ExprEngineCallAndReturn.cpp revision 66c486f275531df6362b3511fc3af6563561801b
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/Analysis/Analyses/LiveVariables.h"
17#include "clang/StaticAnalyzer/Core/CheckerManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
20#include "clang/AST/DeclCXX.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/SaveAndRestore.h"
24
25using namespace clang;
26using namespace ento;
27
28STATISTIC(NumOfDynamicDispatchPathSplits,
29  "The # of times we split the path due to imprecise dynamic dispatch info");
30
31void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
32  // Get the entry block in the CFG of the callee.
33  const StackFrameContext *calleeCtx = CE.getCalleeContext();
34  const CFG *CalleeCFG = calleeCtx->getCFG();
35  const CFGBlock *Entry = &(CalleeCFG->getEntry());
36
37  // Validate the CFG.
38  assert(Entry->empty());
39  assert(Entry->succ_size() == 1);
40
41  // Get the solitary sucessor.
42  const CFGBlock *Succ = *(Entry->succ_begin());
43
44  // Construct an edge representing the starting location in the callee.
45  BlockEdge Loc(Entry, Succ, calleeCtx);
46
47  ProgramStateRef state = Pred->getState();
48
49  // Construct a new node and add it to the worklist.
50  bool isNew;
51  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
52  Node->addPredecessor(Pred, G);
53  if (isNew)
54    Engine.getWorkList()->enqueue(Node);
55}
56
57// Find the last statement on the path to the exploded node and the
58// corresponding Block.
59static std::pair<const Stmt*,
60                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
61  const Stmt *S = 0;
62  const StackFrameContext *SF =
63          Node->getLocation().getLocationContext()->getCurrentStackFrame();
64
65  // Back up through the ExplodedGraph until we reach a statement node.
66  while (Node) {
67    const ProgramPoint &PP = Node->getLocation();
68
69    if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
70      S = SP->getStmt();
71      break;
72    } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
73      S = CEE->getCalleeContext()->getCallSite();
74      if (S)
75        break;
76      // If we have an implicit call, we'll probably end up with a
77      // StmtPoint inside the callee, which is acceptable.
78      // (It's possible a function ONLY contains implicit calls -- such as an
79      // implicitly-generated destructor -- so we shouldn't just skip back to
80      // the CallEnter node and keep going.)
81    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
82      // If we reached the CallEnter for this function, it has no statements.
83      if (CE->getCalleeContext() == SF)
84        break;
85    }
86
87    Node = *Node->pred_begin();
88  }
89
90  const CFGBlock *Blk = 0;
91  if (S) {
92    // Now, get the enclosing basic block.
93    while (Node && Node->pred_size() >=1 ) {
94      const ProgramPoint &PP = Node->getLocation();
95      if (isa<BlockEdge>(PP) &&
96          (PP.getLocationContext()->getCurrentStackFrame() == SF)) {
97        BlockEdge &EPP = cast<BlockEdge>(PP);
98        Blk = EPP.getDst();
99        break;
100      }
101      Node = *Node->pred_begin();
102    }
103  }
104
105  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
106}
107
108/// The call exit is simulated with a sequence of nodes, which occur between
109/// CallExitBegin and CallExitEnd. The following operations occur between the
110/// two program points:
111/// 1. CallExitBegin (triggers the start of call exit sequence)
112/// 2. Bind the return value
113/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
114/// 4. CallExitEnd (switch to the caller context)
115/// 5. PostStmt<CallExpr>
116void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
117  // Step 1 CEBNode was generated before the call.
118
119  const StackFrameContext *calleeCtx =
120      CEBNode->getLocationContext()->getCurrentStackFrame();
121
122  // The parent context might not be a stack frame, so make sure we
123  // look up the first enclosing stack frame.
124  const StackFrameContext *callerCtx =
125    calleeCtx->getParent()->getCurrentStackFrame();
126
127  const Stmt *CE = calleeCtx->getCallSite();
128  ProgramStateRef state = CEBNode->getState();
129  // Find the last statement in the function and the corresponding basic block.
130  const Stmt *LastSt = 0;
131  const CFGBlock *Blk = 0;
132  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
133
134  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
135
136  // If the callee returns an expression, bind its value to CallExpr.
137  if (CE) {
138    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
139      const LocationContext *LCtx = CEBNode->getLocationContext();
140      SVal V = state->getSVal(RS, LCtx);
141      state = state->BindExpr(CE, callerCtx, V);
142    }
143
144    // Bind the constructed object value to CXXConstructExpr.
145    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
146      loc::MemRegionVal This =
147        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
148      SVal ThisV = state->getSVal(This);
149
150      // Always bind the region to the CXXConstructExpr.
151      state = state->BindExpr(CCE, callerCtx, ThisV);
152    }
153  }
154
155  // Generate a CallEvent /before/ cleaning the state, so that we can get the
156  // correct value for 'this' (if necessary).
157  CallEventManager &CEMgr = getStateManager().getCallEventManager();
158  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
159
160  // Step 3: BindedRetNode -> CleanedNodes
161  // If we can find a statement and a block in the inlined function, run remove
162  // dead bindings before returning from the call. This is important to ensure
163  // that we report the issues such as leaks in the stack contexts in which
164  // they occurred.
165  ExplodedNodeSet CleanedNodes;
166  if (LastSt && Blk) {
167    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
168    PostStmt Loc(LastSt, calleeCtx, &retValBind);
169    bool isNew;
170    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
171    BindedRetNode->addPredecessor(CEBNode, G);
172    if (!isNew)
173      return;
174
175    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
176    currBldrCtx = &Ctx;
177    // Here, we call the Symbol Reaper with 0 statement and caller location
178    // context, telling it to clean up everything in the callee's context
179    // (and it's children). We use LastStmt as a diagnostic statement, which
180    // which the PreStmtPurge Dead point will be associated.
181    removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
182               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
183    currBldrCtx = 0;
184  } else {
185    CleanedNodes.Add(CEBNode);
186  }
187
188  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
189                                 E = CleanedNodes.end(); I != E; ++I) {
190
191    // Step 4: Generate the CallExit and leave the callee's context.
192    // CleanedNodes -> CEENode
193    CallExitEnd Loc(calleeCtx, callerCtx);
194    bool isNew;
195    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
196    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
197    CEENode->addPredecessor(*I, G);
198    if (!isNew)
199      return;
200
201    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
202    // result onto the work list.
203    // CEENode -> Dst -> WorkList
204    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
205    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
206        &Ctx);
207    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
208
209    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
210
211    ExplodedNodeSet DstPostCall;
212    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
213                                               *UpdatedCall, *this,
214                                               /*WasInlined=*/true);
215
216    ExplodedNodeSet Dst;
217    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
218      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
219                                                        *this,
220                                                        /*WasInlined=*/true);
221    } else if (CE) {
222      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
223                                                 *this, /*WasInlined=*/true);
224    } else {
225      Dst.insert(DstPostCall);
226    }
227
228    // Enqueue the next element in the block.
229    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
230                                   PSI != PSE; ++PSI) {
231      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
232                                    calleeCtx->getIndex()+1);
233    }
234  }
235}
236
237static unsigned getNumberStackFrames(const LocationContext *LCtx) {
238  unsigned count = 0;
239  while (LCtx) {
240    if (isa<StackFrameContext>(LCtx))
241      ++count;
242    LCtx = LCtx->getParent();
243  }
244  return count;
245}
246
247// Determine if we should inline the call.
248bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
249  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
250  const CFG *CalleeCFG = CalleeADC->getCFG();
251
252  // It is possible that the CFG cannot be constructed.
253  // Be safe, and check if the CalleeCFG is valid.
254  if (!CalleeCFG)
255    return false;
256
257  if (getNumberStackFrames(Pred->getLocationContext())
258        == AMgr.InlineMaxStackDepth)
259    return false;
260
261  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
262    return false;
263
264  if (CalleeCFG->getNumBlockIDs() > AMgr.InlineMaxFunctionSize)
265    return false;
266
267  // Do not inline variadic calls (for now).
268  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
269    if (BD->isVariadic())
270      return false;
271  }
272  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
273    if (FD->isVariadic())
274      return false;
275  }
276
277  // It is possible that the live variables analysis cannot be
278  // run.  If so, bail out.
279  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
280    return false;
281
282  return true;
283}
284
285/// The GDM component containing the dynamic dispatch bifurcation info. When
286/// the exact type of the receiver is not known, we want to explore both paths -
287/// one on which we do inline it and the other one on which we don't. This is
288/// done to ensure we do not drop coverage.
289/// This is the map from the receiver region to a bool, specifying either we
290/// consider this region's information precise or not along the given path.
291namespace clang {
292namespace ento {
293enum DynamicDispatchMode { DynamicDispatchModeInlined = 1,
294                           DynamicDispatchModeConservative };
295
296struct DynamicDispatchBifurcationMap {};
297typedef llvm::ImmutableMap<const MemRegion*,
298                           unsigned int> DynamicDispatchBifur;
299template<> struct ProgramStateTrait<DynamicDispatchBifurcationMap>
300    :  public ProgramStatePartialTrait<DynamicDispatchBifur> {
301  static void *GDMIndex() { static int index; return &index; }
302};
303
304}}
305
306static bool shouldInlineCXX(AnalysisManager &AMgr) {
307  switch (AMgr.IPAMode) {
308  case None:
309  case BasicInlining:
310    return false;
311  case Inlining:
312  case DynamicDispatch:
313  case DynamicDispatchBifurcate:
314    return true;
315  case NumIPAModes:
316    llvm_unreachable("not actually a valid option");
317  }
318  llvm_unreachable("bogus IPAMode");
319}
320
321bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
322                            NodeBuilder &Bldr, ExplodedNode *Pred,
323                            ProgramStateRef State) {
324  assert(D);
325
326  const LocationContext *CurLC = Pred->getLocationContext();
327  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
328  const LocationContext *ParentOfCallee = 0;
329
330  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
331  switch (Call.getKind()) {
332  case CE_Function:
333    break;
334  case CE_CXXMember:
335  case CE_CXXMemberOperator:
336    if (!shouldInlineCXX(getAnalysisManager()))
337      return false;
338    break;
339  case CE_CXXConstructor: {
340    if (!shouldInlineCXX(getAnalysisManager()))
341      return false;
342
343    // Only inline constructors and destructors if we built the CFGs for them
344    // properly.
345    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
346    if (!ADC->getCFGBuildOptions().AddImplicitDtors ||
347        !ADC->getCFGBuildOptions().AddInitializers)
348      return false;
349
350    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
351
352    // FIXME: We don't handle constructors or destructors for arrays properly.
353    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
354    if (Target && isa<ElementRegion>(Target))
355      return false;
356
357    // FIXME: This is a hack. We don't handle temporary destructors
358    // right now, so we shouldn't inline their constructors.
359    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
360    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
361      if (!Target || !isa<DeclRegion>(Target))
362        return false;
363
364    break;
365  }
366  case CE_CXXDestructor: {
367    if (!shouldInlineCXX(getAnalysisManager()))
368      return false;
369
370    // Only inline constructors and destructors if we built the CFGs for them
371    // properly.
372    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
373    if (!ADC->getCFGBuildOptions().AddImplicitDtors ||
374        !ADC->getCFGBuildOptions().AddInitializers)
375      return false;
376
377    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
378
379    // FIXME: We don't handle constructors or destructors for arrays properly.
380    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
381    if (Target && isa<ElementRegion>(Target))
382      return false;
383
384    break;
385  }
386  case CE_CXXAllocator:
387    if (!shouldInlineCXX(getAnalysisManager()))
388      return false;
389
390    // Do not inline allocators until we model deallocators.
391    // This is unfortunate, but basically necessary for smart pointers and such.
392    return false;
393  case CE_Block: {
394    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
395    assert(BR && "If we have the block definition we should have its region");
396    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
397    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
398                                                         cast<BlockDecl>(D),
399                                                         BR);
400    break;
401  }
402  case CE_ObjCMessage:
403    if (!(getAnalysisManager().IPAMode == DynamicDispatch ||
404          getAnalysisManager().IPAMode == DynamicDispatchBifurcate))
405      return false;
406    break;
407  }
408
409  if (!shouldInlineDecl(D, Pred))
410    return false;
411
412  if (!ParentOfCallee)
413    ParentOfCallee = CallerSFC;
414
415  // This may be NULL, but that's fine.
416  const Expr *CallE = Call.getOriginExpr();
417
418  // Construct a new stack frame for the callee.
419  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
420  const StackFrameContext *CalleeSFC =
421    CalleeADC->getStackFrame(ParentOfCallee, CallE,
422                             currBldrCtx->getBlock(),
423                             currStmtIdx);
424
425  CallEnter Loc(CallE, CalleeSFC, CurLC);
426
427  // Construct a new state which contains the mapping from actual to
428  // formal arguments.
429  State = State->enterStackFrame(Call, CalleeSFC);
430
431  bool isNew;
432  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
433    N->addPredecessor(Pred, G);
434    if (isNew)
435      Engine.getWorkList()->enqueue(N);
436  }
437
438  // If we decided to inline the call, the successor has been manually
439  // added onto the work list so remove it from the node builder.
440  Bldr.takeNodes(Pred);
441
442  return true;
443}
444
445static ProgramStateRef getInlineFailedState(ProgramStateRef State,
446                                            const Stmt *CallE) {
447  void *ReplayState = State->get<ReplayWithoutInlining>();
448  if (!ReplayState)
449    return 0;
450
451  assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
452  (void)CallE;
453
454  return State->remove<ReplayWithoutInlining>();
455}
456
457void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
458                               ExplodedNodeSet &dst) {
459  // Perform the previsit of the CallExpr.
460  ExplodedNodeSet dstPreVisit;
461  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
462
463  // Get the call in its initial state. We use this as a template to perform
464  // all the checks.
465  CallEventManager &CEMgr = getStateManager().getCallEventManager();
466  CallEventRef<> CallTemplate
467    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
468
469  // Evaluate the function call.  We try each of the checkers
470  // to see if the can evaluate the function call.
471  ExplodedNodeSet dstCallEvaluated;
472  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
473       I != E; ++I) {
474    evalCall(dstCallEvaluated, *I, *CallTemplate);
475  }
476
477  // Finally, perform the post-condition check of the CallExpr and store
478  // the created nodes in 'Dst'.
479  // Note that if the call was inlined, dstCallEvaluated will be empty.
480  // The post-CallExpr check will occur in processCallExit.
481  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
482                                             *this);
483}
484
485void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
486                          const CallEvent &Call) {
487  // WARNING: At this time, the state attached to 'Call' may be older than the
488  // state in 'Pred'. This is a minor optimization since CheckerManager will
489  // use an updated CallEvent instance when calling checkers, but if 'Call' is
490  // ever used directly in this function all callers should be updated to pass
491  // the most recent state. (It is probably not worth doing the work here since
492  // for some callers this will not be necessary.)
493
494  // Run any pre-call checks using the generic call interface.
495  ExplodedNodeSet dstPreVisit;
496  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
497
498  // Actually evaluate the function call.  We try each of the checkers
499  // to see if the can evaluate the function call, and get a callback at
500  // defaultEvalCall if all of them fail.
501  ExplodedNodeSet dstCallEvaluated;
502  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
503                                             Call, *this);
504
505  // Finally, run any post-call checks.
506  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
507                                             Call, *this);
508}
509
510ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
511                                            const LocationContext *LCtx,
512                                            ProgramStateRef State) {
513  const Expr *E = Call.getOriginExpr();
514  if (!E)
515    return State;
516
517  // Some method families have known return values.
518  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
519    switch (Msg->getMethodFamily()) {
520    default:
521      break;
522    case OMF_autorelease:
523    case OMF_retain:
524    case OMF_self: {
525      // These methods return their receivers.
526      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
527    }
528    }
529  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
530    return State->BindExpr(E, LCtx, C->getCXXThisVal());
531  }
532
533  // Conjure a symbol if the return value is unknown.
534  QualType ResultTy = Call.getResultType();
535  SValBuilder &SVB = getSValBuilder();
536  unsigned Count = currBldrCtx->blockCount();
537  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
538  return State->BindExpr(E, LCtx, R);
539}
540
541// Conservatively evaluate call by invalidating regions and binding
542// a conjured return value.
543void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
544                                      ExplodedNode *Pred, ProgramStateRef State) {
545  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
546  State = bindReturnValue(Call, Pred->getLocationContext(), State);
547
548  // And make the result node.
549  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
550}
551
552void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
553                                 const CallEvent &CallTemplate) {
554  // Make sure we have the most recent state attached to the call.
555  ProgramStateRef State = Pred->getState();
556  CallEventRef<> Call = CallTemplate.cloneWithState(State);
557
558  if (!getAnalysisManager().shouldInlineCall()) {
559    conservativeEvalCall(*Call, Bldr, Pred, State);
560    return;
561  }
562  // Try to inline the call.
563  // The origin expression here is just used as a kind of checksum;
564  // this should still be safe even for CallEvents that don't come from exprs.
565  const Expr *E = Call->getOriginExpr();
566  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
567
568  if (InlinedFailedState) {
569    // If we already tried once and failed, make sure we don't retry later.
570    State = InlinedFailedState;
571  } else {
572    RuntimeDefinition RD = Call->getRuntimeDefinition();
573    const Decl *D = RD.getDecl();
574    if (D) {
575      if (RD.mayHaveOtherDefinitions()) {
576        // Explore with and without inlining the call.
577        if (getAnalysisManager().IPAMode == DynamicDispatchBifurcate) {
578          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
579          return;
580        }
581
582        // Don't inline if we're not in any dynamic dispatch mode.
583        if (getAnalysisManager().IPAMode != DynamicDispatch) {
584          conservativeEvalCall(*Call, Bldr, Pred, State);
585          return;
586        }
587      }
588
589      // We are not bifurcating and we do have a Decl, so just inline.
590      if (inlineCall(*Call, D, Bldr, Pred, State))
591        return;
592    }
593  }
594
595  // If we can't inline it, handle the return value and invalidate the regions.
596  conservativeEvalCall(*Call, Bldr, Pred, State);
597}
598
599void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
600                               const CallEvent &Call, const Decl *D,
601                               NodeBuilder &Bldr, ExplodedNode *Pred) {
602  assert(BifurReg);
603  BifurReg = BifurReg->StripCasts();
604
605  // Check if we've performed the split already - note, we only want
606  // to split the path once per memory region.
607  ProgramStateRef State = Pred->getState();
608  const unsigned int *BState =
609                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
610  if (BState) {
611    // If we are on "inline path", keep inlining if possible.
612    if (*BState == DynamicDispatchModeInlined)
613      if (inlineCall(Call, D, Bldr, Pred, State))
614        return;
615    // If inline failed, or we are on the path where we assume we
616    // don't have enough info about the receiver to inline, conjure the
617    // return value and invalidate the regions.
618    conservativeEvalCall(Call, Bldr, Pred, State);
619    return;
620  }
621
622  // If we got here, this is the first time we process a message to this
623  // region, so split the path.
624  ProgramStateRef IState =
625      State->set<DynamicDispatchBifurcationMap>(BifurReg,
626                                               DynamicDispatchModeInlined);
627  inlineCall(Call, D, Bldr, Pred, IState);
628
629  ProgramStateRef NoIState =
630      State->set<DynamicDispatchBifurcationMap>(BifurReg,
631                                               DynamicDispatchModeConservative);
632  conservativeEvalCall(Call, Bldr, Pred, NoIState);
633
634  NumOfDynamicDispatchPathSplits++;
635  return;
636}
637
638
639void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
640                                 ExplodedNodeSet &Dst) {
641
642  ExplodedNodeSet dstPreVisit;
643  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
644
645  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
646
647  if (RS->getRetValue()) {
648    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
649                                  ei = dstPreVisit.end(); it != ei; ++it) {
650      B.generateNode(RS, *it, (*it)->getState());
651    }
652  }
653}
654