ProgramState.cpp revision 41988f331a74a72cf243a2a68ffb56418e9a174e
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
8c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
92a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  This file implements ProgramState and ProgramStateManager.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Analysis/CFG.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
172a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
216e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace clang;
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace ento;
246e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)
256e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)namespace clang { namespace  ento {
266e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)/// Increments the number of times this state is referenced.
276e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)
286e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)void ProgramStateRetain(const ProgramState *state) {
296e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)  ++const_cast<ProgramState*>(state)->refCount;
306e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)}
316e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)
326e8cce623b6e4fe0c9e4af605d675dd9d0338c38Torne (Richard Coles)/// Decrement the number of times this state is referenced.
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)void ProgramStateRelease(const ProgramState *state) {
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  assert(state->refCount > 0);
35  ProgramState *s = const_cast<ProgramState*>(state);
36  if (--s->refCount == 0) {
37    ProgramStateManager &Mgr = s->getStateManager();
38    Mgr.StateSet.RemoveNode(s);
39    s->~ProgramState();
40    Mgr.freeStates.push_back(s);
41  }
42}
43}}
44
45ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46                 StoreRef st, GenericDataMap gdm)
47  : stateMgr(mgr),
48    Env(env),
49    store(st.getStore()),
50    GDM(gdm),
51    refCount(0) {
52  stateMgr->getStoreManager().incrementReferenceCount(store);
53}
54
55ProgramState::ProgramState(const ProgramState &RHS)
56    : llvm::FoldingSetNode(),
57      stateMgr(RHS.stateMgr),
58      Env(RHS.Env),
59      store(RHS.store),
60      GDM(RHS.GDM),
61      refCount(0) {
62  stateMgr->getStoreManager().incrementReferenceCount(store);
63}
64
65ProgramState::~ProgramState() {
66  if (store)
67    stateMgr->getStoreManager().decrementReferenceCount(store);
68}
69
70ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71                                         StoreManagerCreator CreateSMgr,
72                                         ConstraintManagerCreator CreateCMgr,
73                                         llvm::BumpPtrAllocator &alloc,
74                                         SubEngine *SubEng)
75  : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
76    svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77    CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78  StoreMgr.reset((*CreateSMgr)(*this));
79  ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80}
81
82
83ProgramStateManager::~ProgramStateManager() {
84  for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85       I!=E; ++I)
86    I->second.second(I->second.first);
87}
88
89ProgramStateRef
90ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91                                   const StackFrameContext *LCtx,
92                                   SymbolReaper& SymReaper) {
93
94  // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95  // The roots are any Block-level exprs and Decls that our liveness algorithm
96  // tells us are live.  We then see what Decls they may reference, and keep
97  // those around.  This code more than likely can be made faster, and the
98  // frequency of which this method is called should be experimented with
99  // for optimum performance.
100  ProgramState NewState = *state;
101
102  NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103
104  // Clean up the store.
105  StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106                                                   SymReaper);
107  NewState.setStore(newStore);
108  SymReaper.setReapedStore(newStore);
109
110  ProgramStateRef Result = getPersistentState(NewState);
111  return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112}
113
114ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                            const LocationContext *LC,
116                                            SVal V) const {
117  const StoreRef &newStore =
118    getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119  return makeWithStore(newStore);
120}
121
122ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123  ProgramStateManager &Mgr = getStateManager();
124  ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                             LV, V));
126  const MemRegion *MR = LV.getAsRegion();
127  if (MR && Mgr.getOwningEngine() && notifyChanges)
128    return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129
130  return newState;
131}
132
133ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134  ProgramStateManager &Mgr = getStateManager();
135  const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
136  const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137  ProgramStateRef new_state = makeWithStore(newStore);
138  return Mgr.getOwningEngine() ?
139           Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140           new_state;
141}
142
143typedef ArrayRef<const MemRegion *> RegionList;
144
145ProgramStateRef
146ProgramState::invalidateRegions(RegionList Regions,
147                                const Expr *E, unsigned Count,
148                                const LocationContext *LCtx,
149                                bool CausedByPointerEscape,
150                                InvalidatedSymbols *IS,
151                                const CallEvent *Call,
152                                RegionList ConstRegions) const {
153  if (!IS) {
154    InvalidatedSymbols invalidated;
155    return invalidateRegionsImpl(Regions, E, Count, LCtx,
156                                 CausedByPointerEscape,
157                                 invalidated, Call, ConstRegions);
158  }
159  return invalidateRegionsImpl(Regions, E, Count, LCtx, CausedByPointerEscape,
160                               *IS, Call, ConstRegions);
161}
162
163ProgramStateRef
164ProgramState::invalidateRegionsImpl(RegionList Regions,
165                                    const Expr *E, unsigned Count,
166                                    const LocationContext *LCtx,
167                                    bool CausedByPointerEscape,
168                                    InvalidatedSymbols &IS,
169                                    const CallEvent *Call,
170                                    RegionList ConstRegions) const {
171  ProgramStateManager &Mgr = getStateManager();
172  SubEngine* Eng = Mgr.getOwningEngine();
173  InvalidatedSymbols ConstIS;
174
175  if (Eng) {
176    StoreManager::InvalidatedRegions Invalidated;
177    const StoreRef &newStore
178      = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
179                                        Call, ConstRegions, ConstIS,
180                                        &Invalidated);
181
182    ProgramStateRef newState = makeWithStore(newStore);
183
184    if (CausedByPointerEscape) {
185      newState = Eng->notifyCheckersOfPointerEscape(newState,
186                                               &IS, Regions, Invalidated, Call);
187      if (!ConstRegions.empty()) {
188        StoreManager::InvalidatedRegions Empty;
189        newState = Eng->notifyCheckersOfPointerEscape(newState, &ConstIS,
190                                                      ConstRegions, Empty, Call,
191                                                      true);
192      }
193    }
194
195    return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
196  }
197
198  const StoreRef &newStore =
199    Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
200                                    Call, ConstRegions, ConstIS, NULL);
201  return makeWithStore(newStore);
202}
203
204ProgramStateRef ProgramState::killBinding(Loc LV) const {
205  assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
206
207  Store OldStore = getStore();
208  const StoreRef &newStore =
209    getStateManager().StoreMgr->killBinding(OldStore, LV);
210
211  if (newStore.getStore() == OldStore)
212    return this;
213
214  return makeWithStore(newStore);
215}
216
217ProgramStateRef
218ProgramState::enterStackFrame(const CallEvent &Call,
219                              const StackFrameContext *CalleeCtx) const {
220  const StoreRef &NewStore =
221    getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
222  return makeWithStore(NewStore);
223}
224
225SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
226  // We only want to do fetches from regions that we can actually bind
227  // values.  For example, SymbolicRegions of type 'id<...>' cannot
228  // have direct bindings (but their can be bindings on their subregions).
229  if (!R->isBoundable())
230    return UnknownVal();
231
232  if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
233    QualType T = TR->getValueType();
234    if (Loc::isLocType(T) || T->isIntegerType())
235      return getSVal(R);
236  }
237
238  return UnknownVal();
239}
240
241SVal ProgramState::getSVal(Loc location, QualType T) const {
242  SVal V = getRawSVal(cast<Loc>(location), T);
243
244  // If 'V' is a symbolic value that is *perfectly* constrained to
245  // be a constant value, use that value instead to lessen the burden
246  // on later analysis stages (so we have less symbolic values to reason
247  // about).
248  if (!T.isNull()) {
249    if (SymbolRef sym = V.getAsSymbol()) {
250      if (const llvm::APSInt *Int = getStateManager()
251                                    .getConstraintManager()
252                                    .getSymVal(this, sym)) {
253        // FIXME: Because we don't correctly model (yet) sign-extension
254        // and truncation of symbolic values, we need to convert
255        // the integer value to the correct signedness and bitwidth.
256        //
257        // This shows up in the following:
258        //
259        //   char foo();
260        //   unsigned x = foo();
261        //   if (x == 54)
262        //     ...
263        //
264        //  The symbolic value stored to 'x' is actually the conjured
265        //  symbol for the call to foo(); the type of that symbol is 'char',
266        //  not unsigned.
267        const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
268
269        if (V.getAs<Loc>())
270          return loc::ConcreteInt(NewV);
271        else
272          return nonloc::ConcreteInt(NewV);
273      }
274    }
275  }
276
277  return V;
278}
279
280ProgramStateRef ProgramState::BindExpr(const Stmt *S,
281                                           const LocationContext *LCtx,
282                                           SVal V, bool Invalidate) const{
283  Environment NewEnv =
284    getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
285                                      Invalidate);
286  if (NewEnv == Env)
287    return this;
288
289  ProgramState NewSt = *this;
290  NewSt.Env = NewEnv;
291  return getStateManager().getPersistentState(NewSt);
292}
293
294ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
295                                      DefinedOrUnknownSVal UpperBound,
296                                      bool Assumption,
297                                      QualType indexTy) const {
298  if (Idx.isUnknown() || UpperBound.isUnknown())
299    return this;
300
301  // Build an expression for 0 <= Idx < UpperBound.
302  // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
303  // FIXME: This should probably be part of SValBuilder.
304  ProgramStateManager &SM = getStateManager();
305  SValBuilder &svalBuilder = SM.getSValBuilder();
306  ASTContext &Ctx = svalBuilder.getContext();
307
308  // Get the offset: the minimum value of the array index type.
309  BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
310  // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
311  if (indexTy.isNull())
312    indexTy = Ctx.IntTy;
313  nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
314
315  // Adjust the index.
316  SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
317                                        Idx.castAs<NonLoc>(), Min, indexTy);
318  if (newIdx.isUnknownOrUndef())
319    return this;
320
321  // Adjust the upper bound.
322  SVal newBound =
323    svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
324                            Min, indexTy);
325
326  if (newBound.isUnknownOrUndef())
327    return this;
328
329  // Build the actual comparison.
330  SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
331                                         newBound.castAs<NonLoc>(), Ctx.IntTy);
332  if (inBound.isUnknownOrUndef())
333    return this;
334
335  // Finally, let the constraint manager take care of it.
336  ConstraintManager &CM = SM.getConstraintManager();
337  return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
338}
339
340ConditionTruthVal ProgramState::isNull(SVal V) const {
341  if (V.isZeroConstant())
342    return true;
343
344  SymbolRef Sym = V.getAsSymbol();
345  if (!Sym)
346    return false;
347  return getStateManager().ConstraintMgr->isNull(this, Sym);
348}
349
350ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
351  ProgramState State(this,
352                EnvMgr.getInitialEnvironment(),
353                StoreMgr->getInitialStore(InitLoc),
354                GDMFactory.getEmptyMap());
355
356  return getPersistentState(State);
357}
358
359ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
360                                                     ProgramStateRef FromState,
361                                                     ProgramStateRef GDMState) {
362  ProgramState NewState(*FromState);
363  NewState.GDM = GDMState->GDM;
364  return getPersistentState(NewState);
365}
366
367ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
368
369  llvm::FoldingSetNodeID ID;
370  State.Profile(ID);
371  void *InsertPos;
372
373  if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
374    return I;
375
376  ProgramState *newState = 0;
377  if (!freeStates.empty()) {
378    newState = freeStates.back();
379    freeStates.pop_back();
380  }
381  else {
382    newState = (ProgramState*) Alloc.Allocate<ProgramState>();
383  }
384  new (newState) ProgramState(State);
385  StateSet.InsertNode(newState, InsertPos);
386  return newState;
387}
388
389ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
390  ProgramState NewSt(*this);
391  NewSt.setStore(store);
392  return getStateManager().getPersistentState(NewSt);
393}
394
395void ProgramState::setStore(const StoreRef &newStore) {
396  Store newStoreStore = newStore.getStore();
397  if (newStoreStore)
398    stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
399  if (store)
400    stateMgr->getStoreManager().decrementReferenceCount(store);
401  store = newStoreStore;
402}
403
404//===----------------------------------------------------------------------===//
405//  State pretty-printing.
406//===----------------------------------------------------------------------===//
407
408void ProgramState::print(raw_ostream &Out,
409                         const char *NL, const char *Sep) const {
410  // Print the store.
411  ProgramStateManager &Mgr = getStateManager();
412  Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
413
414  // Print out the environment.
415  Env.print(Out, NL, Sep);
416
417  // Print out the constraints.
418  Mgr.getConstraintManager().print(this, Out, NL, Sep);
419
420  // Print checker-specific data.
421  Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
422}
423
424void ProgramState::printDOT(raw_ostream &Out) const {
425  print(Out, "\\l", "\\|");
426}
427
428void ProgramState::dump() const {
429  print(llvm::errs());
430}
431
432void ProgramState::printTaint(raw_ostream &Out,
433                              const char *NL, const char *Sep) const {
434  TaintMapImpl TM = get<TaintMap>();
435
436  if (!TM.isEmpty())
437    Out <<"Tainted Symbols:" << NL;
438
439  for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
440    Out << I->first << " : " << I->second << NL;
441  }
442}
443
444void ProgramState::dumpTaint() const {
445  printTaint(llvm::errs());
446}
447
448//===----------------------------------------------------------------------===//
449// Generic Data Map.
450//===----------------------------------------------------------------------===//
451
452void *const* ProgramState::FindGDM(void *K) const {
453  return GDM.lookup(K);
454}
455
456void*
457ProgramStateManager::FindGDMContext(void *K,
458                               void *(*CreateContext)(llvm::BumpPtrAllocator&),
459                               void (*DeleteContext)(void*)) {
460
461  std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
462  if (!p.first) {
463    p.first = CreateContext(Alloc);
464    p.second = DeleteContext;
465  }
466
467  return p.first;
468}
469
470ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
471  ProgramState::GenericDataMap M1 = St->getGDM();
472  ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
473
474  if (M1 == M2)
475    return St;
476
477  ProgramState NewSt = *St;
478  NewSt.GDM = M2;
479  return getPersistentState(NewSt);
480}
481
482ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
483  ProgramState::GenericDataMap OldM = state->getGDM();
484  ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
485
486  if (NewM == OldM)
487    return state;
488
489  ProgramState NewState = *state;
490  NewState.GDM = NewM;
491  return getPersistentState(NewState);
492}
493
494bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
495  for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
496    if (!scan(*I))
497      return false;
498
499  return true;
500}
501
502bool ScanReachableSymbols::scan(const SymExpr *sym) {
503  unsigned &isVisited = visited[sym];
504  if (isVisited)
505    return true;
506  isVisited = 1;
507
508  if (!visitor.VisitSymbol(sym))
509    return false;
510
511  // TODO: should be rewritten using SymExpr::symbol_iterator.
512  switch (sym->getKind()) {
513    case SymExpr::RegionValueKind:
514    case SymExpr::ConjuredKind:
515    case SymExpr::DerivedKind:
516    case SymExpr::ExtentKind:
517    case SymExpr::MetadataKind:
518      break;
519    case SymExpr::CastSymbolKind:
520      return scan(cast<SymbolCast>(sym)->getOperand());
521    case SymExpr::SymIntKind:
522      return scan(cast<SymIntExpr>(sym)->getLHS());
523    case SymExpr::IntSymKind:
524      return scan(cast<IntSymExpr>(sym)->getRHS());
525    case SymExpr::SymSymKind: {
526      const SymSymExpr *x = cast<SymSymExpr>(sym);
527      return scan(x->getLHS()) && scan(x->getRHS());
528    }
529  }
530  return true;
531}
532
533bool ScanReachableSymbols::scan(SVal val) {
534  if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
535    return scan(X->getRegion());
536
537  if (Optional<nonloc::LazyCompoundVal> X =
538          val.getAs<nonloc::LazyCompoundVal>()) {
539    StoreManager &StoreMgr = state->getStateManager().getStoreManager();
540    // FIXME: We don't really want to use getBaseRegion() here because pointer
541    // arithmetic doesn't apply, but scanReachableSymbols only accepts base
542    // regions right now.
543    if (!StoreMgr.scanReachableSymbols(X->getStore(),
544                                       X->getRegion()->getBaseRegion(),
545                                       *this))
546      return false;
547  }
548
549  if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
550    return scan(X->getLoc());
551
552  if (SymbolRef Sym = val.getAsSymbol())
553    return scan(Sym);
554
555  if (const SymExpr *Sym = val.getAsSymbolicExpression())
556    return scan(Sym);
557
558  if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
559    return scan(*X);
560
561  return true;
562}
563
564bool ScanReachableSymbols::scan(const MemRegion *R) {
565  if (isa<MemSpaceRegion>(R))
566    return true;
567
568  unsigned &isVisited = visited[R];
569  if (isVisited)
570    return true;
571  isVisited = 1;
572
573
574  if (!visitor.VisitMemRegion(R))
575    return false;
576
577  // If this is a symbolic region, visit the symbol for the region.
578  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
579    if (!visitor.VisitSymbol(SR->getSymbol()))
580      return false;
581
582  // If this is a subregion, also visit the parent regions.
583  if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
584    const MemRegion *Super = SR->getSuperRegion();
585    if (!scan(Super))
586      return false;
587
588    // When we reach the topmost region, scan all symbols in it.
589    if (isa<MemSpaceRegion>(Super)) {
590      StoreManager &StoreMgr = state->getStateManager().getStoreManager();
591      if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
592        return false;
593    }
594  }
595
596  // Regions captured by a block are also implicitly reachable.
597  if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
598    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
599                                              E = BDR->referenced_vars_end();
600    for ( ; I != E; ++I) {
601      if (!scan(I.getCapturedRegion()))
602        return false;
603    }
604  }
605
606  return true;
607}
608
609bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
610  ScanReachableSymbols S(this, visitor);
611  return S.scan(val);
612}
613
614bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
615                                   SymbolVisitor &visitor) const {
616  ScanReachableSymbols S(this, visitor);
617  for ( ; I != E; ++I) {
618    if (!S.scan(*I))
619      return false;
620  }
621  return true;
622}
623
624bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
625                                   const MemRegion * const *E,
626                                   SymbolVisitor &visitor) const {
627  ScanReachableSymbols S(this, visitor);
628  for ( ; I != E; ++I) {
629    if (!S.scan(*I))
630      return false;
631  }
632  return true;
633}
634
635ProgramStateRef ProgramState::addTaint(const Stmt *S,
636                                           const LocationContext *LCtx,
637                                           TaintTagType Kind) const {
638  if (const Expr *E = dyn_cast_or_null<Expr>(S))
639    S = E->IgnoreParens();
640
641  SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
642  if (Sym)
643    return addTaint(Sym, Kind);
644
645  const MemRegion *R = getSVal(S, LCtx).getAsRegion();
646  addTaint(R, Kind);
647
648  // Cannot add taint, so just return the state.
649  return this;
650}
651
652ProgramStateRef ProgramState::addTaint(const MemRegion *R,
653                                           TaintTagType Kind) const {
654  if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
655    return addTaint(SR->getSymbol(), Kind);
656  return this;
657}
658
659ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
660                                           TaintTagType Kind) const {
661  // If this is a symbol cast, remove the cast before adding the taint. Taint
662  // is cast agnostic.
663  while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
664    Sym = SC->getOperand();
665
666  ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
667  assert(NewState);
668  return NewState;
669}
670
671bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
672                             TaintTagType Kind) const {
673  if (const Expr *E = dyn_cast_or_null<Expr>(S))
674    S = E->IgnoreParens();
675
676  SVal val = getSVal(S, LCtx);
677  return isTainted(val, Kind);
678}
679
680bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
681  if (const SymExpr *Sym = V.getAsSymExpr())
682    return isTainted(Sym, Kind);
683  if (const MemRegion *Reg = V.getAsRegion())
684    return isTainted(Reg, Kind);
685  return false;
686}
687
688bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
689  if (!Reg)
690    return false;
691
692  // Element region (array element) is tainted if either the base or the offset
693  // are tainted.
694  if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
695    return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
696
697  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
698    return isTainted(SR->getSymbol(), K);
699
700  if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
701    return isTainted(ER->getSuperRegion(), K);
702
703  return false;
704}
705
706bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
707  if (!Sym)
708    return false;
709
710  // Traverse all the symbols this symbol depends on to see if any are tainted.
711  bool Tainted = false;
712  for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
713       SI != SE; ++SI) {
714    if (!isa<SymbolData>(*SI))
715      continue;
716
717    const TaintTagType *Tag = get<TaintMap>(*SI);
718    Tainted = (Tag && *Tag == Kind);
719
720    // If this is a SymbolDerived with a tainted parent, it's also tainted.
721    if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
722      Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
723
724    // If memory region is tainted, data is also tainted.
725    if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
726      Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
727
728    // If If this is a SymbolCast from a tainted value, it's also tainted.
729    if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
730      Tainted = Tainted || isTainted(SC->getOperand(), Kind);
731
732    if (Tainted)
733      return true;
734  }
735
736  return Tainted;
737}
738
739/// The GDM component containing the dynamic type info. This is a map from a
740/// symbol to its most likely type.
741REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
742                                 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
743                                                             DynamicTypeInfo))
744
745DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
746  Reg = Reg->StripCasts();
747
748  // Look up the dynamic type in the GDM.
749  const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
750  if (GDMType)
751    return *GDMType;
752
753  // Otherwise, fall back to what we know about the region.
754  if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
755    return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
756
757  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
758    SymbolRef Sym = SR->getSymbol();
759    return DynamicTypeInfo(Sym->getType());
760  }
761
762  return DynamicTypeInfo();
763}
764
765ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
766                                                 DynamicTypeInfo NewTy) const {
767  Reg = Reg->StripCasts();
768  ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
769  assert(NewState);
770  return NewState;
771}
772