ExprEngineCallAndReturn.cpp revision 5251abea41b446c26e3239c8dd6c7edea6fc335d
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ParentMap.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/StaticAnalyzer/Core/CheckerManager.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Support/SaveAndRestore.h"
26
27using namespace clang;
28using namespace ento;
29
30STATISTIC(NumOfDynamicDispatchPathSplits,
31  "The # of times we split the path due to imprecise dynamic dispatch info");
32
33STATISTIC(NumInlinedCalls,
34  "The # of times we inlined a call");
35
36STATISTIC(NumReachedInlineCountMax,
37  "The # of times we reached inline count maximum");
38
39void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
40  // Get the entry block in the CFG of the callee.
41  const StackFrameContext *calleeCtx = CE.getCalleeContext();
42  const CFG *CalleeCFG = calleeCtx->getCFG();
43  const CFGBlock *Entry = &(CalleeCFG->getEntry());
44
45  // Validate the CFG.
46  assert(Entry->empty());
47  assert(Entry->succ_size() == 1);
48
49  // Get the solitary sucessor.
50  const CFGBlock *Succ = *(Entry->succ_begin());
51
52  // Construct an edge representing the starting location in the callee.
53  BlockEdge Loc(Entry, Succ, calleeCtx);
54
55  ProgramStateRef state = Pred->getState();
56
57  // Construct a new node and add it to the worklist.
58  bool isNew;
59  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
60  Node->addPredecessor(Pred, G);
61  if (isNew)
62    Engine.getWorkList()->enqueue(Node);
63}
64
65// Find the last statement on the path to the exploded node and the
66// corresponding Block.
67static std::pair<const Stmt*,
68                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
69  const Stmt *S = 0;
70  const CFGBlock *Blk = 0;
71  const StackFrameContext *SF =
72          Node->getLocation().getLocationContext()->getCurrentStackFrame();
73
74  // Back up through the ExplodedGraph until we reach a statement node in this
75  // stack frame.
76  while (Node) {
77    const ProgramPoint &PP = Node->getLocation();
78
79    if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
80      if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
81        S = SP->getStmt();
82        break;
83      } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
84        S = CEE->getCalleeContext()->getCallSite();
85        if (S)
86          break;
87
88        // If there is no statement, this is an implicitly-generated call.
89        // We'll walk backwards over it and then continue the loop to find
90        // an actual statement.
91        const CallEnter *CE;
92        do {
93          Node = Node->getFirstPred();
94          CE = Node->getLocationAs<CallEnter>();
95        } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
96
97        // Continue searching the graph.
98      } else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&PP)) {
99        Blk = BE->getSrc();
100      }
101    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
102      // If we reached the CallEnter for this function, it has no statements.
103      if (CE->getCalleeContext() == SF)
104        break;
105    }
106
107    if (Node->pred_empty())
108      return std::pair<const Stmt*, const CFGBlock*>((Stmt*)0, (CFGBlock*)0);
109
110    Node = *Node->pred_begin();
111  }
112
113  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
114}
115
116/// Adjusts a return value when the called function's return type does not
117/// match the caller's expression type. This can happen when a dynamic call
118/// is devirtualized, and the overridding method has a covariant (more specific)
119/// return type than the parent's method. For C++ objects, this means we need
120/// to add base casts.
121static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
122                              StoreManager &StoreMgr) {
123  // For now, the only adjustments we handle apply only to locations.
124  if (!V.getAs<Loc>())
125    return V;
126
127  // If the types already match, don't do any unnecessary work.
128  ExpectedTy = ExpectedTy.getCanonicalType();
129  ActualTy = ActualTy.getCanonicalType();
130  if (ExpectedTy == ActualTy)
131    return V;
132
133  // No adjustment is needed between Objective-C pointer types.
134  if (ExpectedTy->isObjCObjectPointerType() &&
135      ActualTy->isObjCObjectPointerType())
136    return V;
137
138  // C++ object pointers may need "derived-to-base" casts.
139  const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
140  const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
141  if (ExpectedClass && ActualClass) {
142    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
143                       /*DetectVirtual=*/false);
144    if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
145        !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
146      return StoreMgr.evalDerivedToBase(V, Paths.front());
147    }
148  }
149
150  // Unfortunately, Objective-C does not enforce that overridden methods have
151  // covariant return types, so we can't assert that that never happens.
152  // Be safe and return UnknownVal().
153  return UnknownVal();
154}
155
156void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
157                                           ExplodedNode *Pred,
158                                           ExplodedNodeSet &Dst) {
159  // Find the last statement in the function and the corresponding basic block.
160  const Stmt *LastSt = 0;
161  const CFGBlock *Blk = 0;
162  llvm::tie(LastSt, Blk) = getLastStmt(Pred);
163  if (!Blk || !LastSt) {
164    Dst.Add(Pred);
165    return;
166  }
167
168  // Here, we destroy the current location context. We use the current
169  // function's entire body as a diagnostic statement, with which the program
170  // point will be associated. However, we only want to use LastStmt as a
171  // reference for what to clean up if it's a ReturnStmt; otherwise, everything
172  // is dead.
173  SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
174  const LocationContext *LCtx = Pred->getLocationContext();
175  removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
176             LCtx->getAnalysisDeclContext()->getBody(),
177             ProgramPoint::PostStmtPurgeDeadSymbolsKind);
178}
179
180static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
181    const StackFrameContext *calleeCtx) {
182  const Decl *RuntimeCallee = calleeCtx->getDecl();
183  const Decl *StaticDecl = Call->getDecl();
184  assert(RuntimeCallee);
185  if (!StaticDecl)
186    return true;
187  return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
188}
189
190/// Returns true if the CXXConstructExpr \p E was intended to construct a
191/// prvalue for the region in \p V.
192///
193/// Note that we can't just test for rvalue vs. glvalue because
194/// CXXConstructExprs embedded in DeclStmts and initializers are considered
195/// rvalues by the AST, and the analyzer would like to treat them as lvalues.
196static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
197  if (E->isGLValue())
198    return false;
199
200  const MemRegion *MR = V.getAsRegion();
201  if (!MR)
202    return false;
203
204  return isa<CXXTempObjectRegion>(MR);
205}
206
207/// The call exit is simulated with a sequence of nodes, which occur between
208/// CallExitBegin and CallExitEnd. The following operations occur between the
209/// two program points:
210/// 1. CallExitBegin (triggers the start of call exit sequence)
211/// 2. Bind the return value
212/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
213/// 4. CallExitEnd (switch to the caller context)
214/// 5. PostStmt<CallExpr>
215void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
216  // Step 1 CEBNode was generated before the call.
217
218  const StackFrameContext *calleeCtx =
219      CEBNode->getLocationContext()->getCurrentStackFrame();
220
221  // The parent context might not be a stack frame, so make sure we
222  // look up the first enclosing stack frame.
223  const StackFrameContext *callerCtx =
224    calleeCtx->getParent()->getCurrentStackFrame();
225
226  const Stmt *CE = calleeCtx->getCallSite();
227  ProgramStateRef state = CEBNode->getState();
228  // Find the last statement in the function and the corresponding basic block.
229  const Stmt *LastSt = 0;
230  const CFGBlock *Blk = 0;
231  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
232
233  // Generate a CallEvent /before/ cleaning the state, so that we can get the
234  // correct value for 'this' (if necessary).
235  CallEventManager &CEMgr = getStateManager().getCallEventManager();
236  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
237
238  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
239
240  // If the callee returns an expression, bind its value to CallExpr.
241  if (CE) {
242    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
243      const LocationContext *LCtx = CEBNode->getLocationContext();
244      SVal V = state->getSVal(RS, LCtx);
245
246      // Ensure that the return type matches the type of the returned Expr.
247      if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
248        QualType ReturnedTy =
249          CallEvent::getDeclaredResultType(calleeCtx->getDecl());
250        if (!ReturnedTy.isNull()) {
251          if (const Expr *Ex = dyn_cast<Expr>(CE)) {
252            V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
253                                  getStoreManager());
254          }
255        }
256      }
257
258      state = state->BindExpr(CE, callerCtx, V);
259    }
260
261    // Bind the constructed object value to CXXConstructExpr.
262    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
263      loc::MemRegionVal This =
264        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
265      SVal ThisV = state->getSVal(This);
266
267      // If the constructed object is a temporary prvalue, get its bindings.
268      if (isTemporaryPRValue(CCE, ThisV))
269        ThisV = state->getSVal(ThisV.castAs<Loc>());
270
271      state = state->BindExpr(CCE, callerCtx, ThisV);
272    }
273  }
274
275  // Step 3: BindedRetNode -> CleanedNodes
276  // If we can find a statement and a block in the inlined function, run remove
277  // dead bindings before returning from the call. This is important to ensure
278  // that we report the issues such as leaks in the stack contexts in which
279  // they occurred.
280  ExplodedNodeSet CleanedNodes;
281  if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
282    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
283    PostStmt Loc(LastSt, calleeCtx, &retValBind);
284    bool isNew;
285    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
286    BindedRetNode->addPredecessor(CEBNode, G);
287    if (!isNew)
288      return;
289
290    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
291    currBldrCtx = &Ctx;
292    // Here, we call the Symbol Reaper with 0 statement and callee location
293    // context, telling it to clean up everything in the callee's context
294    // (and its children). We use the callee's function body as a diagnostic
295    // statement, with which the program point will be associated.
296    removeDead(BindedRetNode, CleanedNodes, 0, calleeCtx,
297               calleeCtx->getAnalysisDeclContext()->getBody(),
298               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
299    currBldrCtx = 0;
300  } else {
301    CleanedNodes.Add(CEBNode);
302  }
303
304  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
305                                 E = CleanedNodes.end(); I != E; ++I) {
306
307    // Step 4: Generate the CallExit and leave the callee's context.
308    // CleanedNodes -> CEENode
309    CallExitEnd Loc(calleeCtx, callerCtx);
310    bool isNew;
311    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
312    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
313    CEENode->addPredecessor(*I, G);
314    if (!isNew)
315      return;
316
317    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
318    // result onto the work list.
319    // CEENode -> Dst -> WorkList
320    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
321    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
322        &Ctx);
323    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
324
325    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
326
327    ExplodedNodeSet DstPostCall;
328    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
329                                               *UpdatedCall, *this,
330                                               /*WasInlined=*/true);
331
332    ExplodedNodeSet Dst;
333    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
334      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
335                                                        *this,
336                                                        /*WasInlined=*/true);
337    } else if (CE) {
338      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
339                                                 *this, /*WasInlined=*/true);
340    } else {
341      Dst.insert(DstPostCall);
342    }
343
344    // Enqueue the next element in the block.
345    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
346                                   PSI != PSE; ++PSI) {
347      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
348                                    calleeCtx->getIndex()+1);
349    }
350  }
351}
352
353void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
354                               bool &IsRecursive, unsigned &StackDepth) {
355  IsRecursive = false;
356  StackDepth = 0;
357
358  while (LCtx) {
359    if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
360      const Decl *DI = SFC->getDecl();
361
362      // Mark recursive (and mutually recursive) functions and always count
363      // them when measuring the stack depth.
364      if (DI == D) {
365        IsRecursive = true;
366        ++StackDepth;
367        LCtx = LCtx->getParent();
368        continue;
369      }
370
371      // Do not count the small functions when determining the stack depth.
372      AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
373      const CFG *CalleeCFG = CalleeADC->getCFG();
374      if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
375        ++StackDepth;
376    }
377    LCtx = LCtx->getParent();
378  }
379
380}
381
382static bool IsInStdNamespace(const FunctionDecl *FD) {
383  const DeclContext *DC = FD->getEnclosingNamespaceContext();
384  const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
385  if (!ND)
386    return false;
387
388  while (const DeclContext *Parent = ND->getParent()) {
389    if (!isa<NamespaceDecl>(Parent))
390      break;
391    ND = cast<NamespaceDecl>(Parent);
392  }
393
394  return ND->getName() == "std";
395}
396
397// Determine if we should inline the call.
398bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
399  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
400  const CFG *CalleeCFG = CalleeADC->getCFG();
401
402  // It is possible that the CFG cannot be constructed.
403  // Be safe, and check if the CalleeCFG is valid.
404  if (!CalleeCFG)
405    return false;
406
407  bool IsRecursive = false;
408  unsigned StackDepth = 0;
409  examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
410  if ((StackDepth >= AMgr.options.InlineMaxStackDepth) &&
411       ((CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
412         || IsRecursive))
413    return false;
414
415  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
416    return false;
417
418  if (CalleeCFG->getNumBlockIDs() > AMgr.options.getMaxInlinableSize())
419    return false;
420
421  // Do not inline variadic calls (for now).
422  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
423    if (BD->isVariadic())
424      return false;
425  }
426  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
427    if (FD->isVariadic())
428      return false;
429  }
430
431  if (getContext().getLangOpts().CPlusPlus) {
432    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
433      // Conditionally allow the inlining of template functions.
434      if (!AMgr.options.mayInlineTemplateFunctions())
435        if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
436          return false;
437
438      // Conditionally allow the inlining of C++ standard library functions.
439      if (!AMgr.options.mayInlineCXXStandardLibrary())
440        if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
441          if (IsInStdNamespace(FD))
442            return false;
443    }
444  }
445
446  // It is possible that the live variables analysis cannot be
447  // run.  If so, bail out.
448  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
449    return false;
450
451  if (Engine.FunctionSummaries->getNumTimesInlined(D) >
452        AMgr.options.getMaxTimesInlineLarge() &&
453      CalleeCFG->getNumBlockIDs() > 13) {
454    NumReachedInlineCountMax++;
455    return false;
456  }
457  Engine.FunctionSummaries->bumpNumTimesInlined(D);
458
459  return true;
460}
461
462// The GDM component containing the dynamic dispatch bifurcation info. When
463// the exact type of the receiver is not known, we want to explore both paths -
464// one on which we do inline it and the other one on which we don't. This is
465// done to ensure we do not drop coverage.
466// This is the map from the receiver region to a bool, specifying either we
467// consider this region's information precise or not along the given path.
468namespace {
469  enum DynamicDispatchMode {
470    DynamicDispatchModeInlined = 1,
471    DynamicDispatchModeConservative
472  };
473}
474REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
475                                 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
476                                                             unsigned))
477
478bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
479                            NodeBuilder &Bldr, ExplodedNode *Pred,
480                            ProgramStateRef State) {
481  assert(D);
482
483  const LocationContext *CurLC = Pred->getLocationContext();
484  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
485  const LocationContext *ParentOfCallee = 0;
486
487  AnalyzerOptions &Opts = getAnalysisManager().options;
488
489  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
490  switch (Call.getKind()) {
491  case CE_Function:
492    break;
493  case CE_CXXMember:
494  case CE_CXXMemberOperator:
495    if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
496      return false;
497    break;
498  case CE_CXXConstructor: {
499    if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
500      return false;
501
502    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
503
504    // FIXME: We don't handle constructors or destructors for arrays properly.
505    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
506    if (Target && isa<ElementRegion>(Target))
507      return false;
508
509    // FIXME: This is a hack. We don't use the correct region for a new
510    // expression, so if we inline the constructor its result will just be
511    // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
512    // and the longer-term possible fix is discussed in PR12014.
513    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
514    if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
515      if (isa<CXXNewExpr>(Parent))
516        return false;
517
518    // Inlining constructors requires including initializers in the CFG.
519    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
520    assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
521    (void)ADC;
522
523    // If the destructor is trivial, it's always safe to inline the constructor.
524    if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
525      break;
526
527    // For other types, only inline constructors if destructor inlining is
528    // also enabled.
529    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
530      return false;
531
532    // FIXME: This is a hack. We don't handle temporary destructors
533    // right now, so we shouldn't inline their constructors.
534    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
535      if (!Target || !isa<DeclRegion>(Target))
536        return false;
537
538    break;
539  }
540  case CE_CXXDestructor: {
541    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
542      return false;
543
544    // Inlining destructors requires building the CFG correctly.
545    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
546    assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
547    (void)ADC;
548
549    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
550
551    // FIXME: We don't handle constructors or destructors for arrays properly.
552    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
553    if (Target && isa<ElementRegion>(Target))
554      return false;
555
556    break;
557  }
558  case CE_CXXAllocator:
559    // Do not inline allocators until we model deallocators.
560    // This is unfortunate, but basically necessary for smart pointers and such.
561    return false;
562  case CE_Block: {
563    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
564    assert(BR && "If we have the block definition we should have its region");
565    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
566    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
567                                                         cast<BlockDecl>(D),
568                                                         BR);
569    break;
570  }
571  case CE_ObjCMessage:
572    if (!Opts.mayInlineObjCMethod())
573      return false;
574    AnalyzerOptions &Options = getAnalysisManager().options;
575    if (!(Options.getIPAMode() == IPAK_DynamicDispatch ||
576          Options.getIPAMode() == IPAK_DynamicDispatchBifurcate))
577      return false;
578    break;
579  }
580
581  if (!shouldInlineDecl(D, Pred))
582    return false;
583
584  if (!ParentOfCallee)
585    ParentOfCallee = CallerSFC;
586
587  // This may be NULL, but that's fine.
588  const Expr *CallE = Call.getOriginExpr();
589
590  // Construct a new stack frame for the callee.
591  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
592  const StackFrameContext *CalleeSFC =
593    CalleeADC->getStackFrame(ParentOfCallee, CallE,
594                             currBldrCtx->getBlock(),
595                             currStmtIdx);
596
597  CallEnter Loc(CallE, CalleeSFC, CurLC);
598
599  // Construct a new state which contains the mapping from actual to
600  // formal arguments.
601  State = State->enterStackFrame(Call, CalleeSFC);
602
603  bool isNew;
604  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
605    N->addPredecessor(Pred, G);
606    if (isNew)
607      Engine.getWorkList()->enqueue(N);
608  }
609
610  // If we decided to inline the call, the successor has been manually
611  // added onto the work list so remove it from the node builder.
612  Bldr.takeNodes(Pred);
613
614  NumInlinedCalls++;
615
616  // Mark the decl as visited.
617  if (VisitedCallees)
618    VisitedCallees->insert(D);
619
620  return true;
621}
622
623static ProgramStateRef getInlineFailedState(ProgramStateRef State,
624                                            const Stmt *CallE) {
625  const void *ReplayState = State->get<ReplayWithoutInlining>();
626  if (!ReplayState)
627    return 0;
628
629  assert(ReplayState == CallE && "Backtracked to the wrong call.");
630  (void)CallE;
631
632  return State->remove<ReplayWithoutInlining>();
633}
634
635void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
636                               ExplodedNodeSet &dst) {
637  // Perform the previsit of the CallExpr.
638  ExplodedNodeSet dstPreVisit;
639  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
640
641  // Get the call in its initial state. We use this as a template to perform
642  // all the checks.
643  CallEventManager &CEMgr = getStateManager().getCallEventManager();
644  CallEventRef<> CallTemplate
645    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
646
647  // Evaluate the function call.  We try each of the checkers
648  // to see if the can evaluate the function call.
649  ExplodedNodeSet dstCallEvaluated;
650  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
651       I != E; ++I) {
652    evalCall(dstCallEvaluated, *I, *CallTemplate);
653  }
654
655  // Finally, perform the post-condition check of the CallExpr and store
656  // the created nodes in 'Dst'.
657  // Note that if the call was inlined, dstCallEvaluated will be empty.
658  // The post-CallExpr check will occur in processCallExit.
659  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
660                                             *this);
661}
662
663void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
664                          const CallEvent &Call) {
665  // WARNING: At this time, the state attached to 'Call' may be older than the
666  // state in 'Pred'. This is a minor optimization since CheckerManager will
667  // use an updated CallEvent instance when calling checkers, but if 'Call' is
668  // ever used directly in this function all callers should be updated to pass
669  // the most recent state. (It is probably not worth doing the work here since
670  // for some callers this will not be necessary.)
671
672  // Run any pre-call checks using the generic call interface.
673  ExplodedNodeSet dstPreVisit;
674  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
675
676  // Actually evaluate the function call.  We try each of the checkers
677  // to see if the can evaluate the function call, and get a callback at
678  // defaultEvalCall if all of them fail.
679  ExplodedNodeSet dstCallEvaluated;
680  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
681                                             Call, *this);
682
683  // Finally, run any post-call checks.
684  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
685                                             Call, *this);
686}
687
688ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
689                                            const LocationContext *LCtx,
690                                            ProgramStateRef State) {
691  const Expr *E = Call.getOriginExpr();
692  if (!E)
693    return State;
694
695  // Some method families have known return values.
696  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
697    switch (Msg->getMethodFamily()) {
698    default:
699      break;
700    case OMF_autorelease:
701    case OMF_retain:
702    case OMF_self: {
703      // These methods return their receivers.
704      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
705    }
706    }
707  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
708    SVal ThisV = C->getCXXThisVal();
709
710    // If the constructed object is a temporary prvalue, get its bindings.
711    if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
712      ThisV = State->getSVal(ThisV.castAs<Loc>());
713
714    return State->BindExpr(E, LCtx, ThisV);
715  }
716
717  // Conjure a symbol if the return value is unknown.
718  QualType ResultTy = Call.getResultType();
719  SValBuilder &SVB = getSValBuilder();
720  unsigned Count = currBldrCtx->blockCount();
721  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
722  return State->BindExpr(E, LCtx, R);
723}
724
725// Conservatively evaluate call by invalidating regions and binding
726// a conjured return value.
727void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
728                                      ExplodedNode *Pred, ProgramStateRef State) {
729  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
730  State = bindReturnValue(Call, Pred->getLocationContext(), State);
731
732  // And make the result node.
733  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
734}
735
736static bool isEssentialToInline(const CallEvent &Call) {
737  const Decl *D = Call.getDecl();
738  if (D) {
739    AnalysisDeclContext *AD =
740      Call.getLocationContext()->getAnalysisDeclContext()->
741      getManager()->getContext(D);
742
743    // The auto-synthesized bodies are essential to inline as they are
744    // usually small and commonly used.
745    return AD->isBodyAutosynthesized();
746  }
747  return false;
748}
749
750void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
751                                 const CallEvent &CallTemplate) {
752  // Make sure we have the most recent state attached to the call.
753  ProgramStateRef State = Pred->getState();
754  CallEventRef<> Call = CallTemplate.cloneWithState(State);
755
756  if (HowToInline == Inline_None && !isEssentialToInline(CallTemplate)) {
757    conservativeEvalCall(*Call, Bldr, Pred, State);
758    return;
759  }
760  // Try to inline the call.
761  // The origin expression here is just used as a kind of checksum;
762  // this should still be safe even for CallEvents that don't come from exprs.
763  const Expr *E = Call->getOriginExpr();
764  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
765
766  if (InlinedFailedState) {
767    // If we already tried once and failed, make sure we don't retry later.
768    State = InlinedFailedState;
769  } else {
770    RuntimeDefinition RD = Call->getRuntimeDefinition();
771    const Decl *D = RD.getDecl();
772    if (D) {
773      if (RD.mayHaveOtherDefinitions()) {
774        AnalyzerOptions &Options = getAnalysisManager().options;
775
776        // Explore with and without inlining the call.
777        if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
778          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
779          return;
780        }
781
782        // Don't inline if we're not in any dynamic dispatch mode.
783        if (Options.getIPAMode() != IPAK_DynamicDispatch) {
784          conservativeEvalCall(*Call, Bldr, Pred, State);
785          return;
786        }
787      }
788
789      // We are not bifurcating and we do have a Decl, so just inline.
790      if (inlineCall(*Call, D, Bldr, Pred, State))
791        return;
792    }
793  }
794
795  // If we can't inline it, handle the return value and invalidate the regions.
796  conservativeEvalCall(*Call, Bldr, Pred, State);
797}
798
799void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
800                               const CallEvent &Call, const Decl *D,
801                               NodeBuilder &Bldr, ExplodedNode *Pred) {
802  assert(BifurReg);
803  BifurReg = BifurReg->StripCasts();
804
805  // Check if we've performed the split already - note, we only want
806  // to split the path once per memory region.
807  ProgramStateRef State = Pred->getState();
808  const unsigned *BState =
809                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
810  if (BState) {
811    // If we are on "inline path", keep inlining if possible.
812    if (*BState == DynamicDispatchModeInlined)
813      if (inlineCall(Call, D, Bldr, Pred, State))
814        return;
815    // If inline failed, or we are on the path where we assume we
816    // don't have enough info about the receiver to inline, conjure the
817    // return value and invalidate the regions.
818    conservativeEvalCall(Call, Bldr, Pred, State);
819    return;
820  }
821
822  // If we got here, this is the first time we process a message to this
823  // region, so split the path.
824  ProgramStateRef IState =
825      State->set<DynamicDispatchBifurcationMap>(BifurReg,
826                                               DynamicDispatchModeInlined);
827  inlineCall(Call, D, Bldr, Pred, IState);
828
829  ProgramStateRef NoIState =
830      State->set<DynamicDispatchBifurcationMap>(BifurReg,
831                                               DynamicDispatchModeConservative);
832  conservativeEvalCall(Call, Bldr, Pred, NoIState);
833
834  NumOfDynamicDispatchPathSplits++;
835  return;
836}
837
838
839void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
840                                 ExplodedNodeSet &Dst) {
841
842  ExplodedNodeSet dstPreVisit;
843  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
844
845  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
846
847  if (RS->getRetValue()) {
848    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
849                                  ei = dstPreVisit.end(); it != ei; ++it) {
850      B.generateNode(RS, *it, (*it)->getState());
851    }
852  }
853}
854