, &Call);
326
327}
328
329// For now, skip inlining variadic functions.
330// We also don't inline blocks.
331static bool shouldInlineCall(const CallExpr *CE, ExprEngine &Eng) {
332  if (!Eng.getAnalysisManager().shouldInlineCall())
333    return false;
334  QualType callee = CE->getCallee()->getType();
335  const FunctionProtoType *FT = 0;
336  if (const PointerType *PT = callee->getAs<PointerType>())
337    FT = dyn_cast<FunctionProtoType>(PT->getPointeeType());
338  else if (const BlockPointerType *BT = callee->getAs<BlockPointerType>()) {
339    // FIXME: inline blocks.
340    // FT = dyn_cast<FunctionProtoType>(BT->getPointeeType());
341    (void) BT;
342    return false;
343  }
344
345  // If we have no prototype, assume the function is okay.
346  if (!FT)
347    return true;
348
349  // Skip inlining of variadic functions.
350  return !FT->isVariadic();
351}
352
353void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
354                               ExplodedNodeSet &dst) {
355  // Perform the previsit of the CallExpr.
356  ExplodedNodeSet dstPreVisit;
357  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
358
359  // Now evaluate the call itself.
360  class DefaultEval : public GraphExpander {
361    ExprEngine &Eng;
362    const CallExpr *CE;
363  public:
364
365    DefaultEval(ExprEngine &eng, const CallExpr *ce)
366    : Eng(eng), CE(ce) {}
367    virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) {
368      // Should we inline the call?
369      if (shouldInlineCall(CE, Eng) &&
370          Eng.InlineCall(Dst, CE, Pred)) {
371        return;
372      }
373
374      // First handle the return value.
375      StmtNodeBuilder Bldr(Pred, Dst, *Eng.currentBuilderContext);
376
377      // Get the callee.
378      const Expr *Callee = CE->getCallee()->IgnoreParens();
379      ProgramStateRef state = Pred->getState();
380      SVal L = state->getSVal(Callee, Pred->getLocationContext());
381
382      // Figure out the result type. We do this dance to handle references.
383      QualType ResultTy;
384      if (const FunctionDecl *FD = L.getAsFunctionDecl())
385        ResultTy = FD->getResultType();
386      else
387        ResultTy = CE->getType();
388
389      if (CE->isLValue())
390        ResultTy = Eng.getContext().getPointerType(ResultTy);
391
392      // Conjure a symbol value to use as the result.
393      SValBuilder &SVB = Eng.getSValBuilder();
394      unsigned Count = Eng.currentBuilderContext->getCurrentBlockCount();
395      const LocationContext *LCtx = Pred->getLocationContext();
396      SVal RetVal = SVB.getConjuredSymbolVal(0, CE, LCtx, ResultTy, Count);
397
398      // Generate a new state with the return value set.
399      state = state->BindExpr(CE, LCtx, RetVal);
400
401      // Invalidate the arguments.
402      state = Eng.invalidateArguments(state, CallOrObjCMessage(CE, state, LCtx),
403                                      LCtx);
404
405      // And make the result node.
406      Bldr.generateNode(CE, Pred, state);
407    }
408  };
409
410  // Finally, evaluate the function call.  We try each of the checkers
411  // to see if the can evaluate the function call.
412  ExplodedNodeSet dstCallEvaluated;
413  DefaultEval defEval(*this, CE);
414  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated,
415                                             dstPreVisit,
416                                             CE, *this, &defEval);
417
418  // Finally, perform the post-condition check of the CallExpr and store
419  // the created nodes in 'Dst'.
420  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
421                                             *this);
422}
423
424void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
425                                 ExplodedNodeSet &Dst) {
426
427  ExplodedNodeSet dstPreVisit;
428  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
429
430  StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
431
432  if (RS->getRetValue()) {
433    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
434                                  ei = dstPreVisit.end(); it != ei; ++it) {
435      B.generateNode(RS, *it, (*it)->getState());
436    }
437  }
438}
439