ExprEngineCallAndReturn.cpp revision 73f0563009a6715a5d3d41f664f5bfab5096d51f
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ParentMap.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/StaticAnalyzer/Core/CheckerManager.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Support/SaveAndRestore.h"
26
27using namespace clang;
28using namespace ento;
29
30STATISTIC(NumOfDynamicDispatchPathSplits,
31  "The # of times we split the path due to imprecise dynamic dispatch info");
32
33STATISTIC(NumInlinedCalls,
34  "The # of times we inlined a call");
35
36STATISTIC(NumReachedInlineCountMax,
37  "The # of times we reached inline count maximum");
38
39void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
40  // Get the entry block in the CFG of the callee.
41  const StackFrameContext *calleeCtx = CE.getCalleeContext();
42  const CFG *CalleeCFG = calleeCtx->getCFG();
43  const CFGBlock *Entry = &(CalleeCFG->getEntry());
44
45  // Validate the CFG.
46  assert(Entry->empty());
47  assert(Entry->succ_size() == 1);
48
49  // Get the solitary sucessor.
50  const CFGBlock *Succ = *(Entry->succ_begin());
51
52  // Construct an edge representing the starting location in the callee.
53  BlockEdge Loc(Entry, Succ, calleeCtx);
54
55  ProgramStateRef state = Pred->getState();
56
57  // Construct a new node and add it to the worklist.
58  bool isNew;
59  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
60  Node->addPredecessor(Pred, G);
61  if (isNew)
62    Engine.getWorkList()->enqueue(Node);
63}
64
65// Find the last statement on the path to the exploded node and the
66// corresponding Block.
67static std::pair<const Stmt*,
68                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
69  const Stmt *S = 0;
70  const CFGBlock *Blk = 0;
71  const StackFrameContext *SF =
72          Node->getLocation().getLocationContext()->getCurrentStackFrame();
73
74  // Back up through the ExplodedGraph until we reach a statement node in this
75  // stack frame.
76  while (Node) {
77    const ProgramPoint &PP = Node->getLocation();
78
79    if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
80      if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
81        S = SP->getStmt();
82        break;
83      } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
84        S = CEE->getCalleeContext()->getCallSite();
85        if (S)
86          break;
87
88        // If there is no statement, this is an implicitly-generated call.
89        // We'll walk backwards over it and then continue the loop to find
90        // an actual statement.
91        const CallEnter *CE;
92        do {
93          Node = Node->getFirstPred();
94          CE = Node->getLocationAs<CallEnter>();
95        } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
96
97        // Continue searching the graph.
98      } else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&PP)) {
99        Blk = BE->getSrc();
100      }
101    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
102      // If we reached the CallEnter for this function, it has no statements.
103      if (CE->getCalleeContext() == SF)
104        break;
105    }
106
107    if (Node->pred_empty())
108      return std::pair<const Stmt*, const CFGBlock*>((Stmt*)0, (CFGBlock*)0);
109
110    Node = *Node->pred_begin();
111  }
112
113  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
114}
115
116/// Adjusts a return value when the called function's return type does not
117/// match the caller's expression type. This can happen when a dynamic call
118/// is devirtualized, and the overridding method has a covariant (more specific)
119/// return type than the parent's method. For C++ objects, this means we need
120/// to add base casts.
121static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
122                              StoreManager &StoreMgr) {
123  // For now, the only adjustments we handle apply only to locations.
124  if (!isa<Loc>(V))
125    return V;
126
127  // If the types already match, don't do any unnecessary work.
128  ExpectedTy = ExpectedTy.getCanonicalType();
129  ActualTy = ActualTy.getCanonicalType();
130  if (ExpectedTy == ActualTy)
131    return V;
132
133  // No adjustment is needed between Objective-C pointer types.
134  if (ExpectedTy->isObjCObjectPointerType() &&
135      ActualTy->isObjCObjectPointerType())
136    return V;
137
138  // C++ object pointers may need "derived-to-base" casts.
139  const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
140  const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
141  if (ExpectedClass && ActualClass) {
142    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
143                       /*DetectVirtual=*/false);
144    if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
145        !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
146      return StoreMgr.evalDerivedToBase(V, Paths.front());
147    }
148  }
149
150  // Unfortunately, Objective-C does not enforce that overridden methods have
151  // covariant return types, so we can't assert that that never happens.
152  // Be safe and return UnknownVal().
153  return UnknownVal();
154}
155
156void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
157                                           ExplodedNode *Pred,
158                                           ExplodedNodeSet &Dst) {
159  // Find the last statement in the function and the corresponding basic block.
160  const Stmt *LastSt = 0;
161  const CFGBlock *Blk = 0;
162  llvm::tie(LastSt, Blk) = getLastStmt(Pred);
163  if (!Blk || !LastSt) {
164    Dst.Add(Pred);
165    return;
166  }
167
168  // Here, we destroy the current location context. We use the current
169  // function's entire body as a diagnostic statement, with which the program
170  // point will be associated. However, we only want to use LastStmt as a
171  // reference for what to clean up if it's a ReturnStmt; otherwise, everything
172  // is dead.
173  SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
174  const LocationContext *LCtx = Pred->getLocationContext();
175  removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
176             LCtx->getAnalysisDeclContext()->getBody(),
177             ProgramPoint::PostStmtPurgeDeadSymbolsKind);
178}
179
180static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
181    const StackFrameContext *calleeCtx) {
182  const Decl *RuntimeCallee = calleeCtx->getDecl();
183  const Decl *StaticDecl = Call->getDecl();
184  assert(RuntimeCallee);
185  if (!StaticDecl)
186    return true;
187  return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
188}
189
190/// The call exit is simulated with a sequence of nodes, which occur between
191/// CallExitBegin and CallExitEnd. The following operations occur between the
192/// two program points:
193/// 1. CallExitBegin (triggers the start of call exit sequence)
194/// 2. Bind the return value
195/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
196/// 4. CallExitEnd (switch to the caller context)
197/// 5. PostStmt<CallExpr>
198void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
199  // Step 1 CEBNode was generated before the call.
200
201  const StackFrameContext *calleeCtx =
202      CEBNode->getLocationContext()->getCurrentStackFrame();
203
204  // The parent context might not be a stack frame, so make sure we
205  // look up the first enclosing stack frame.
206  const StackFrameContext *callerCtx =
207    calleeCtx->getParent()->getCurrentStackFrame();
208
209  const Stmt *CE = calleeCtx->getCallSite();
210  ProgramStateRef state = CEBNode->getState();
211  // Find the last statement in the function and the corresponding basic block.
212  const Stmt *LastSt = 0;
213  const CFGBlock *Blk = 0;
214  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
215
216  // Generate a CallEvent /before/ cleaning the state, so that we can get the
217  // correct value for 'this' (if necessary).
218  CallEventManager &CEMgr = getStateManager().getCallEventManager();
219  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
220
221  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
222
223  // If the callee returns an expression, bind its value to CallExpr.
224  if (CE) {
225    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
226      const LocationContext *LCtx = CEBNode->getLocationContext();
227      SVal V = state->getSVal(RS, LCtx);
228
229      // Ensure that the return type matches the type of the returned Expr.
230      if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
231        QualType ReturnedTy =
232          CallEvent::getDeclaredResultType(calleeCtx->getDecl());
233        if (!ReturnedTy.isNull()) {
234          if (const Expr *Ex = dyn_cast<Expr>(CE)) {
235            V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
236                                  getStoreManager());
237          }
238        }
239      }
240
241      state = state->BindExpr(CE, callerCtx, V);
242    }
243
244    // Bind the constructed object value to CXXConstructExpr.
245    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
246      loc::MemRegionVal This =
247        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
248      SVal ThisV = state->getSVal(This);
249
250      // If the constructed object is a prvalue, get its bindings.
251      // Note that we have to be careful here because constructors embedded
252      // in DeclStmts are not marked as lvalues.
253      if (!CCE->isGLValue())
254        if (const MemRegion *MR = ThisV.getAsRegion())
255          if (isa<CXXTempObjectRegion>(MR))
256            ThisV = state->getSVal(cast<Loc>(ThisV));
257
258      state = state->BindExpr(CCE, callerCtx, ThisV);
259    }
260  }
261
262  // Step 3: BindedRetNode -> CleanedNodes
263  // If we can find a statement and a block in the inlined function, run remove
264  // dead bindings before returning from the call. This is important to ensure
265  // that we report the issues such as leaks in the stack contexts in which
266  // they occurred.
267  ExplodedNodeSet CleanedNodes;
268  if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
269    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
270    PostStmt Loc(LastSt, calleeCtx, &retValBind);
271    bool isNew;
272    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
273    BindedRetNode->addPredecessor(CEBNode, G);
274    if (!isNew)
275      return;
276
277    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
278    currBldrCtx = &Ctx;
279    // Here, we call the Symbol Reaper with 0 statement and callee location
280    // context, telling it to clean up everything in the callee's context
281    // (and its children). We use the callee's function body as a diagnostic
282    // statement, with which the program point will be associated.
283    removeDead(BindedRetNode, CleanedNodes, 0, calleeCtx,
284               calleeCtx->getAnalysisDeclContext()->getBody(),
285               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
286    currBldrCtx = 0;
287  } else {
288    CleanedNodes.Add(CEBNode);
289  }
290
291  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
292                                 E = CleanedNodes.end(); I != E; ++I) {
293
294    // Step 4: Generate the CallExit and leave the callee's context.
295    // CleanedNodes -> CEENode
296    CallExitEnd Loc(calleeCtx, callerCtx);
297    bool isNew;
298    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
299    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
300    CEENode->addPredecessor(*I, G);
301    if (!isNew)
302      return;
303
304    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
305    // result onto the work list.
306    // CEENode -> Dst -> WorkList
307    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
308    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
309        &Ctx);
310    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
311
312    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
313
314    ExplodedNodeSet DstPostCall;
315    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
316                                               *UpdatedCall, *this,
317                                               /*WasInlined=*/true);
318
319    ExplodedNodeSet Dst;
320    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
321      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
322                                                        *this,
323                                                        /*WasInlined=*/true);
324    } else if (CE) {
325      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
326                                                 *this, /*WasInlined=*/true);
327    } else {
328      Dst.insert(DstPostCall);
329    }
330
331    // Enqueue the next element in the block.
332    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
333                                   PSI != PSE; ++PSI) {
334      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
335                                    calleeCtx->getIndex()+1);
336    }
337  }
338}
339
340void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
341                               bool &IsRecursive, unsigned &StackDepth) {
342  IsRecursive = false;
343  StackDepth = 0;
344
345  while (LCtx) {
346    if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
347      const Decl *DI = SFC->getDecl();
348
349      // Mark recursive (and mutually recursive) functions and always count
350      // them when measuring the stack depth.
351      if (DI == D) {
352        IsRecursive = true;
353        ++StackDepth;
354        LCtx = LCtx->getParent();
355        continue;
356      }
357
358      // Do not count the small functions when determining the stack depth.
359      AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
360      const CFG *CalleeCFG = CalleeADC->getCFG();
361      if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
362        ++StackDepth;
363    }
364    LCtx = LCtx->getParent();
365  }
366
367}
368
369static bool IsInStdNamespace(const FunctionDecl *FD) {
370  const DeclContext *DC = FD->getEnclosingNamespaceContext();
371  const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
372  if (!ND)
373    return false;
374
375  while (const DeclContext *Parent = ND->getParent()) {
376    if (!isa<NamespaceDecl>(Parent))
377      break;
378    ND = cast<NamespaceDecl>(Parent);
379  }
380
381  return ND->getName() == "std";
382}
383
384// Determine if we should inline the call.
385bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
386  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
387  const CFG *CalleeCFG = CalleeADC->getCFG();
388
389  // It is possible that the CFG cannot be constructed.
390  // Be safe, and check if the CalleeCFG is valid.
391  if (!CalleeCFG)
392    return false;
393
394  bool IsRecursive = false;
395  unsigned StackDepth = 0;
396  examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
397  if ((StackDepth >= AMgr.options.InlineMaxStackDepth) &&
398       ((CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
399         || IsRecursive))
400    return false;
401
402  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
403    return false;
404
405  if (CalleeCFG->getNumBlockIDs() > AMgr.options.InlineMaxFunctionSize)
406    return false;
407
408  // Do not inline variadic calls (for now).
409  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
410    if (BD->isVariadic())
411      return false;
412  }
413  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
414    if (FD->isVariadic())
415      return false;
416  }
417
418  if (getContext().getLangOpts().CPlusPlus) {
419    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
420      // Conditionally allow the inlining of template functions.
421      if (!AMgr.options.mayInlineTemplateFunctions())
422        if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
423          return false;
424
425      // Conditionally allow the inlining of C++ standard library functions.
426      if (!AMgr.options.mayInlineCXXStandardLibrary())
427        if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
428          if (IsInStdNamespace(FD))
429            return false;
430    }
431  }
432
433  // It is possible that the live variables analysis cannot be
434  // run.  If so, bail out.
435  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
436    return false;
437
438  if (Engine.FunctionSummaries->getNumTimesInlined(D) >
439        AMgr.options.getMaxTimesInlineLarge() &&
440      CalleeCFG->getNumBlockIDs() > 13) {
441    NumReachedInlineCountMax++;
442    return false;
443  }
444  Engine.FunctionSummaries->bumpNumTimesInlined(D);
445
446  return true;
447}
448
449// The GDM component containing the dynamic dispatch bifurcation info. When
450// the exact type of the receiver is not known, we want to explore both paths -
451// one on which we do inline it and the other one on which we don't. This is
452// done to ensure we do not drop coverage.
453// This is the map from the receiver region to a bool, specifying either we
454// consider this region's information precise or not along the given path.
455namespace {
456  enum DynamicDispatchMode {
457    DynamicDispatchModeInlined = 1,
458    DynamicDispatchModeConservative
459  };
460}
461REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
462                                 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
463                                                             unsigned))
464
465bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
466                            NodeBuilder &Bldr, ExplodedNode *Pred,
467                            ProgramStateRef State) {
468  assert(D);
469
470  const LocationContext *CurLC = Pred->getLocationContext();
471  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
472  const LocationContext *ParentOfCallee = 0;
473
474  AnalyzerOptions &Opts = getAnalysisManager().options;
475
476  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
477  switch (Call.getKind()) {
478  case CE_Function:
479    break;
480  case CE_CXXMember:
481  case CE_CXXMemberOperator:
482    if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
483      return false;
484    break;
485  case CE_CXXConstructor: {
486    if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
487      return false;
488
489    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
490
491    // FIXME: We don't handle constructors or destructors for arrays properly.
492    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
493    if (Target && isa<ElementRegion>(Target))
494      return false;
495
496    // FIXME: This is a hack. We don't use the correct region for a new
497    // expression, so if we inline the constructor its result will just be
498    // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
499    // and the longer-term possible fix is discussed in PR12014.
500    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
501    if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
502      if (isa<CXXNewExpr>(Parent))
503        return false;
504
505    // Inlining constructors requires including initializers in the CFG.
506    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
507    assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
508    (void)ADC;
509
510    // If the destructor is trivial, it's always safe to inline the constructor.
511    if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
512      break;
513
514    // For other types, only inline constructors if destructor inlining is
515    // also enabled.
516    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
517      return false;
518
519    // FIXME: This is a hack. We don't handle temporary destructors
520    // right now, so we shouldn't inline their constructors.
521    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
522      if (!Target || !isa<DeclRegion>(Target))
523        return false;
524
525    break;
526  }
527  case CE_CXXDestructor: {
528    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
529      return false;
530
531    // Inlining destructors requires building the CFG correctly.
532    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
533    assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
534    (void)ADC;
535
536    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
537
538    // FIXME: We don't handle constructors or destructors for arrays properly.
539    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
540    if (Target && isa<ElementRegion>(Target))
541      return false;
542
543    break;
544  }
545  case CE_CXXAllocator:
546    // Do not inline allocators until we model deallocators.
547    // This is unfortunate, but basically necessary for smart pointers and such.
548    return false;
549  case CE_Block: {
550    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
551    assert(BR && "If we have the block definition we should have its region");
552    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
553    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
554                                                         cast<BlockDecl>(D),
555                                                         BR);
556    break;
557  }
558  case CE_ObjCMessage:
559    if (!Opts.mayInlineObjCMethod())
560      return false;
561    AnalyzerOptions &Options = getAnalysisManager().options;
562    if (!(Options.getIPAMode() == DynamicDispatch ||
563          Options.getIPAMode() == DynamicDispatchBifurcate))
564      return false;
565    break;
566  }
567
568  if (!shouldInlineDecl(D, Pred))
569    return false;
570
571  if (!ParentOfCallee)
572    ParentOfCallee = CallerSFC;
573
574  // This may be NULL, but that's fine.
575  const Expr *CallE = Call.getOriginExpr();
576
577  // Construct a new stack frame for the callee.
578  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
579  const StackFrameContext *CalleeSFC =
580    CalleeADC->getStackFrame(ParentOfCallee, CallE,
581                             currBldrCtx->getBlock(),
582                             currStmtIdx);
583
584  CallEnter Loc(CallE, CalleeSFC, CurLC);
585
586  // Construct a new state which contains the mapping from actual to
587  // formal arguments.
588  State = State->enterStackFrame(Call, CalleeSFC);
589
590  bool isNew;
591  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
592    N->addPredecessor(Pred, G);
593    if (isNew)
594      Engine.getWorkList()->enqueue(N);
595  }
596
597  // If we decided to inline the call, the successor has been manually
598  // added onto the work list so remove it from the node builder.
599  Bldr.takeNodes(Pred);
600
601  NumInlinedCalls++;
602
603  // Mark the decl as visited.
604  if (VisitedCallees)
605    VisitedCallees->insert(D);
606
607  return true;
608}
609
610static ProgramStateRef getInlineFailedState(ProgramStateRef State,
611                                            const Stmt *CallE) {
612  const void *ReplayState = State->get<ReplayWithoutInlining>();
613  if (!ReplayState)
614    return 0;
615
616  assert(ReplayState == CallE && "Backtracked to the wrong call.");
617  (void)CallE;
618
619  return State->remove<ReplayWithoutInlining>();
620}
621
622void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
623                               ExplodedNodeSet &dst) {
624  // Perform the previsit of the CallExpr.
625  ExplodedNodeSet dstPreVisit;
626  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
627
628  // Get the call in its initial state. We use this as a template to perform
629  // all the checks.
630  CallEventManager &CEMgr = getStateManager().getCallEventManager();
631  CallEventRef<> CallTemplate
632    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
633
634  // Evaluate the function call.  We try each of the checkers
635  // to see if the can evaluate the function call.
636  ExplodedNodeSet dstCallEvaluated;
637  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
638       I != E; ++I) {
639    evalCall(dstCallEvaluated, *I, *CallTemplate);
640  }
641
642  // Finally, perform the post-condition check of the CallExpr and store
643  // the created nodes in 'Dst'.
644  // Note that if the call was inlined, dstCallEvaluated will be empty.
645  // The post-CallExpr check will occur in processCallExit.
646  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
647                                             *this);
648}
649
650void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
651                          const CallEvent &Call) {
652  // WARNING: At this time, the state attached to 'Call' may be older than the
653  // state in 'Pred'. This is a minor optimization since CheckerManager will
654  // use an updated CallEvent instance when calling checkers, but if 'Call' is
655  // ever used directly in this function all callers should be updated to pass
656  // the most recent state. (It is probably not worth doing the work here since
657  // for some callers this will not be necessary.)
658
659  // Run any pre-call checks using the generic call interface.
660  ExplodedNodeSet dstPreVisit;
661  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
662
663  // Actually evaluate the function call.  We try each of the checkers
664  // to see if the can evaluate the function call, and get a callback at
665  // defaultEvalCall if all of them fail.
666  ExplodedNodeSet dstCallEvaluated;
667  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
668                                             Call, *this);
669
670  // Finally, run any post-call checks.
671  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
672                                             Call, *this);
673}
674
675ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
676                                            const LocationContext *LCtx,
677                                            ProgramStateRef State) {
678  const Expr *E = Call.getOriginExpr();
679  if (!E)
680    return State;
681
682  // Some method families have known return values.
683  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
684    switch (Msg->getMethodFamily()) {
685    default:
686      break;
687    case OMF_autorelease:
688    case OMF_retain:
689    case OMF_self: {
690      // These methods return their receivers.
691      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
692    }
693    }
694  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
695    return State->BindExpr(E, LCtx, C->getCXXThisVal());
696  }
697
698  // Conjure a symbol if the return value is unknown.
699  QualType ResultTy = Call.getResultType();
700  SValBuilder &SVB = getSValBuilder();
701  unsigned Count = currBldrCtx->blockCount();
702  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
703  return State->BindExpr(E, LCtx, R);
704}
705
706// Conservatively evaluate call by invalidating regions and binding
707// a conjured return value.
708void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
709                                      ExplodedNode *Pred, ProgramStateRef State) {
710  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
711  State = bindReturnValue(Call, Pred->getLocationContext(), State);
712
713  // And make the result node.
714  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
715}
716
717void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
718                                 const CallEvent &CallTemplate) {
719  // Make sure we have the most recent state attached to the call.
720  ProgramStateRef State = Pred->getState();
721  CallEventRef<> Call = CallTemplate.cloneWithState(State);
722
723  if (HowToInline == Inline_None) {
724    conservativeEvalCall(*Call, Bldr, Pred, State);
725    return;
726  }
727  // Try to inline the call.
728  // The origin expression here is just used as a kind of checksum;
729  // this should still be safe even for CallEvents that don't come from exprs.
730  const Expr *E = Call->getOriginExpr();
731  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
732
733  if (InlinedFailedState) {
734    // If we already tried once and failed, make sure we don't retry later.
735    State = InlinedFailedState;
736  } else {
737    RuntimeDefinition RD = Call->getRuntimeDefinition();
738    const Decl *D = RD.getDecl();
739    if (D) {
740      if (RD.mayHaveOtherDefinitions()) {
741        AnalyzerOptions &Options = getAnalysisManager().options;
742
743        // Explore with and without inlining the call.
744        if (Options.getIPAMode() == DynamicDispatchBifurcate) {
745          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
746          return;
747        }
748
749        // Don't inline if we're not in any dynamic dispatch mode.
750        if (Options.getIPAMode() != DynamicDispatch) {
751          conservativeEvalCall(*Call, Bldr, Pred, State);
752          return;
753        }
754      }
755
756      // We are not bifurcating and we do have a Decl, so just inline.
757      if (inlineCall(*Call, D, Bldr, Pred, State))
758        return;
759    }
760  }
761
762  // If we can't inline it, handle the return value and invalidate the regions.
763  conservativeEvalCall(*Call, Bldr, Pred, State);
764}
765
766void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
767                               const CallEvent &Call, const Decl *D,
768                               NodeBuilder &Bldr, ExplodedNode *Pred) {
769  assert(BifurReg);
770  BifurReg = BifurReg->StripCasts();
771
772  // Check if we've performed the split already - note, we only want
773  // to split the path once per memory region.
774  ProgramStateRef State = Pred->getState();
775  const unsigned *BState =
776                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
777  if (BState) {
778    // If we are on "inline path", keep inlining if possible.
779    if (*BState == DynamicDispatchModeInlined)
780      if (inlineCall(Call, D, Bldr, Pred, State))
781        return;
782    // If inline failed, or we are on the path where we assume we
783    // don't have enough info about the receiver to inline, conjure the
784    // return value and invalidate the regions.
785    conservativeEvalCall(Call, Bldr, Pred, State);
786    return;
787  }
788
789  // If we got here, this is the first time we process a message to this
790  // region, so split the path.
791  ProgramStateRef IState =
792      State->set<DynamicDispatchBifurcationMap>(BifurReg,
793                                               DynamicDispatchModeInlined);
794  inlineCall(Call, D, Bldr, Pred, IState);
795
796  ProgramStateRef NoIState =
797      State->set<DynamicDispatchBifurcationMap>(BifurReg,
798                                               DynamicDispatchModeConservative);
799  conservativeEvalCall(Call, Bldr, Pred, NoIState);
800
801  NumOfDynamicDispatchPathSplits++;
802  return;
803}
804
805
806void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
807                                 ExplodedNodeSet &Dst) {
808
809  ExplodedNodeSet dstPreVisit;
810  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
811
812  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
813
814  if (RS->getRetValue()) {
815    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
816                                  ei = dstPreVisit.end(); it != ei; ++it) {
817      B.generateNode(RS, *it, (*it)->getState());
818    }
819  }
820}
821