ExprEngineCallAndReturn.cpp revision 210f5a28227c90d739298e3e6729e827858fe397
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/Analysis/Analyses/LiveVariables.h"
17#include "clang/StaticAnalyzer/Core/CheckerManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
20#include "clang/AST/DeclCXX.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/SaveAndRestore.h"
24
25using namespace clang;
26using namespace ento;
27
28STATISTIC(NumOfDynamicDispatchPathSplits,
29  "The # of times we split the path due to imprecise dynamic dispatch info");
30
31STATISTIC(NumInlinedCalls,
32  "The # of times we inlined a call");
33
34void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
35  // Get the entry block in the CFG of the callee.
36  const StackFrameContext *calleeCtx = CE.getCalleeContext();
37  const CFG *CalleeCFG = calleeCtx->getCFG();
38  const CFGBlock *Entry = &(CalleeCFG->getEntry());
39
40  // Validate the CFG.
41  assert(Entry->empty());
42  assert(Entry->succ_size() == 1);
43
44  // Get the solitary sucessor.
45  const CFGBlock *Succ = *(Entry->succ_begin());
46
47  // Construct an edge representing the starting location in the callee.
48  BlockEdge Loc(Entry, Succ, calleeCtx);
49
50  ProgramStateRef state = Pred->getState();
51
52  // Construct a new node and add it to the worklist.
53  bool isNew;
54  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
55  Node->addPredecessor(Pred, G);
56  if (isNew)
57    Engine.getWorkList()->enqueue(Node);
58}
59
60// Find the last statement on the path to the exploded node and the
61// corresponding Block.
62static std::pair<const Stmt*,
63                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
64  const Stmt *S = 0;
65  const StackFrameContext *SF =
66          Node->getLocation().getLocationContext()->getCurrentStackFrame();
67
68  // Back up through the ExplodedGraph until we reach a statement node.
69  while (Node) {
70    const ProgramPoint &PP = Node->getLocation();
71
72    if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
73      S = SP->getStmt();
74      break;
75    } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
76      S = CEE->getCalleeContext()->getCallSite();
77      if (S)
78        break;
79      // If we have an implicit call, we'll probably end up with a
80      // StmtPoint inside the callee, which is acceptable.
81      // (It's possible a function ONLY contains implicit calls -- such as an
82      // implicitly-generated destructor -- so we shouldn't just skip back to
83      // the CallEnter node and keep going.)
84    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
85      // If we reached the CallEnter for this function, it has no statements.
86      if (CE->getCalleeContext() == SF)
87        break;
88    }
89
90    Node = *Node->pred_begin();
91  }
92
93  const CFGBlock *Blk = 0;
94  if (S) {
95    // Now, get the enclosing basic block.
96    while (Node && Node->pred_size() >=1 ) {
97      const ProgramPoint &PP = Node->getLocation();
98      if (isa<BlockEdge>(PP) &&
99          (PP.getLocationContext()->getCurrentStackFrame() == SF)) {
100        BlockEdge &EPP = cast<BlockEdge>(PP);
101        Blk = EPP.getDst();
102        break;
103      }
104      Node = *Node->pred_begin();
105    }
106  }
107
108  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
109}
110
111/// The call exit is simulated with a sequence of nodes, which occur between
112/// CallExitBegin and CallExitEnd. The following operations occur between the
113/// two program points:
114/// 1. CallExitBegin (triggers the start of call exit sequence)
115/// 2. Bind the return value
116/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
117/// 4. CallExitEnd (switch to the caller context)
118/// 5. PostStmt<CallExpr>
119void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
120  // Step 1 CEBNode was generated before the call.
121
122  const StackFrameContext *calleeCtx =
123      CEBNode->getLocationContext()->getCurrentStackFrame();
124
125  // The parent context might not be a stack frame, so make sure we
126  // look up the first enclosing stack frame.
127  const StackFrameContext *callerCtx =
128    calleeCtx->getParent()->getCurrentStackFrame();
129
130  const Stmt *CE = calleeCtx->getCallSite();
131  ProgramStateRef state = CEBNode->getState();
132  // Find the last statement in the function and the corresponding basic block.
133  const Stmt *LastSt = 0;
134  const CFGBlock *Blk = 0;
135  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
136
137  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
138
139  // If the callee returns an expression, bind its value to CallExpr.
140  if (CE) {
141    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
142      const LocationContext *LCtx = CEBNode->getLocationContext();
143      SVal V = state->getSVal(RS, LCtx);
144      state = state->BindExpr(CE, callerCtx, V);
145    }
146
147    // Bind the constructed object value to CXXConstructExpr.
148    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
149      loc::MemRegionVal This =
150        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
151      SVal ThisV = state->getSVal(This);
152
153      // Always bind the region to the CXXConstructExpr.
154      state = state->BindExpr(CCE, callerCtx, ThisV);
155    }
156  }
157
158  // Generate a CallEvent /before/ cleaning the state, so that we can get the
159  // correct value for 'this' (if necessary).
160  CallEventManager &CEMgr = getStateManager().getCallEventManager();
161  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
162
163  // Step 3: BindedRetNode -> CleanedNodes
164  // If we can find a statement and a block in the inlined function, run remove
165  // dead bindings before returning from the call. This is important to ensure
166  // that we report the issues such as leaks in the stack contexts in which
167  // they occurred.
168  ExplodedNodeSet CleanedNodes;
169  if (LastSt && Blk) {
170    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
171    PostStmt Loc(LastSt, calleeCtx, &retValBind);
172    bool isNew;
173    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
174    BindedRetNode->addPredecessor(CEBNode, G);
175    if (!isNew)
176      return;
177
178    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
179    currBldrCtx = &Ctx;
180    // Here, we call the Symbol Reaper with 0 statement and caller location
181    // context, telling it to clean up everything in the callee's context
182    // (and it's children). We use LastStmt as a diagnostic statement, which
183    // which the PreStmtPurge Dead point will be associated.
184    removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
185               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
186    currBldrCtx = 0;
187  } else {
188    CleanedNodes.Add(CEBNode);
189  }
190
191  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
192                                 E = CleanedNodes.end(); I != E; ++I) {
193
194    // Step 4: Generate the CallExit and leave the callee's context.
195    // CleanedNodes -> CEENode
196    CallExitEnd Loc(calleeCtx, callerCtx);
197    bool isNew;
198    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
199    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
200    CEENode->addPredecessor(*I, G);
201    if (!isNew)
202      return;
203
204    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
205    // result onto the work list.
206    // CEENode -> Dst -> WorkList
207    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
208    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
209        &Ctx);
210    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
211
212    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
213
214    ExplodedNodeSet DstPostCall;
215    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
216                                               *UpdatedCall, *this,
217                                               /*WasInlined=*/true);
218
219    ExplodedNodeSet Dst;
220    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
221      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
222                                                        *this,
223                                                        /*WasInlined=*/true);
224    } else if (CE) {
225      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
226                                                 *this, /*WasInlined=*/true);
227    } else {
228      Dst.insert(DstPostCall);
229    }
230
231    // Enqueue the next element in the block.
232    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
233                                   PSI != PSE; ++PSI) {
234      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
235                                    calleeCtx->getIndex()+1);
236    }
237  }
238}
239
240static unsigned getNumberStackFrames(const LocationContext *LCtx) {
241  unsigned count = 0;
242  while (LCtx) {
243    if (isa<StackFrameContext>(LCtx))
244      ++count;
245    LCtx = LCtx->getParent();
246  }
247  return count;
248}
249
250// Determine if we should inline the call.
251bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
252  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
253  const CFG *CalleeCFG = CalleeADC->getCFG();
254
255  // It is possible that the CFG cannot be constructed.
256  // Be safe, and check if the CalleeCFG is valid.
257  if (!CalleeCFG)
258    return false;
259
260  if (getNumberStackFrames(Pred->getLocationContext())
261        == AMgr.InlineMaxStackDepth)
262    return false;
263
264  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
265    return false;
266
267  if (CalleeCFG->getNumBlockIDs() > AMgr.InlineMaxFunctionSize)
268    return false;
269
270  // Do not inline variadic calls (for now).
271  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
272    if (BD->isVariadic())
273      return false;
274  }
275  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
276    if (FD->isVariadic())
277      return false;
278  }
279
280  // It is possible that the live variables analysis cannot be
281  // run.  If so, bail out.
282  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
283    return false;
284
285  return true;
286}
287
288/// The GDM component containing the dynamic dispatch bifurcation info. When
289/// the exact type of the receiver is not known, we want to explore both paths -
290/// one on which we do inline it and the other one on which we don't. This is
291/// done to ensure we do not drop coverage.
292/// This is the map from the receiver region to a bool, specifying either we
293/// consider this region's information precise or not along the given path.
294namespace clang {
295namespace ento {
296enum DynamicDispatchMode { DynamicDispatchModeInlined = 1,
297                           DynamicDispatchModeConservative };
298
299struct DynamicDispatchBifurcationMap {};
300typedef llvm::ImmutableMap<const MemRegion*,
301                           unsigned int> DynamicDispatchBifur;
302template<> struct ProgramStateTrait<DynamicDispatchBifurcationMap>
303    :  public ProgramStatePartialTrait<DynamicDispatchBifur> {
304  static void *GDMIndex() { static int index; return &index; }
305};
306
307}}
308
309static bool shouldInlineCXX(AnalysisManager &AMgr) {
310  switch (AMgr.IPAMode) {
311  case None:
312  case BasicInlining:
313    return false;
314  case Inlining:
315  case DynamicDispatch:
316  case DynamicDispatchBifurcate:
317    return true;
318  case NumIPAModes:
319    llvm_unreachable("not actually a valid option");
320  }
321  llvm_unreachable("bogus IPAMode");
322}
323
324bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
325                            NodeBuilder &Bldr, ExplodedNode *Pred,
326                            ProgramStateRef State) {
327  assert(D);
328
329  const LocationContext *CurLC = Pred->getLocationContext();
330  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
331  const LocationContext *ParentOfCallee = 0;
332
333  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
334  switch (Call.getKind()) {
335  case CE_Function:
336    break;
337  case CE_CXXMember:
338  case CE_CXXMemberOperator:
339    if (!shouldInlineCXX(getAnalysisManager()))
340      return false;
341    break;
342  case CE_CXXConstructor: {
343    if (!shouldInlineCXX(getAnalysisManager()))
344      return false;
345
346    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
347
348    // FIXME: We don't handle constructors or destructors for arrays properly.
349    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
350    if (Target && isa<ElementRegion>(Target))
351      return false;
352
353    // If the destructor is trivial, it's always safe to inline the constructor.
354    if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
355      break;
356
357    // For other types, only inline constructors if we built the CFGs for the
358    // destructor properly.
359    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
360    assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
361    if (!ADC->getCFGBuildOptions().AddImplicitDtors)
362      return false;
363
364    // FIXME: This is a hack. We don't handle temporary destructors
365    // right now, so we shouldn't inline their constructors.
366    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
367    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
368      if (!Target || !isa<DeclRegion>(Target))
369        return false;
370
371    break;
372  }
373  case CE_CXXDestructor: {
374    if (!shouldInlineCXX(getAnalysisManager()))
375      return false;
376
377    // Only inline constructors and destructors if we built the CFGs for them
378    // properly.
379    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
380    if (!ADC->getCFGBuildOptions().AddImplicitDtors)
381      return false;
382
383    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
384
385    // FIXME: We don't handle constructors or destructors for arrays properly.
386    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
387    if (Target && isa<ElementRegion>(Target))
388      return false;
389
390    break;
391  }
392  case CE_CXXAllocator:
393    if (!shouldInlineCXX(getAnalysisManager()))
394      return false;
395
396    // Do not inline allocators until we model deallocators.
397    // This is unfortunate, but basically necessary for smart pointers and such.
398    return false;
399  case CE_Block: {
400    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
401    assert(BR && "If we have the block definition we should have its region");
402    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
403    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
404                                                         cast<BlockDecl>(D),
405                                                         BR);
406    break;
407  }
408  case CE_ObjCMessage:
409    if (!(getAnalysisManager().IPAMode == DynamicDispatch ||
410          getAnalysisManager().IPAMode == DynamicDispatchBifurcate))
411      return false;
412    break;
413  }
414
415  if (!shouldInlineDecl(D, Pred))
416    return false;
417
418  if (!ParentOfCallee)
419    ParentOfCallee = CallerSFC;
420
421  // This may be NULL, but that's fine.
422  const Expr *CallE = Call.getOriginExpr();
423
424  // Construct a new stack frame for the callee.
425  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
426  const StackFrameContext *CalleeSFC =
427    CalleeADC->getStackFrame(ParentOfCallee, CallE,
428                             currBldrCtx->getBlock(),
429                             currStmtIdx);
430
431  CallEnter Loc(CallE, CalleeSFC, CurLC);
432
433  // Construct a new state which contains the mapping from actual to
434  // formal arguments.
435  State = State->enterStackFrame(Call, CalleeSFC);
436
437  bool isNew;
438  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
439    N->addPredecessor(Pred, G);
440    if (isNew)
441      Engine.getWorkList()->enqueue(N);
442  }
443
444  // If we decided to inline the call, the successor has been manually
445  // added onto the work list so remove it from the node builder.
446  Bldr.takeNodes(Pred);
447
448  NumInlinedCalls++;
449
450  return true;
451}
452
453static ProgramStateRef getInlineFailedState(ProgramStateRef State,
454                                            const Stmt *CallE) {
455  void *ReplayState = State->get<ReplayWithoutInlining>();
456  if (!ReplayState)
457    return 0;
458
459  assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
460  (void)CallE;
461
462  return State->remove<ReplayWithoutInlining>();
463}
464
465void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
466                               ExplodedNodeSet &dst) {
467  // Perform the previsit of the CallExpr.
468  ExplodedNodeSet dstPreVisit;
469  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
470
471  // Get the call in its initial state. We use this as a template to perform
472  // all the checks.
473  CallEventManager &CEMgr = getStateManager().getCallEventManager();
474  CallEventRef<> CallTemplate
475    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
476
477  // Evaluate the function call.  We try each of the checkers
478  // to see if the can evaluate the function call.
479  ExplodedNodeSet dstCallEvaluated;
480  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
481       I != E; ++I) {
482    evalCall(dstCallEvaluated, *I, *CallTemplate);
483  }
484
485  // Finally, perform the post-condition check of the CallExpr and store
486  // the created nodes in 'Dst'.
487  // Note that if the call was inlined, dstCallEvaluated will be empty.
488  // The post-CallExpr check will occur in processCallExit.
489  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
490                                             *this);
491}
492
493void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
494                          const CallEvent &Call) {
495  // WARNING: At this time, the state attached to 'Call' may be older than the
496  // state in 'Pred'. This is a minor optimization since CheckerManager will
497  // use an updated CallEvent instance when calling checkers, but if 'Call' is
498  // ever used directly in this function all callers should be updated to pass
499  // the most recent state. (It is probably not worth doing the work here since
500  // for some callers this will not be necessary.)
501
502  // Run any pre-call checks using the generic call interface.
503  ExplodedNodeSet dstPreVisit;
504  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
505
506  // Actually evaluate the function call.  We try each of the checkers
507  // to see if the can evaluate the function call, and get a callback at
508  // defaultEvalCall if all of them fail.
509  ExplodedNodeSet dstCallEvaluated;
510  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
511                                             Call, *this);
512
513  // Finally, run any post-call checks.
514  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
515                                             Call, *this);
516}
517
518ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
519                                            const LocationContext *LCtx,
520                                            ProgramStateRef State) {
521  const Expr *E = Call.getOriginExpr();
522  if (!E)
523    return State;
524
525  // Some method families have known return values.
526  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
527    switch (Msg->getMethodFamily()) {
528    default:
529      break;
530    case OMF_autorelease:
531    case OMF_retain:
532    case OMF_self: {
533      // These methods return their receivers.
534      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
535    }
536    }
537  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
538    return State->BindExpr(E, LCtx, C->getCXXThisVal());
539  }
540
541  // Conjure a symbol if the return value is unknown.
542  QualType ResultTy = Call.getResultType();
543  SValBuilder &SVB = getSValBuilder();
544  unsigned Count = currBldrCtx->blockCount();
545  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
546  return State->BindExpr(E, LCtx, R);
547}
548
549// Conservatively evaluate call by invalidating regions and binding
550// a conjured return value.
551void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
552                                      ExplodedNode *Pred, ProgramStateRef State) {
553  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
554  State = bindReturnValue(Call, Pred->getLocationContext(), State);
555
556  // And make the result node.
557  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
558}
559
560void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
561                                 const CallEvent &CallTemplate) {
562  // Make sure we have the most recent state attached to the call.
563  ProgramStateRef State = Pred->getState();
564  CallEventRef<> Call = CallTemplate.cloneWithState(State);
565
566  if (!getAnalysisManager().shouldInlineCall()) {
567    conservativeEvalCall(*Call, Bldr, Pred, State);
568    return;
569  }
570  // Try to inline the call.
571  // The origin expression here is just used as a kind of checksum;
572  // this should still be safe even for CallEvents that don't come from exprs.
573  const Expr *E = Call->getOriginExpr();
574  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
575
576  if (InlinedFailedState) {
577    // If we already tried once and failed, make sure we don't retry later.
578    State = InlinedFailedState;
579  } else {
580    RuntimeDefinition RD = Call->getRuntimeDefinition();
581    const Decl *D = RD.getDecl();
582    if (D) {
583      if (RD.mayHaveOtherDefinitions()) {
584        // Explore with and without inlining the call.
585        if (getAnalysisManager().IPAMode == DynamicDispatchBifurcate) {
586          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
587          return;
588        }
589
590        // Don't inline if we're not in any dynamic dispatch mode.
591        if (getAnalysisManager().IPAMode != DynamicDispatch) {
592          conservativeEvalCall(*Call, Bldr, Pred, State);
593          return;
594        }
595      }
596
597      // We are not bifurcating and we do have a Decl, so just inline.
598      if (inlineCall(*Call, D, Bldr, Pred, State))
599        return;
600    }
601  }
602
603  // If we can't inline it, handle the return value and invalidate the regions.
604  conservativeEvalCall(*Call, Bldr, Pred, State);
605}
606
607void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
608                               const CallEvent &Call, const Decl *D,
609                               NodeBuilder &Bldr, ExplodedNode *Pred) {
610  assert(BifurReg);
611  BifurReg = BifurReg->StripCasts();
612
613  // Check if we've performed the split already - note, we only want
614  // to split the path once per memory region.
615  ProgramStateRef State = Pred->getState();
616  const unsigned int *BState =
617                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
618  if (BState) {
619    // If we are on "inline path", keep inlining if possible.
620    if (*BState == DynamicDispatchModeInlined)
621      if (inlineCall(Call, D, Bldr, Pred, State))
622        return;
623    // If inline failed, or we are on the path where we assume we
624    // don't have enough info about the receiver to inline, conjure the
625    // return value and invalidate the regions.
626    conservativeEvalCall(Call, Bldr, Pred, State);
627    return;
628  }
629
630  // If we got here, this is the first time we process a message to this
631  // region, so split the path.
632  ProgramStateRef IState =
633      State->set<DynamicDispatchBifurcationMap>(BifurReg,
634                                               DynamicDispatchModeInlined);
635  inlineCall(Call, D, Bldr, Pred, IState);
636
637  ProgramStateRef NoIState =
638      State->set<DynamicDispatchBifurcationMap>(BifurReg,
639                                               DynamicDispatchModeConservative);
640  conservativeEvalCall(Call, Bldr, Pred, NoIState);
641
642  NumOfDynamicDispatchPathSplits++;
643  return;
644}
645
646
647void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
648                                 ExplodedNodeSet &Dst) {
649
650  ExplodedNodeSet dstPreVisit;
651  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
652
653  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
654
655  if (RS->getRetValue()) {
656    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
657                                  ei = dstPreVisit.end(); it != ei; ++it) {
658      B.generateNode(RS, *it, (*it)->getState());
659    }
660  }
661}
662