ExprEngineCallAndReturn.cpp revision da29ac527063fc9714547088bf841bfa30557bf0
1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/Analysis/Analyses/LiveVariables.h"
17#include "clang/StaticAnalyzer/Core/CheckerManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
20#include "clang/AST/DeclCXX.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/SaveAndRestore.h"
24
25#define CXX_INLINING_ENABLED 1
26
27using namespace clang;
28using namespace ento;
29
30STATISTIC(NumOfDynamicDispatchPathSplits,
31  "The # of times we split the path due to imprecise dynamic dispatch info");
32
33void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
34  // Get the entry block in the CFG of the callee.
35  const StackFrameContext *calleeCtx = CE.getCalleeContext();
36  const CFG *CalleeCFG = calleeCtx->getCFG();
37  const CFGBlock *Entry = &(CalleeCFG->getEntry());
38
39  // Validate the CFG.
40  assert(Entry->empty());
41  assert(Entry->succ_size() == 1);
42
43  // Get the solitary sucessor.
44  const CFGBlock *Succ = *(Entry->succ_begin());
45
46  // Construct an edge representing the starting location in the callee.
47  BlockEdge Loc(Entry, Succ, calleeCtx);
48
49  ProgramStateRef state = Pred->getState();
50
51  // Construct a new node and add it to the worklist.
52  bool isNew;
53  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
54  Node->addPredecessor(Pred, G);
55  if (isNew)
56    Engine.getWorkList()->enqueue(Node);
57}
58
59// Find the last statement on the path to the exploded node and the
60// corresponding Block.
61static std::pair<const Stmt*,
62                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
63  const Stmt *S = 0;
64  const StackFrameContext *SF =
65          Node->getLocation().getLocationContext()->getCurrentStackFrame();
66
67  // Back up through the ExplodedGraph until we reach a statement node.
68  while (Node) {
69    const ProgramPoint &PP = Node->getLocation();
70
71    if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
72      S = SP->getStmt();
73      break;
74    } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
75      S = CEE->getCalleeContext()->getCallSite();
76      if (S)
77        break;
78      // If we have an implicit call, we'll probably end up with a
79      // StmtPoint inside the callee, which is acceptable.
80      // (It's possible a function ONLY contains implicit calls -- such as an
81      // implicitly-generated destructor -- so we shouldn't just skip back to
82      // the CallEnter node and keep going.)
83    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
84      // If we reached the CallEnter for this function, it has no statements.
85      if (CE->getCalleeContext() == SF)
86        break;
87    }
88
89    Node = *Node->pred_begin();
90  }
91
92  const CFGBlock *Blk = 0;
93  if (S) {
94    // Now, get the enclosing basic block.
95    while (Node && Node->pred_size() >=1 ) {
96      const ProgramPoint &PP = Node->getLocation();
97      if (isa<BlockEdge>(PP) &&
98          (PP.getLocationContext()->getCurrentStackFrame() == SF)) {
99        BlockEdge &EPP = cast<BlockEdge>(PP);
100        Blk = EPP.getDst();
101        break;
102      }
103      Node = *Node->pred_begin();
104    }
105  }
106
107  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
108}
109
110/// The call exit is simulated with a sequence of nodes, which occur between
111/// CallExitBegin and CallExitEnd. The following operations occur between the
112/// two program points:
113/// 1. CallExitBegin (triggers the start of call exit sequence)
114/// 2. Bind the return value
115/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
116/// 4. CallExitEnd (switch to the caller context)
117/// 5. PostStmt<CallExpr>
118void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
119  // Step 1 CEBNode was generated before the call.
120
121  const StackFrameContext *calleeCtx =
122      CEBNode->getLocationContext()->getCurrentStackFrame();
123
124  // The parent context might not be a stack frame, so make sure we
125  // look up the first enclosing stack frame.
126  const StackFrameContext *callerCtx =
127    calleeCtx->getParent()->getCurrentStackFrame();
128
129  const Stmt *CE = calleeCtx->getCallSite();
130  ProgramStateRef state = CEBNode->getState();
131  // Find the last statement in the function and the corresponding basic block.
132  const Stmt *LastSt = 0;
133  const CFGBlock *Blk = 0;
134  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
135
136  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
137
138  // If the callee returns an expression, bind its value to CallExpr.
139  if (CE) {
140    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
141      const LocationContext *LCtx = CEBNode->getLocationContext();
142      SVal V = state->getSVal(RS, LCtx);
143      state = state->BindExpr(CE, callerCtx, V);
144    }
145
146    // Bind the constructed object value to CXXConstructExpr.
147    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
148      loc::MemRegionVal This =
149        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
150      SVal ThisV = state->getSVal(This);
151
152      // Always bind the region to the CXXConstructExpr.
153      state = state->BindExpr(CCE, callerCtx, ThisV);
154    }
155  }
156
157  // Generate a CallEvent /before/ cleaning the state, so that we can get the
158  // correct value for 'this' (if necessary).
159  CallEventManager &CEMgr = getStateManager().getCallEventManager();
160  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
161
162  // Step 3: BindedRetNode -> CleanedNodes
163  // If we can find a statement and a block in the inlined function, run remove
164  // dead bindings before returning from the call. This is important to ensure
165  // that we report the issues such as leaks in the stack contexts in which
166  // they occurred.
167  ExplodedNodeSet CleanedNodes;
168  if (LastSt && Blk) {
169    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
170    PostStmt Loc(LastSt, calleeCtx, &retValBind);
171    bool isNew;
172    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
173    BindedRetNode->addPredecessor(CEBNode, G);
174    if (!isNew)
175      return;
176
177    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
178    currentBuilderContext = &Ctx;
179    // Here, we call the Symbol Reaper with 0 statement and caller location
180    // context, telling it to clean up everything in the callee's context
181    // (and it's children). We use LastStmt as a diagnostic statement, which
182    // which the PreStmtPurge Dead point will be associated.
183    removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
184               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
185    currentBuilderContext = 0;
186  } else {
187    CleanedNodes.Add(CEBNode);
188  }
189
190  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
191                                 E = CleanedNodes.end(); I != E; ++I) {
192
193    // Step 4: Generate the CallExit and leave the callee's context.
194    // CleanedNodes -> CEENode
195    CallExitEnd Loc(calleeCtx, callerCtx);
196    bool isNew;
197    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
198    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
199    CEENode->addPredecessor(*I, G);
200    if (!isNew)
201      return;
202
203    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
204    // result onto the work list.
205    // CEENode -> Dst -> WorkList
206    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
207    SaveAndRestore<const NodeBuilderContext*> NBCSave(currentBuilderContext,
208        &Ctx);
209    SaveAndRestore<unsigned> CBISave(currentStmtIdx, calleeCtx->getIndex());
210
211    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
212
213    ExplodedNodeSet DstPostCall;
214    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
215                                               *UpdatedCall, *this,
216                                               /*WasInlined=*/true);
217
218    ExplodedNodeSet Dst;
219    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
220      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
221                                                        *this,
222                                                        /*WasInlined=*/true);
223    } else if (CE) {
224      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
225                                                 *this, /*WasInlined=*/true);
226    } else {
227      Dst.insert(DstPostCall);
228    }
229
230    // Enqueue the next element in the block.
231    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
232                                   PSI != PSE; ++PSI) {
233      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
234                                    calleeCtx->getIndex()+1);
235    }
236  }
237}
238
239static unsigned getNumberStackFrames(const LocationContext *LCtx) {
240  unsigned count = 0;
241  while (LCtx) {
242    if (isa<StackFrameContext>(LCtx))
243      ++count;
244    LCtx = LCtx->getParent();
245  }
246  return count;
247}
248
249// Determine if we should inline the call.
250bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
251  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
252  const CFG *CalleeCFG = CalleeADC->getCFG();
253
254  // It is possible that the CFG cannot be constructed.
255  // Be safe, and check if the CalleeCFG is valid.
256  if (!CalleeCFG)
257    return false;
258
259  if (getNumberStackFrames(Pred->getLocationContext())
260        == AMgr.InlineMaxStackDepth)
261    return false;
262
263  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
264    return false;
265
266  if (CalleeCFG->getNumBlockIDs() > AMgr.InlineMaxFunctionSize)
267    return false;
268
269  // Do not inline variadic calls (for now).
270  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
271    if (BD->isVariadic())
272      return false;
273  }
274  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
275    if (FD->isVariadic())
276      return false;
277  }
278
279  // It is possible that the live variables analysis cannot be
280  // run.  If so, bail out.
281  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
282    return false;
283
284  return true;
285}
286
287/// The GDM component containing the dynamic dispatch bifurcation info. When
288/// the exact type of the receiver is not known, we want to explore both paths -
289/// one on which we do inline it and the other one on which we don't. This is
290/// done to ensure we do not drop coverage.
291/// This is the map from the receiver region to a bool, specifying either we
292/// consider this region's information precise or not along the given path.
293namespace clang {
294namespace ento {
295enum DynamicDispatchMode { DynamicDispatchModeInlined = 1,
296                           DynamicDispatchModeConservative };
297
298struct DynamicDispatchBifurcationMap {};
299typedef llvm::ImmutableMap<const MemRegion*,
300                           unsigned int> DynamicDispatchBifur;
301template<> struct ProgramStateTrait<DynamicDispatchBifurcationMap>
302    :  public ProgramStatePartialTrait<DynamicDispatchBifur> {
303  static void *GDMIndex() { static int index; return &index; }
304};
305
306}}
307
308bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
309                            NodeBuilder &Bldr, ExplodedNode *Pred,
310                            ProgramStateRef State) {
311  assert(D);
312
313  const LocationContext *CurLC = Pred->getLocationContext();
314  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
315  const LocationContext *ParentOfCallee = 0;
316
317  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
318  switch (Call.getKind()) {
319  case CE_Function:
320    break;
321  case CE_CXXMember:
322  case CE_CXXMemberOperator:
323    if (!CXX_INLINING_ENABLED)
324      return false;
325    break;
326  case CE_CXXConstructor: {
327    if (!CXX_INLINING_ENABLED)
328      return false;
329
330    // Only inline constructors and destructors if we built the CFGs for them
331    // properly.
332    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
333    if (!ADC->getCFGBuildOptions().AddImplicitDtors ||
334        !ADC->getCFGBuildOptions().AddInitializers)
335      return false;
336
337    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
338
339    // FIXME: We don't handle constructors or destructors for arrays properly.
340    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
341    if (Target && isa<ElementRegion>(Target))
342      return false;
343
344    // FIXME: This is a hack. We don't handle temporary destructors
345    // right now, so we shouldn't inline their constructors.
346    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
347    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
348      if (!Target || !isa<DeclRegion>(Target))
349        return false;
350
351    break;
352  }
353  case CE_CXXDestructor: {
354    if (!CXX_INLINING_ENABLED)
355      return false;
356
357    // Only inline constructors and destructors if we built the CFGs for them
358    // properly.
359    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
360    if (!ADC->getCFGBuildOptions().AddImplicitDtors ||
361        !ADC->getCFGBuildOptions().AddInitializers)
362      return false;
363
364    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
365
366    // FIXME: We don't handle constructors or destructors for arrays properly.
367    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
368    if (Target && isa<ElementRegion>(Target))
369      return false;
370
371    break;
372  }
373  case CE_CXXAllocator:
374    if (!CXX_INLINING_ENABLED)
375      return false;
376
377    // Do not inline allocators until we model deallocators.
378    // This is unfortunate, but basically necessary for smart pointers and such.
379    return false;
380  case CE_Block: {
381    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
382    assert(BR && "If we have the block definition we should have its region");
383    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
384    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
385                                                         cast<BlockDecl>(D),
386                                                         BR);
387    break;
388  }
389  case CE_ObjCMessage:
390    if (!(getAnalysisManager().IPAMode == DynamicDispatch ||
391          getAnalysisManager().IPAMode == DynamicDispatchBifurcate))
392      return false;
393    break;
394  }
395
396  if (!shouldInlineDecl(D, Pred))
397    return false;
398
399  if (!ParentOfCallee)
400    ParentOfCallee = CallerSFC;
401
402  // This may be NULL, but that's fine.
403  const Expr *CallE = Call.getOriginExpr();
404
405  // Construct a new stack frame for the callee.
406  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
407  const StackFrameContext *CalleeSFC =
408    CalleeADC->getStackFrame(ParentOfCallee, CallE,
409                             currentBuilderContext->getBlock(),
410                             currentStmtIdx);
411
412  CallEnter Loc(CallE, CalleeSFC, CurLC);
413
414  // Construct a new state which contains the mapping from actual to
415  // formal arguments.
416  State = State->enterStackFrame(Call, CalleeSFC);
417
418  bool isNew;
419  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
420    N->addPredecessor(Pred, G);
421    if (isNew)
422      Engine.getWorkList()->enqueue(N);
423  }
424
425  // If we decided to inline the call, the successor has been manually
426  // added onto the work list so remove it from the node builder.
427  Bldr.takeNodes(Pred);
428
429  return true;
430}
431
432static ProgramStateRef getInlineFailedState(ProgramStateRef State,
433                                            const Stmt *CallE) {
434  void *ReplayState = State->get<ReplayWithoutInlining>();
435  if (!ReplayState)
436    return 0;
437
438  assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
439  (void)CallE;
440
441  return State->remove<ReplayWithoutInlining>();
442}
443
444void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
445                               ExplodedNodeSet &dst) {
446  // Perform the previsit of the CallExpr.
447  ExplodedNodeSet dstPreVisit;
448  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
449
450  // Get the call in its initial state. We use this as a template to perform
451  // all the checks.
452  CallEventManager &CEMgr = getStateManager().getCallEventManager();
453  CallEventRef<> CallTemplate
454    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
455
456  // Evaluate the function call.  We try each of the checkers
457  // to see if the can evaluate the function call.
458  ExplodedNodeSet dstCallEvaluated;
459  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
460       I != E; ++I) {
461    evalCall(dstCallEvaluated, *I, *CallTemplate);
462  }
463
464  // Finally, perform the post-condition check of the CallExpr and store
465  // the created nodes in 'Dst'.
466  // Note that if the call was inlined, dstCallEvaluated will be empty.
467  // The post-CallExpr check will occur in processCallExit.
468  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
469                                             *this);
470}
471
472void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
473                          const CallEvent &Call) {
474  // WARNING: At this time, the state attached to 'Call' may be older than the
475  // state in 'Pred'. This is a minor optimization since CheckerManager will
476  // use an updated CallEvent instance when calling checkers, but if 'Call' is
477  // ever used directly in this function all callers should be updated to pass
478  // the most recent state. (It is probably not worth doing the work here since
479  // for some callers this will not be necessary.)
480
481  // Run any pre-call checks using the generic call interface.
482  ExplodedNodeSet dstPreVisit;
483  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
484
485  // Actually evaluate the function call.  We try each of the checkers
486  // to see if the can evaluate the function call, and get a callback at
487  // defaultEvalCall if all of them fail.
488  ExplodedNodeSet dstCallEvaluated;
489  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
490                                             Call, *this);
491
492  // Finally, run any post-call checks.
493  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
494                                             Call, *this);
495}
496
497ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
498                                            const LocationContext *LCtx,
499                                            ProgramStateRef State) {
500  const Expr *E = Call.getOriginExpr();
501  if (!E)
502    return State;
503
504  // Some method families have known return values.
505  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
506    switch (Msg->getMethodFamily()) {
507    default:
508      break;
509    case OMF_autorelease:
510    case OMF_retain:
511    case OMF_self: {
512      // These methods return their receivers.
513      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
514    }
515    }
516  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
517    return State->BindExpr(E, LCtx, C->getCXXThisVal());
518  }
519
520  // Conjure a symbol if the return value is unknown.
521  QualType ResultTy = Call.getResultType();
522  SValBuilder &SVB = getSValBuilder();
523  unsigned Count = currentBuilderContext->getCurrentBlockCount();
524  SVal R = SVB.getConjuredSymbolVal(0, E, LCtx, ResultTy, Count);
525  return State->BindExpr(E, LCtx, R);
526}
527
528// Conservatively evaluate call by invalidating regions and binding
529// a conjured return value.
530void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
531                                      ExplodedNode *Pred, ProgramStateRef State) {
532  unsigned Count = currentBuilderContext->getCurrentBlockCount();
533  State = Call.invalidateRegions(Count, State);
534  State = bindReturnValue(Call, Pred->getLocationContext(), State);
535
536  // And make the result node.
537  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
538}
539
540void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
541                                 const CallEvent &CallTemplate) {
542  // Make sure we have the most recent state attached to the call.
543  ProgramStateRef State = Pred->getState();
544  CallEventRef<> Call = CallTemplate.cloneWithState(State);
545
546  if (!getAnalysisManager().shouldInlineCall()) {
547    conservativeEvalCall(*Call, Bldr, Pred, State);
548    return;
549  }
550  // Try to inline the call.
551  // The origin expression here is just used as a kind of checksum;
552  // this should still be safe even for CallEvents that don't come from exprs.
553  const Expr *E = Call->getOriginExpr();
554  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
555
556  if (InlinedFailedState) {
557    // If we already tried once and failed, make sure we don't retry later.
558    State = InlinedFailedState;
559  } else {
560    RuntimeDefinition RD = Call->getRuntimeDefinition();
561    const Decl *D = RD.getDecl();
562    if (D) {
563      if (RD.mayHaveOtherDefinitions()) {
564        // Explore with and without inlining the call.
565        if (getAnalysisManager().IPAMode == DynamicDispatchBifurcate) {
566          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
567          return;
568        }
569
570        // Don't inline if we're not in any dynamic dispatch mode.
571        if (getAnalysisManager().IPAMode != DynamicDispatch) {
572          conservativeEvalCall(*Call, Bldr, Pred, State);
573          return;
574        }
575      }
576
577      // We are not bifurcating and we do have a Decl, so just inline.
578      if (inlineCall(*Call, D, Bldr, Pred, State))
579        return;
580    }
581  }
582
583  // If we can't inline it, handle the return value and invalidate the regions.
584  conservativeEvalCall(*Call, Bldr, Pred, State);
585}
586
587void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
588                               const CallEvent &Call, const Decl *D,
589                               NodeBuilder &Bldr, ExplodedNode *Pred) {
590  assert(BifurReg);
591  BifurReg = BifurReg->StripCasts();
592
593  // Check if we've performed the split already - note, we only want
594  // to split the path once per memory region.
595  ProgramStateRef State = Pred->getState();
596  const unsigned int *BState =
597                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
598  if (BState) {
599    // If we are on "inline path", keep inlining if possible.
600    if (*BState == DynamicDispatchModeInlined)
601      if (inlineCall(Call, D, Bldr, Pred, State))
602        return;
603    // If inline failed, or we are on the path where we assume we
604    // don't have enough info about the receiver to inline, conjure the
605    // return value and invalidate the regions.
606    conservativeEvalCall(Call, Bldr, Pred, State);
607    return;
608  }
609
610  // If we got here, this is the first time we process a message to this
611  // region, so split the path.
612  ProgramStateRef IState =
613      State->set<DynamicDispatchBifurcationMap>(BifurReg,
614                                               DynamicDispatchModeInlined);
615  inlineCall(Call, D, Bldr, Pred, IState);
616
617  ProgramStateRef NoIState =
618      State->set<DynamicDispatchBifurcationMap>(BifurReg,
619                                               DynamicDispatchModeConservative);
620  conservativeEvalCall(Call, Bldr, Pred, NoIState);
621
622  NumOfDynamicDispatchPathSplits++;
623  return;
624}
625
626
627void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
628                                 ExplodedNodeSet &Dst) {
629
630  ExplodedNodeSet dstPreVisit;
631  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
632
633  StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
634
635  if (RS->getRetValue()) {
636    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
637                                  ei = dstPreVisit.end(); it != ei; ++it) {
638      B.generateNode(RS, *it, (*it)->getState());
639    }
640  }
641}
642