RegionStore.cpp revision 0e450cbd94e5936fdecf42b810069e7becd3938d
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/Analysis/Analyses/LiveVariables.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Default = 0x0, Direct = 0x1 };
43private:
44  enum { Symbolic = 0x2 };
45
46  llvm::PointerIntPair<const MemRegion *, 2> P;
47  uint64_t Data;
48
49  explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k)
50    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
51    assert(r && Base && "Must have known regions.");
52    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
53  }
54  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
55    : P(r, k), Data(offset) {
56    assert(r && "Must have known regions.");
57    assert(getOffset() == offset && "Failed to store offset");
58    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
59  }
60public:
61
62  bool isDirect() const { return P.getInt() & Direct; }
63  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
64
65  const MemRegion *getRegion() const { return P.getPointer(); }
66  uint64_t getOffset() const {
67    assert(!hasSymbolicOffset());
68    return Data;
69  }
70
71  const MemRegion *getConcreteOffsetRegion() const {
72    assert(hasSymbolicOffset());
73    return reinterpret_cast<const MemRegion *>(static_cast<uintptr_t>(Data));
74  }
75
76  const MemRegion *getBaseRegion() const {
77    if (hasSymbolicOffset())
78      return getConcreteOffsetRegion()->getBaseRegion();
79    return getRegion()->getBaseRegion();
80  }
81
82  void Profile(llvm::FoldingSetNodeID& ID) const {
83    ID.AddPointer(P.getOpaqueValue());
84    ID.AddInteger(Data);
85  }
86
87  static BindingKey Make(const MemRegion *R, Kind k);
88
89  bool operator<(const BindingKey &X) const {
90    if (P.getOpaqueValue() < X.P.getOpaqueValue())
91      return true;
92    if (P.getOpaqueValue() > X.P.getOpaqueValue())
93      return false;
94    return Data < X.Data;
95  }
96
97  bool operator==(const BindingKey &X) const {
98    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
99           Data == X.Data;
100  }
101
102  LLVM_ATTRIBUTE_USED void dump() const;
103};
104} // end anonymous namespace
105
106BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
107  const RegionOffset &RO = R->getAsOffset();
108  if (RO.hasSymbolicOffset())
109    return BindingKey(R, RO.getRegion(), k);
110
111  return BindingKey(RO.getRegion(), RO.getOffset(), k);
112}
113
114namespace llvm {
115  static inline
116  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
117    os << '(' << K.getRegion();
118    if (!K.hasSymbolicOffset())
119      os << ',' << K.getOffset();
120    os << ',' << (K.isDirect() ? "direct" : "default")
121       << ')';
122    return os;
123  }
124} // end llvm namespace
125
126void BindingKey::dump() const {
127  llvm::errs() << *this;
128}
129
130//===----------------------------------------------------------------------===//
131// Actual Store type.
132//===----------------------------------------------------------------------===//
133
134typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
135typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
136
137typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
138        RegionBindings;
139
140namespace {
141class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
142                                 ClusterBindings> {
143 ClusterBindings::Factory &CBFactory;
144public:
145  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
146          ParentTy;
147
148  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
149                    const RegionBindings::TreeTy *T,
150                    RegionBindings::TreeTy::Factory *F)
151    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
152      CBFactory(CBFactory) {}
153
154  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
155    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
156      CBFactory(CBFactory) {}
157
158  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
159    return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
160                             CBFactory);
161  }
162
163  RegionBindingsRef remove(key_type_ref K) const {
164    return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
165                             CBFactory);
166  }
167
168  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
169
170  RegionBindingsRef addBinding(const MemRegion *R,
171                               BindingKey::Kind k, SVal V) const;
172
173  RegionBindingsRef &operator=(const RegionBindingsRef &X) {
174    *static_cast<ParentTy*>(this) = X;
175    return *this;
176  }
177
178  const SVal *lookup(BindingKey K) const;
179  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
180  const ClusterBindings *lookup(const MemRegion *R) const {
181    return static_cast<const ParentTy*>(this)->lookup(R);
182  }
183
184  RegionBindingsRef removeBinding(BindingKey K);
185
186  RegionBindingsRef removeBinding(const MemRegion *R,
187                                  BindingKey::Kind k);
188
189  RegionBindingsRef removeBinding(const MemRegion *R) {
190    return removeBinding(R, BindingKey::Direct).
191           removeBinding(R, BindingKey::Default);
192  }
193
194  Optional<SVal> getDirectBinding(const MemRegion *R) const;
195
196  /// getDefaultBinding - Returns an SVal* representing an optional default
197  ///  binding associated with a region and its subregions.
198  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
199
200  /// Return the internal tree as a Store.
201  Store asStore() const {
202    return asImmutableMap().getRootWithoutRetain();
203  }
204
205  void dump(raw_ostream &OS, const char *nl) const {
206   for (iterator I = begin(), E = end(); I != E; ++I) {
207     const ClusterBindings &Cluster = I.getData();
208     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
209          CI != CE; ++CI) {
210       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
211     }
212     OS << nl;
213   }
214  }
215
216  LLVM_ATTRIBUTE_USED void dump() const {
217    dump(llvm::errs(), "\n");
218  }
219};
220} // end anonymous namespace
221
222typedef const RegionBindingsRef& RegionBindingsConstRef;
223
224Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
225  if (const SVal *V = lookup(R, BindingKey::Direct))
226    return *V;
227  return Optional<SVal>();
228}
229
230Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
231  if (R->isBoundable())
232    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
233      if (TR->getValueType()->isUnionType())
234        return UnknownVal();
235  if (const SVal *V = lookup(R, BindingKey::Default))
236    return *V;
237  return Optional<SVal>();
238}
239
240RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
241  const MemRegion *Base = K.getBaseRegion();
242
243  const ClusterBindings *ExistingCluster = lookup(Base);
244  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
245                             : CBFactory.getEmptyMap());
246
247  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
248  return add(Base, NewCluster);
249}
250
251
252RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
253                                                BindingKey::Kind k,
254                                                SVal V) const {
255  return addBinding(BindingKey::Make(R, k), V);
256}
257
258const SVal *RegionBindingsRef::lookup(BindingKey K) const {
259  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
260  if (!Cluster)
261    return 0;
262  return Cluster->lookup(K);
263}
264
265const SVal *RegionBindingsRef::lookup(const MemRegion *R,
266                                      BindingKey::Kind k) const {
267  return lookup(BindingKey::Make(R, k));
268}
269
270RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
271  const MemRegion *Base = K.getBaseRegion();
272  const ClusterBindings *Cluster = lookup(Base);
273  if (!Cluster)
274    return *this;
275
276  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
277  if (NewCluster.isEmpty())
278    return remove(Base);
279  return add(Base, NewCluster);
280}
281
282RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
283                                                BindingKey::Kind k){
284  return removeBinding(BindingKey::Make(R, k));
285}
286
287//===----------------------------------------------------------------------===//
288// Fine-grained control of RegionStoreManager.
289//===----------------------------------------------------------------------===//
290
291namespace {
292struct minimal_features_tag {};
293struct maximal_features_tag {};
294
295class RegionStoreFeatures {
296  bool SupportsFields;
297public:
298  RegionStoreFeatures(minimal_features_tag) :
299    SupportsFields(false) {}
300
301  RegionStoreFeatures(maximal_features_tag) :
302    SupportsFields(true) {}
303
304  void enableFields(bool t) { SupportsFields = t; }
305
306  bool supportsFields() const { return SupportsFields; }
307};
308}
309
310//===----------------------------------------------------------------------===//
311// Main RegionStore logic.
312//===----------------------------------------------------------------------===//
313
314namespace {
315
316class RegionStoreManager : public StoreManager {
317public:
318  const RegionStoreFeatures Features;
319  RegionBindings::Factory RBFactory;
320  mutable ClusterBindings::Factory CBFactory;
321
322  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
323    : StoreManager(mgr), Features(f),
324      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
325
326
327  /// setImplicitDefaultValue - Set the default binding for the provided
328  ///  MemRegion to the value implicitly defined for compound literals when
329  ///  the value is not specified.
330  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
331                                            const MemRegion *R, QualType T);
332
333  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
334  ///  type.  'Array' represents the lvalue of the array being decayed
335  ///  to a pointer, and the returned SVal represents the decayed
336  ///  version of that lvalue (i.e., a pointer to the first element of
337  ///  the array).  This is called by ExprEngine when evaluating
338  ///  casts from arrays to pointers.
339  SVal ArrayToPointer(Loc Array);
340
341  StoreRef getInitialStore(const LocationContext *InitLoc) {
342    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
343  }
344
345  //===-------------------------------------------------------------------===//
346  // Binding values to regions.
347  //===-------------------------------------------------------------------===//
348  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
349                                           const Expr *Ex,
350                                           unsigned Count,
351                                           const LocationContext *LCtx,
352                                           RegionBindingsRef B,
353                                           InvalidatedRegions *Invalidated);
354
355  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
356                             const Expr *E, unsigned Count,
357                             const LocationContext *LCtx,
358                             InvalidatedSymbols &IS,
359                             const CallEvent *Call,
360                             InvalidatedRegions *Invalidated);
361
362  bool scanReachableSymbols(Store S, const MemRegion *R,
363                            ScanReachableSymbols &Callbacks);
364
365  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
366                                            const SubRegion *R);
367
368public: // Part of public interface to class.
369
370  virtual StoreRef Bind(Store store, Loc LV, SVal V) {
371    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
372  }
373
374  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
375
376  // BindDefault is only used to initialize a region with a default value.
377  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
378    RegionBindingsRef B = getRegionBindings(store);
379    assert(!B.lookup(R, BindingKey::Default));
380    assert(!B.lookup(R, BindingKey::Direct));
381    return StoreRef(B.addBinding(R, BindingKey::Default, V)
382                     .asImmutableMap()
383                     .getRootWithoutRetain(), *this);
384  }
385
386  /// \brief Create a new store that binds a value to a compound literal.
387  ///
388  /// \param ST The original store whose bindings are the basis for the new
389  ///        store.
390  ///
391  /// \param CL The compound literal to bind (the binding key).
392  ///
393  /// \param LC The LocationContext for the binding.
394  ///
395  /// \param V The value to bind to the compound literal.
396  StoreRef bindCompoundLiteral(Store ST,
397                               const CompoundLiteralExpr *CL,
398                               const LocationContext *LC, SVal V);
399
400  /// BindStruct - Bind a compound value to a structure.
401  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
402                               const TypedValueRegion* R, SVal V);
403
404  /// BindVector - Bind a compound value to a vector.
405  RegionBindingsRef bindVector(RegionBindingsConstRef B,
406                               const TypedValueRegion* R, SVal V);
407
408  RegionBindingsRef bindArray(RegionBindingsConstRef B,
409                              const TypedValueRegion* R,
410                              SVal V);
411
412  /// Clears out all bindings in the given region and assigns a new value
413  /// as a Default binding.
414  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
415                                  const TypedRegion *R,
416                                  SVal DefaultVal);
417
418  /// \brief Create a new store with the specified binding removed.
419  /// \param ST the original store, that is the basis for the new store.
420  /// \param L the location whose binding should be removed.
421  virtual StoreRef killBinding(Store ST, Loc L);
422
423  void incrementReferenceCount(Store store) {
424    getRegionBindings(store).manualRetain();
425  }
426
427  /// If the StoreManager supports it, decrement the reference count of
428  /// the specified Store object.  If the reference count hits 0, the memory
429  /// associated with the object is recycled.
430  void decrementReferenceCount(Store store) {
431    getRegionBindings(store).manualRelease();
432  }
433
434  bool includedInBindings(Store store, const MemRegion *region) const;
435
436  /// \brief Return the value bound to specified location in a given state.
437  ///
438  /// The high level logic for this method is this:
439  /// getBinding (L)
440  ///   if L has binding
441  ///     return L's binding
442  ///   else if L is in killset
443  ///     return unknown
444  ///   else
445  ///     if L is on stack or heap
446  ///       return undefined
447  ///     else
448  ///       return symbolic
449  virtual SVal getBinding(Store S, Loc L, QualType T) {
450    return getBinding(getRegionBindings(S), L, T);
451  }
452
453  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
454
455  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
456
457  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
458
459  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
460
461  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
462
463  SVal getBindingForLazySymbol(const TypedValueRegion *R);
464
465  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
466                                         const TypedValueRegion *R,
467                                         QualType Ty,
468                                         const MemRegion *superR);
469
470  SVal getLazyBinding(const MemRegion *LazyBindingRegion,
471                      RegionBindingsRef LazyBinding);
472
473  /// Get bindings for the values in a struct and return a CompoundVal, used
474  /// when doing struct copy:
475  /// struct s x, y;
476  /// x = y;
477  /// y's value is retrieved by this method.
478  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion* R);
479
480  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion* R);
481
482  /// Used to lazily generate derived symbols for bindings that are defined
483  ///  implicitly by default bindings in a super region.
484  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
485                                                  const MemRegion *superR,
486                                                  const TypedValueRegion *R,
487                                                  QualType Ty);
488
489  /// Get the state and region whose binding this region R corresponds to.
490  std::pair<Store, const MemRegion*>
491  getLazyBinding(RegionBindingsConstRef B, const MemRegion *R,
492                 const MemRegion *originalRegion);
493
494  //===------------------------------------------------------------------===//
495  // State pruning.
496  //===------------------------------------------------------------------===//
497
498  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
499  ///  It returns a new Store with these values removed.
500  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
501                              SymbolReaper& SymReaper);
502
503  //===------------------------------------------------------------------===//
504  // Region "extents".
505  //===------------------------------------------------------------------===//
506
507  // FIXME: This method will soon be eliminated; see the note in Store.h.
508  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
509                                         const MemRegion* R, QualType EleTy);
510
511  //===------------------------------------------------------------------===//
512  // Utility methods.
513  //===------------------------------------------------------------------===//
514
515  RegionBindingsRef getRegionBindings(Store store) const {
516    return RegionBindingsRef(CBFactory,
517                             static_cast<const RegionBindings::TreeTy*>(store),
518                             RBFactory.getTreeFactory());
519  }
520
521  void print(Store store, raw_ostream &Out, const char* nl,
522             const char *sep);
523
524  void iterBindings(Store store, BindingsHandler& f) {
525    RegionBindingsRef B = getRegionBindings(store);
526    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
527      const ClusterBindings &Cluster = I.getData();
528      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
529           CI != CE; ++CI) {
530        const BindingKey &K = CI.getKey();
531        if (!K.isDirect())
532          continue;
533        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
534          // FIXME: Possibly incorporate the offset?
535          if (!f.HandleBinding(*this, store, R, CI.getData()))
536            return;
537        }
538      }
539    }
540  }
541};
542
543} // end anonymous namespace
544
545//===----------------------------------------------------------------------===//
546// RegionStore creation.
547//===----------------------------------------------------------------------===//
548
549StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
550  RegionStoreFeatures F = maximal_features_tag();
551  return new RegionStoreManager(StMgr, F);
552}
553
554StoreManager *
555ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
556  RegionStoreFeatures F = minimal_features_tag();
557  F.enableFields(true);
558  return new RegionStoreManager(StMgr, F);
559}
560
561
562//===----------------------------------------------------------------------===//
563// Region Cluster analysis.
564//===----------------------------------------------------------------------===//
565
566namespace {
567template <typename DERIVED>
568class ClusterAnalysis  {
569protected:
570  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
571  typedef SmallVector<const MemRegion *, 10> WorkList;
572
573  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
574
575  WorkList WL;
576
577  RegionStoreManager &RM;
578  ASTContext &Ctx;
579  SValBuilder &svalBuilder;
580
581  RegionBindingsRef B;
582
583  const bool includeGlobals;
584
585  const ClusterBindings *getCluster(const MemRegion *R) {
586    return B.lookup(R);
587  }
588
589public:
590  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
591                  RegionBindingsRef b, const bool includeGlobals)
592    : RM(rm), Ctx(StateMgr.getContext()),
593      svalBuilder(StateMgr.getSValBuilder()),
594      B(b), includeGlobals(includeGlobals) {}
595
596  RegionBindingsRef getRegionBindings() const { return B; }
597
598  bool isVisited(const MemRegion *R) {
599    return Visited.count(getCluster(R));
600  }
601
602  void GenerateClusters() {
603    // Scan the entire set of bindings and record the region clusters.
604    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
605         RI != RE; ++RI){
606      const MemRegion *Base = RI.getKey();
607
608      const ClusterBindings &Cluster = RI.getData();
609      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
610      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
611
612      if (includeGlobals)
613        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
614          AddToWorkList(Base, &Cluster);
615    }
616  }
617
618  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
619    if (C && !Visited.insert(C))
620      return false;
621    WL.push_back(R);
622    return true;
623  }
624
625  bool AddToWorkList(const MemRegion *R) {
626    const MemRegion *baseR = R->getBaseRegion();
627    return AddToWorkList(baseR, getCluster(baseR));
628  }
629
630  void RunWorkList() {
631    while (!WL.empty()) {
632      const MemRegion *baseR = WL.pop_back_val();
633
634      // First visit the cluster.
635      if (const ClusterBindings *Cluster = getCluster(baseR))
636        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
637
638      // Next, visit the base region.
639      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
640    }
641  }
642
643public:
644  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
645  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
646  void VisitBaseRegion(const MemRegion *baseR) {}
647};
648}
649
650//===----------------------------------------------------------------------===//
651// Binding invalidation.
652//===----------------------------------------------------------------------===//
653
654bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
655                                              ScanReachableSymbols &Callbacks) {
656  assert(R == R->getBaseRegion() && "Should only be called for base regions");
657  RegionBindingsRef B = getRegionBindings(S);
658  const ClusterBindings *Cluster = B.lookup(R);
659
660  if (!Cluster)
661    return true;
662
663  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
664       RI != RE; ++RI) {
665    if (!Callbacks.scan(RI.getData()))
666      return false;
667  }
668
669  return true;
670}
671
672static inline bool isUnionField(const FieldRegion *FR) {
673  return FR->getDecl()->getParent()->isUnion();
674}
675
676typedef SmallVector<const FieldDecl *, 8> FieldVector;
677
678void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
679  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
680
681  const MemRegion *Base = K.getConcreteOffsetRegion();
682  const MemRegion *R = K.getRegion();
683
684  while (R != Base) {
685    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
686      if (!isUnionField(FR))
687        Fields.push_back(FR->getDecl());
688
689    R = cast<SubRegion>(R)->getSuperRegion();
690  }
691}
692
693static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
694  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
695
696  if (Fields.empty())
697    return true;
698
699  FieldVector FieldsInBindingKey;
700  getSymbolicOffsetFields(K, FieldsInBindingKey);
701
702  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
703  if (Delta >= 0)
704    return std::equal(FieldsInBindingKey.begin() + Delta,
705                      FieldsInBindingKey.end(),
706                      Fields.begin());
707  else
708    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
709                      Fields.begin() - Delta);
710}
711
712RegionBindingsRef
713RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
714                                            const SubRegion *R) {
715  BindingKey SRKey = BindingKey::Make(R, BindingKey::Default);
716  const MemRegion *ClusterHead = SRKey.getBaseRegion();
717  if (R == ClusterHead) {
718    // We can remove an entire cluster's bindings all in one go.
719    return B.remove(R);
720  }
721
722  FieldVector FieldsInSymbolicSubregions;
723  bool HasSymbolicOffset = SRKey.hasSymbolicOffset();
724  if (HasSymbolicOffset) {
725    getSymbolicOffsetFields(SRKey, FieldsInSymbolicSubregions);
726    R = cast<SubRegion>(SRKey.getConcreteOffsetRegion());
727    SRKey = BindingKey::Make(R, BindingKey::Default);
728  }
729
730  // This assumes the region being invalidated is char-aligned. This isn't
731  // true for bitfields, but since bitfields have no subregions they shouldn't
732  // be using this function anyway.
733  uint64_t Length = UINT64_MAX;
734
735  SVal Extent = R->getExtent(svalBuilder);
736  if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
737    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
738    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
739    // Extents are in bytes but region offsets are in bits. Be careful!
740    Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth();
741  }
742
743  const ClusterBindings *Cluster = B.lookup(ClusterHead);
744  if (!Cluster)
745    return B;
746
747  ClusterBindingsRef Result(*Cluster, CBFactory);
748
749  // It is safe to iterate over the bindings as they are being changed
750  // because they are in an ImmutableMap.
751  for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end();
752       I != E; ++I) {
753    BindingKey NextKey = I.getKey();
754    if (NextKey.getRegion() == SRKey.getRegion()) {
755      // FIXME: This doesn't catch the case where we're really invalidating a
756      // region with a symbolic offset. Example:
757      //      R: points[i].y
758      //   Next: points[0].x
759
760      if (NextKey.getOffset() > SRKey.getOffset() &&
761          NextKey.getOffset() - SRKey.getOffset() < Length) {
762        // Case 1: The next binding is inside the region we're invalidating.
763        // Remove it.
764        Result = Result.remove(NextKey);
765
766      } else if (NextKey.getOffset() == SRKey.getOffset()) {
767        // Case 2: The next binding is at the same offset as the region we're
768        // invalidating. In this case, we need to leave default bindings alone,
769        // since they may be providing a default value for a regions beyond what
770        // we're invalidating.
771        // FIXME: This is probably incorrect; consider invalidating an outer
772        // struct whose first field is bound to a LazyCompoundVal.
773        if (NextKey.isDirect())
774          Result = Result.remove(NextKey);
775      }
776
777    } else if (NextKey.hasSymbolicOffset()) {
778      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
779      if (R->isSubRegionOf(Base)) {
780        // Case 3: The next key is symbolic and we just changed something within
781        // its concrete region. We don't know if the binding is still valid, so
782        // we'll be conservative and remove it.
783        if (NextKey.isDirect())
784          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
785            Result = Result.remove(NextKey);
786      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
787        // Case 4: The next key is symbolic, but we changed a known
788        // super-region. In this case the binding is certainly no longer valid.
789        if (R == Base || BaseSR->isSubRegionOf(R))
790          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
791            Result = Result.remove(NextKey);
792      }
793    }
794  }
795
796  // If we're invalidating a region with a symbolic offset, we need to make sure
797  // we don't treat the base region as uninitialized anymore.
798  // FIXME: This isn't very precise; see the example in the loop.
799  if (HasSymbolicOffset)
800    Result = Result.add(SRKey, UnknownVal());
801
802  if (Result.isEmpty())
803    return B.remove(ClusterHead);
804  return B.add(ClusterHead, Result.asImmutableMap());
805}
806
807namespace {
808class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
809{
810  const Expr *Ex;
811  unsigned Count;
812  const LocationContext *LCtx;
813  InvalidatedSymbols &IS;
814  StoreManager::InvalidatedRegions *Regions;
815public:
816  invalidateRegionsWorker(RegionStoreManager &rm,
817                          ProgramStateManager &stateMgr,
818                          RegionBindingsRef b,
819                          const Expr *ex, unsigned count,
820                          const LocationContext *lctx,
821                          InvalidatedSymbols &is,
822                          StoreManager::InvalidatedRegions *r,
823                          bool includeGlobals)
824    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
825      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
826
827  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
828  void VisitBaseRegion(const MemRegion *baseR);
829
830private:
831  void VisitBinding(SVal V);
832};
833}
834
835void invalidateRegionsWorker::VisitBinding(SVal V) {
836  // A symbol?  Mark it touched by the invalidation.
837  if (SymbolRef Sym = V.getAsSymbol())
838    IS.insert(Sym);
839
840  if (const MemRegion *R = V.getAsRegion()) {
841    AddToWorkList(R);
842    return;
843  }
844
845  // Is it a LazyCompoundVal?  All references get invalidated as well.
846  if (const nonloc::LazyCompoundVal *LCS =
847        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
848
849    const MemRegion *LazyR = LCS->getRegion();
850    RegionBindingsRef B = RM.getRegionBindings(LCS->getStore());
851
852    // FIXME: This should not have to walk all bindings in the old store.
853    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
854      const ClusterBindings &Cluster = RI.getData();
855      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
856           CI != CE; ++CI) {
857        BindingKey K = CI.getKey();
858        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
859          if (BaseR == LazyR)
860            VisitBinding(CI.getData());
861          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
862            VisitBinding(CI.getData());
863        }
864      }
865    }
866
867    return;
868  }
869}
870
871void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
872                                           const ClusterBindings &C) {
873  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
874    VisitBinding(I.getData());
875
876  B = B.remove(BaseR);
877}
878
879void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
880  // Symbolic region?  Mark that symbol touched by the invalidation.
881  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
882    IS.insert(SR->getSymbol());
883
884  // BlockDataRegion?  If so, invalidate captured variables that are passed
885  // by reference.
886  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
887    for (BlockDataRegion::referenced_vars_iterator
888         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
889         BI != BE; ++BI) {
890      const VarRegion *VR = BI.getCapturedRegion();
891      const VarDecl *VD = VR->getDecl();
892      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
893        AddToWorkList(VR);
894      }
895      else if (Loc::isLocType(VR->getValueType())) {
896        // Map the current bindings to a Store to retrieve the value
897        // of the binding.  If that binding itself is a region, we should
898        // invalidate that region.  This is because a block may capture
899        // a pointer value, but the thing pointed by that pointer may
900        // get invalidated.
901        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
902        if (const Loc *L = dyn_cast<Loc>(&V)) {
903          if (const MemRegion *LR = L->getAsRegion())
904            AddToWorkList(LR);
905        }
906      }
907    }
908    return;
909  }
910
911  // Otherwise, we have a normal data region. Record that we touched the region.
912  if (Regions)
913    Regions->push_back(baseR);
914
915  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
916    // Invalidate the region by setting its default value to
917    // conjured symbol. The type of the symbol is irrelavant.
918    DefinedOrUnknownSVal V =
919      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
920    B = B.addBinding(baseR, BindingKey::Default, V);
921    return;
922  }
923
924  if (!baseR->isBoundable())
925    return;
926
927  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
928  QualType T = TR->getValueType();
929
930    // Invalidate the binding.
931  if (T->isStructureOrClassType()) {
932    // Invalidate the region by setting its default value to
933    // conjured symbol. The type of the symbol is irrelavant.
934    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
935                                                          Ctx.IntTy, Count);
936    B = B.addBinding(baseR, BindingKey::Default, V);
937    return;
938  }
939
940  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
941      // Set the default value of the array to conjured symbol.
942    DefinedOrUnknownSVal V =
943    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
944                                     AT->getElementType(), Count);
945    B = B.addBinding(baseR, BindingKey::Default, V);
946    return;
947  }
948
949  if (includeGlobals &&
950      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
951    // If the region is a global and we are invalidating all globals,
952    // just erase the entry.  This causes all globals to be lazily
953    // symbolicated from the same base symbol.
954    B = B.removeBinding(baseR);
955    return;
956  }
957
958
959  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
960                                                        T,Count);
961  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
962  B = B.addBinding(baseR, BindingKey::Direct, V);
963}
964
965RegionBindingsRef
966RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
967                                           const Expr *Ex,
968                                           unsigned Count,
969                                           const LocationContext *LCtx,
970                                           RegionBindingsRef B,
971                                           InvalidatedRegions *Invalidated) {
972  // Bind the globals memory space to a new symbol that we will use to derive
973  // the bindings for all globals.
974  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
975  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
976                                        /* type does not matter */ Ctx.IntTy,
977                                        Count);
978
979  B = B.removeBinding(GS)
980       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
981
982  // Even if there are no bindings in the global scope, we still need to
983  // record that we touched it.
984  if (Invalidated)
985    Invalidated->push_back(GS);
986
987  return B;
988}
989
990StoreRef
991RegionStoreManager::invalidateRegions(Store store,
992                                      ArrayRef<const MemRegion *> Regions,
993                                      const Expr *Ex, unsigned Count,
994                                      const LocationContext *LCtx,
995                                      InvalidatedSymbols &IS,
996                                      const CallEvent *Call,
997                                      InvalidatedRegions *Invalidated) {
998  invalidateRegionsWorker W(*this, StateMgr,
999                            RegionStoreManager::getRegionBindings(store),
1000                            Ex, Count, LCtx, IS, Invalidated, false);
1001
1002  // Scan the bindings and generate the clusters.
1003  W.GenerateClusters();
1004
1005  // Add the regions to the worklist.
1006  for (ArrayRef<const MemRegion *>::iterator
1007       I = Regions.begin(), E = Regions.end(); I != E; ++I)
1008    W.AddToWorkList(*I);
1009
1010  W.RunWorkList();
1011
1012  // Return the new bindings.
1013  RegionBindingsRef B = W.getRegionBindings();
1014
1015  // For all globals which are not static nor immutable: determine which global
1016  // regions should be invalidated and invalidate them.
1017  // TODO: This could possibly be more precise with modules.
1018  //
1019  // System calls invalidate only system globals.
1020  if (Call && Call->isInSystemHeader()) {
1021    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1022                               Ex, Count, LCtx, B, Invalidated);
1023  // Internal calls might invalidate both system and internal globals.
1024  } else {
1025    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1026                               Ex, Count, LCtx, B, Invalidated);
1027    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1028                               Ex, Count, LCtx, B, Invalidated);
1029  }
1030
1031  return StoreRef(B.asStore(), *this);
1032}
1033
1034//===----------------------------------------------------------------------===//
1035// Extents for regions.
1036//===----------------------------------------------------------------------===//
1037
1038DefinedOrUnknownSVal
1039RegionStoreManager::getSizeInElements(ProgramStateRef state,
1040                                      const MemRegion *R,
1041                                      QualType EleTy) {
1042  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1043  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1044  if (!SizeInt)
1045    return UnknownVal();
1046
1047  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1048
1049  if (Ctx.getAsVariableArrayType(EleTy)) {
1050    // FIXME: We need to track extra state to properly record the size
1051    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1052    // we don't have a divide-by-zero below.
1053    return UnknownVal();
1054  }
1055
1056  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1057
1058  // If a variable is reinterpreted as a type that doesn't fit into a larger
1059  // type evenly, round it down.
1060  // This is a signed value, since it's used in arithmetic with signed indices.
1061  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1062}
1063
1064//===----------------------------------------------------------------------===//
1065// Location and region casting.
1066//===----------------------------------------------------------------------===//
1067
1068/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1069///  type.  'Array' represents the lvalue of the array being decayed
1070///  to a pointer, and the returned SVal represents the decayed
1071///  version of that lvalue (i.e., a pointer to the first element of
1072///  the array).  This is called by ExprEngine when evaluating casts
1073///  from arrays to pointers.
1074SVal RegionStoreManager::ArrayToPointer(Loc Array) {
1075  if (!isa<loc::MemRegionVal>(Array))
1076    return UnknownVal();
1077
1078  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
1079  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
1080
1081  if (!ArrayR)
1082    return UnknownVal();
1083
1084  // Strip off typedefs from the ArrayRegion's ValueType.
1085  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
1086  const ArrayType *AT = cast<ArrayType>(T);
1087  T = AT->getElementType();
1088
1089  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1090  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
1091}
1092
1093//===----------------------------------------------------------------------===//
1094// Loading values from regions.
1095//===----------------------------------------------------------------------===//
1096
1097SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1098  assert(!isa<UnknownVal>(L) && "location unknown");
1099  assert(!isa<UndefinedVal>(L) && "location undefined");
1100
1101  // For access to concrete addresses, return UnknownVal.  Checks
1102  // for null dereferences (and similar errors) are done by checkers, not
1103  // the Store.
1104  // FIXME: We can consider lazily symbolicating such memory, but we really
1105  // should defer this when we can reason easily about symbolicating arrays
1106  // of bytes.
1107  if (isa<loc::ConcreteInt>(L)) {
1108    return UnknownVal();
1109  }
1110  if (!isa<loc::MemRegionVal>(L)) {
1111    return UnknownVal();
1112  }
1113
1114  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1115
1116  if (isa<AllocaRegion>(MR) ||
1117      isa<SymbolicRegion>(MR) ||
1118      isa<CodeTextRegion>(MR)) {
1119    if (T.isNull()) {
1120      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1121        T = TR->getLocationType();
1122      else {
1123        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1124        T = SR->getSymbol()->getType();
1125      }
1126    }
1127    MR = GetElementZeroRegion(MR, T);
1128  }
1129
1130  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1131  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1132  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1133  QualType RTy = R->getValueType();
1134
1135  // FIXME: we do not yet model the parts of a complex type, so treat the
1136  // whole thing as "unknown".
1137  if (RTy->isAnyComplexType())
1138    return UnknownVal();
1139
1140  // FIXME: We should eventually handle funny addressing.  e.g.:
1141  //
1142  //   int x = ...;
1143  //   int *p = &x;
1144  //   char *q = (char*) p;
1145  //   char c = *q;  // returns the first byte of 'x'.
1146  //
1147  // Such funny addressing will occur due to layering of regions.
1148  if (RTy->isStructureOrClassType())
1149    return getBindingForStruct(B, R);
1150
1151  // FIXME: Handle unions.
1152  if (RTy->isUnionType())
1153    return UnknownVal();
1154
1155  if (RTy->isArrayType()) {
1156    if (RTy->isConstantArrayType())
1157      return getBindingForArray(B, R);
1158    else
1159      return UnknownVal();
1160  }
1161
1162  // FIXME: handle Vector types.
1163  if (RTy->isVectorType())
1164    return UnknownVal();
1165
1166  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1167    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1168
1169  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1170    // FIXME: Here we actually perform an implicit conversion from the loaded
1171    // value to the element type.  Eventually we want to compose these values
1172    // more intelligently.  For example, an 'element' can encompass multiple
1173    // bound regions (e.g., several bound bytes), or could be a subset of
1174    // a larger value.
1175    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1176  }
1177
1178  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1179    // FIXME: Here we actually perform an implicit conversion from the loaded
1180    // value to the ivar type.  What we should model is stores to ivars
1181    // that blow past the extent of the ivar.  If the address of the ivar is
1182    // reinterpretted, it is possible we stored a different value that could
1183    // fit within the ivar.  Either we need to cast these when storing them
1184    // or reinterpret them lazily (as we do here).
1185    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1186  }
1187
1188  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1189    // FIXME: Here we actually perform an implicit conversion from the loaded
1190    // value to the variable type.  What we should model is stores to variables
1191    // that blow past the extent of the variable.  If the address of the
1192    // variable is reinterpretted, it is possible we stored a different value
1193    // that could fit within the variable.  Either we need to cast these when
1194    // storing them or reinterpret them lazily (as we do here).
1195    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1196  }
1197
1198  const SVal *V = B.lookup(R, BindingKey::Direct);
1199
1200  // Check if the region has a binding.
1201  if (V)
1202    return *V;
1203
1204  // The location does not have a bound value.  This means that it has
1205  // the value it had upon its creation and/or entry to the analyzed
1206  // function/method.  These are either symbolic values or 'undefined'.
1207  if (R->hasStackNonParametersStorage()) {
1208    // All stack variables are considered to have undefined values
1209    // upon creation.  All heap allocated blocks are considered to
1210    // have undefined values as well unless they are explicitly bound
1211    // to specific values.
1212    return UndefinedVal();
1213  }
1214
1215  // All other values are symbolic.
1216  return svalBuilder.getRegionValueSymbolVal(R);
1217}
1218
1219std::pair<Store, const MemRegion *>
1220RegionStoreManager::getLazyBinding(RegionBindingsConstRef B,
1221                                   const MemRegion *R,
1222                                   const MemRegion *originalRegion) {
1223  if (originalRegion != R) {
1224    if (Optional<SVal> OV = B.getDefaultBinding(R)) {
1225      if (const nonloc::LazyCompoundVal *V =
1226          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1227        return std::make_pair(V->getStore(), V->getRegion());
1228    }
1229  }
1230
1231  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1232    const std::pair<Store, const MemRegion *> &X =
1233      getLazyBinding(B, ER->getSuperRegion(), originalRegion);
1234
1235    if (X.second)
1236      return std::make_pair(X.first,
1237                            MRMgr.getElementRegionWithSuper(ER, X.second));
1238  }
1239  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1240    const std::pair<Store, const MemRegion *> &X =
1241      getLazyBinding(B, FR->getSuperRegion(), originalRegion);
1242
1243    if (X.second) {
1244      return std::make_pair(X.first,
1245                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1246    }
1247
1248  }
1249  // C++ base object region is another kind of region that we should blast
1250  // through to look for lazy compound value. It is like a field region.
1251  else if (const CXXBaseObjectRegion *baseReg =
1252            dyn_cast<CXXBaseObjectRegion>(R)) {
1253    const std::pair<Store, const MemRegion *> &X =
1254      getLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1255
1256    if (X.second) {
1257      return std::make_pair(X.first,
1258                            MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1259                                                                  X.second));
1260    }
1261  }
1262
1263  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1264  // possible for a valid lazy binding.
1265  return std::make_pair((Store) 0, (const MemRegion *) 0);
1266}
1267
1268SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1269                                              const ElementRegion* R) {
1270  // We do not currently model bindings of the CompoundLiteralregion.
1271  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1272    return UnknownVal();
1273
1274  // Check if the region has a binding.
1275  if (const Optional<SVal> &V = B.getDirectBinding(R))
1276    return *V;
1277
1278  const MemRegion* superR = R->getSuperRegion();
1279
1280  // Check if the region is an element region of a string literal.
1281  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1282    // FIXME: Handle loads from strings where the literal is treated as
1283    // an integer, e.g., *((unsigned int*)"hello")
1284    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1285    if (T != Ctx.getCanonicalType(R->getElementType()))
1286      return UnknownVal();
1287
1288    const StringLiteral *Str = StrR->getStringLiteral();
1289    SVal Idx = R->getIndex();
1290    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1291      int64_t i = CI->getValue().getSExtValue();
1292      // Abort on string underrun.  This can be possible by arbitrary
1293      // clients of getBindingForElement().
1294      if (i < 0)
1295        return UndefinedVal();
1296      int64_t length = Str->getLength();
1297      // Technically, only i == length is guaranteed to be null.
1298      // However, such overflows should be caught before reaching this point;
1299      // the only time such an access would be made is if a string literal was
1300      // used to initialize a larger array.
1301      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1302      return svalBuilder.makeIntVal(c, T);
1303    }
1304  }
1305
1306  // Check for loads from a code text region.  For such loads, just give up.
1307  if (isa<CodeTextRegion>(superR))
1308    return UnknownVal();
1309
1310  // Handle the case where we are indexing into a larger scalar object.
1311  // For example, this handles:
1312  //   int x = ...
1313  //   char *y = &x;
1314  //   return *y;
1315  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1316  const RegionRawOffset &O = R->getAsArrayOffset();
1317
1318  // If we cannot reason about the offset, return an unknown value.
1319  if (!O.getRegion())
1320    return UnknownVal();
1321
1322  if (const TypedValueRegion *baseR =
1323        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1324    QualType baseT = baseR->getValueType();
1325    if (baseT->isScalarType()) {
1326      QualType elemT = R->getElementType();
1327      if (elemT->isScalarType()) {
1328        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1329          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1330            if (SymbolRef parentSym = V->getAsSymbol())
1331              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1332
1333            if (V->isUnknownOrUndef())
1334              return *V;
1335            // Other cases: give up.  We are indexing into a larger object
1336            // that has some value, but we don't know how to handle that yet.
1337            return UnknownVal();
1338          }
1339        }
1340      }
1341    }
1342  }
1343  return getBindingForFieldOrElementCommon(B, R, R->getElementType(),
1344                                           superR);
1345}
1346
1347SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1348                                            const FieldRegion* R) {
1349
1350  // Check if the region has a binding.
1351  if (const Optional<SVal> &V = B.getDirectBinding(R))
1352    return *V;
1353
1354  QualType Ty = R->getValueType();
1355  return getBindingForFieldOrElementCommon(B, R, Ty, R->getSuperRegion());
1356}
1357
1358Optional<SVal>
1359RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1360                                                     const MemRegion *superR,
1361                                                     const TypedValueRegion *R,
1362                                                     QualType Ty) {
1363
1364  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1365    const SVal &val = D.getValue();
1366    if (SymbolRef parentSym = val.getAsSymbol())
1367      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1368
1369    if (val.isZeroConstant())
1370      return svalBuilder.makeZeroVal(Ty);
1371
1372    if (val.isUnknownOrUndef())
1373      return val;
1374
1375    // Lazy bindings are handled later.
1376    if (isa<nonloc::LazyCompoundVal>(val))
1377      return Optional<SVal>();
1378
1379    llvm_unreachable("Unknown default value");
1380  }
1381
1382  return Optional<SVal>();
1383}
1384
1385SVal RegionStoreManager::getLazyBinding(const MemRegion *LazyBindingRegion,
1386                                        RegionBindingsRef LazyBinding) {
1387  SVal Result;
1388  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1389    Result = getBindingForElement(LazyBinding, ER);
1390  else
1391    Result = getBindingForField(LazyBinding,
1392                                cast<FieldRegion>(LazyBindingRegion));
1393
1394  // This is a hack to deal with RegionStore's inability to distinguish a
1395  // default value for /part/ of an aggregate from a default value for the
1396  // /entire/ aggregate. The most common case of this is when struct Outer
1397  // has as its first member a struct Inner, which is copied in from a stack
1398  // variable. In this case, even if the Outer's default value is symbolic, 0,
1399  // or unknown, it gets overridden by the Inner's default value of undefined.
1400  //
1401  // This is a general problem -- if the Inner is zero-initialized, the Outer
1402  // will now look zero-initialized. The proper way to solve this is with a
1403  // new version of RegionStore that tracks the extent of a binding as well
1404  // as the offset.
1405  //
1406  // This hack only takes care of the undefined case because that can very
1407  // quickly result in a warning.
1408  if (Result.isUndef())
1409    Result = UnknownVal();
1410
1411  return Result;
1412}
1413
1414SVal
1415RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1416                                                      const TypedValueRegion *R,
1417                                                      QualType Ty,
1418                                                      const MemRegion *superR) {
1419
1420  // At this point we have already checked in either getBindingForElement or
1421  // getBindingForField if 'R' has a direct binding.
1422
1423  // Lazy binding?
1424  Store lazyBindingStore = NULL;
1425  const MemRegion *lazyBindingRegion = NULL;
1426  llvm::tie(lazyBindingStore, lazyBindingRegion) = getLazyBinding(B, R, R);
1427  if (lazyBindingRegion)
1428    return getLazyBinding(lazyBindingRegion,
1429                          getRegionBindings(lazyBindingStore));
1430
1431  // Record whether or not we see a symbolic index.  That can completely
1432  // be out of scope of our lookup.
1433  bool hasSymbolicIndex = false;
1434
1435  while (superR) {
1436    if (const Optional<SVal> &D =
1437        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1438      return *D;
1439
1440    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1441      NonLoc index = ER->getIndex();
1442      if (!index.isConstant())
1443        hasSymbolicIndex = true;
1444    }
1445
1446    // If our super region is a field or element itself, walk up the region
1447    // hierarchy to see if there is a default value installed in an ancestor.
1448    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1449      superR = SR->getSuperRegion();
1450      continue;
1451    }
1452    break;
1453  }
1454
1455  if (R->hasStackNonParametersStorage()) {
1456    if (isa<ElementRegion>(R)) {
1457      // Currently we don't reason specially about Clang-style vectors.  Check
1458      // if superR is a vector and if so return Unknown.
1459      if (const TypedValueRegion *typedSuperR =
1460            dyn_cast<TypedValueRegion>(superR)) {
1461        if (typedSuperR->getValueType()->isVectorType())
1462          return UnknownVal();
1463      }
1464    }
1465
1466    // FIXME: We also need to take ElementRegions with symbolic indexes into
1467    // account.  This case handles both directly accessing an ElementRegion
1468    // with a symbolic offset, but also fields within an element with
1469    // a symbolic offset.
1470    if (hasSymbolicIndex)
1471      return UnknownVal();
1472
1473    return UndefinedVal();
1474  }
1475
1476  // All other values are symbolic.
1477  return svalBuilder.getRegionValueSymbolVal(R);
1478}
1479
1480SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1481                                               const ObjCIvarRegion* R) {
1482  // Check if the region has a binding.
1483  if (const Optional<SVal> &V = B.getDirectBinding(R))
1484    return *V;
1485
1486  const MemRegion *superR = R->getSuperRegion();
1487
1488  // Check if the super region has a default binding.
1489  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1490    if (SymbolRef parentSym = V->getAsSymbol())
1491      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1492
1493    // Other cases: give up.
1494    return UnknownVal();
1495  }
1496
1497  return getBindingForLazySymbol(R);
1498}
1499
1500SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1501                                          const VarRegion *R) {
1502
1503  // Check if the region has a binding.
1504  if (const Optional<SVal> &V = B.getDirectBinding(R))
1505    return *V;
1506
1507  // Lazily derive a value for the VarRegion.
1508  const VarDecl *VD = R->getDecl();
1509  QualType T = VD->getType();
1510  const MemSpaceRegion *MS = R->getMemorySpace();
1511
1512  if (isa<UnknownSpaceRegion>(MS) ||
1513      isa<StackArgumentsSpaceRegion>(MS))
1514    return svalBuilder.getRegionValueSymbolVal(R);
1515
1516  if (isa<GlobalsSpaceRegion>(MS)) {
1517    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1518      // Is 'VD' declared constant?  If so, retrieve the constant value.
1519      QualType CT = Ctx.getCanonicalType(T);
1520      if (CT.isConstQualified()) {
1521        const Expr *Init = VD->getInit();
1522        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1523        if (Init)
1524          if (const IntegerLiteral *IL =
1525              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1526            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1527            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1528          }
1529      }
1530
1531      if (const Optional<SVal> &V
1532            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1533        return V.getValue();
1534
1535      return svalBuilder.getRegionValueSymbolVal(R);
1536    }
1537
1538    if (T->isIntegerType())
1539      return svalBuilder.makeIntVal(0, T);
1540    if (T->isPointerType())
1541      return svalBuilder.makeNull();
1542
1543    return UnknownVal();
1544  }
1545
1546  return UndefinedVal();
1547}
1548
1549SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1550  // All other values are symbolic.
1551  return svalBuilder.getRegionValueSymbolVal(R);
1552}
1553
1554static bool mayHaveLazyBinding(QualType Ty) {
1555  return Ty->isArrayType() || Ty->isStructureOrClassType();
1556}
1557
1558SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1559                                             const TypedValueRegion* R) {
1560  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1561  if (RD->field_empty())
1562    return UnknownVal();
1563
1564  // If we already have a lazy binding, don't create a new one,
1565  // unless the first field might have a lazy binding of its own.
1566  // (Right now we can't tell the difference.)
1567  QualType FirstFieldType = RD->field_begin()->getType();
1568  if (!mayHaveLazyBinding(FirstFieldType)) {
1569    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1570    if (const nonloc::LazyCompoundVal *V =
1571          dyn_cast_or_null<nonloc::LazyCompoundVal>(B.lookup(K))) {
1572      return *V;
1573    }
1574  }
1575
1576  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1577}
1578
1579SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1580                                            const TypedValueRegion * R) {
1581  const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
1582  assert(Ty && "Only constant array types can have compound bindings.");
1583
1584  // If we already have a lazy binding, don't create a new one,
1585  // unless the first element might have a lazy binding of its own.
1586  // (Right now we can't tell the difference.)
1587  if (!mayHaveLazyBinding(Ty->getElementType())) {
1588    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1589    if (const nonloc::LazyCompoundVal *V =
1590        dyn_cast_or_null<nonloc::LazyCompoundVal>(B.lookup(K))) {
1591      return *V;
1592    }
1593  }
1594
1595  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1596}
1597
1598bool RegionStoreManager::includedInBindings(Store store,
1599                                            const MemRegion *region) const {
1600  RegionBindingsRef B = getRegionBindings(store);
1601  region = region->getBaseRegion();
1602
1603  // Quick path: if the base is the head of a cluster, the region is live.
1604  if (B.lookup(region))
1605    return true;
1606
1607  // Slow path: if the region is the VALUE of any binding, it is live.
1608  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1609    const ClusterBindings &Cluster = RI.getData();
1610    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1611         CI != CE; ++CI) {
1612      const SVal &D = CI.getData();
1613      if (const MemRegion *R = D.getAsRegion())
1614        if (R->getBaseRegion() == region)
1615          return true;
1616    }
1617  }
1618
1619  return false;
1620}
1621
1622//===----------------------------------------------------------------------===//
1623// Binding values to regions.
1624//===----------------------------------------------------------------------===//
1625
1626StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1627  if (isa<loc::MemRegionVal>(L))
1628    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1629      return StoreRef(getRegionBindings(ST).removeBinding(R)
1630                                           .asImmutableMap()
1631                                           .getRootWithoutRetain(),
1632                      *this);
1633
1634  return StoreRef(ST, *this);
1635}
1636
1637RegionBindingsRef
1638RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1639  if (isa<loc::ConcreteInt>(L))
1640    return B;
1641
1642  // If we get here, the location should be a region.
1643  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1644
1645  // Check if the region is a struct region.
1646  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1647    QualType Ty = TR->getValueType();
1648    if (Ty->isArrayType())
1649      return bindArray(B, TR, V);
1650    if (Ty->isStructureOrClassType())
1651      return bindStruct(B, TR, V);
1652    if (Ty->isVectorType())
1653      return bindVector(B, TR, V);
1654  }
1655
1656  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1657    // Binding directly to a symbolic region should be treated as binding
1658    // to element 0.
1659    QualType T = SR->getSymbol()->getType();
1660    if (T->isAnyPointerType() || T->isReferenceType())
1661      T = T->getPointeeType();
1662
1663    R = GetElementZeroRegion(SR, T);
1664  }
1665
1666  // Clear out bindings that may overlap with this binding.
1667  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1668  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1669}
1670
1671// FIXME: this method should be merged into Bind().
1672StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
1673                                                 const CompoundLiteralExpr *CL,
1674                                                 const LocationContext *LC,
1675                                                 SVal V) {
1676  return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
1677}
1678
1679RegionBindingsRef
1680RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1681                                            const MemRegion *R,
1682                                            QualType T) {
1683  SVal V;
1684
1685  if (Loc::isLocType(T))
1686    V = svalBuilder.makeNull();
1687  else if (T->isIntegerType())
1688    V = svalBuilder.makeZeroVal(T);
1689  else if (T->isStructureOrClassType() || T->isArrayType()) {
1690    // Set the default value to a zero constant when it is a structure
1691    // or array.  The type doesn't really matter.
1692    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1693  }
1694  else {
1695    // We can't represent values of this type, but we still need to set a value
1696    // to record that the region has been initialized.
1697    // If this assertion ever fires, a new case should be added above -- we
1698    // should know how to default-initialize any value we can symbolicate.
1699    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1700    V = UnknownVal();
1701  }
1702
1703  return B.addBinding(R, BindingKey::Default, V);
1704}
1705
1706RegionBindingsRef
1707RegionStoreManager::bindArray(RegionBindingsConstRef B,
1708                              const TypedValueRegion* R,
1709                              SVal Init) {
1710
1711  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1712  QualType ElementTy = AT->getElementType();
1713  Optional<uint64_t> Size;
1714
1715  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1716    Size = CAT->getSize().getZExtValue();
1717
1718  // Check if the init expr is a string literal.
1719  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1720    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1721
1722    // Treat the string as a lazy compound value.
1723    StoreRef store(B.asStore(), *this);
1724    nonloc::LazyCompoundVal LCV =
1725      cast<nonloc::LazyCompoundVal>(svalBuilder.makeLazyCompoundVal(store, S));
1726    return bindAggregate(B, R, LCV);
1727  }
1728
1729  // Handle lazy compound values.
1730  if (isa<nonloc::LazyCompoundVal>(Init))
1731    return bindAggregate(B, R, Init);
1732
1733  // Remaining case: explicit compound values.
1734
1735  if (Init.isUnknown())
1736    return setImplicitDefaultValue(B, R, ElementTy);
1737
1738  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1739  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1740  uint64_t i = 0;
1741
1742  RegionBindingsRef NewB(B);
1743
1744  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1745    // The init list might be shorter than the array length.
1746    if (VI == VE)
1747      break;
1748
1749    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1750    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1751
1752    if (ElementTy->isStructureOrClassType())
1753      NewB = bindStruct(NewB, ER, *VI);
1754    else if (ElementTy->isArrayType())
1755      NewB = bindArray(NewB, ER, *VI);
1756    else
1757      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1758  }
1759
1760  // If the init list is shorter than the array length, set the
1761  // array default value.
1762  if (Size.hasValue() && i < Size.getValue())
1763    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
1764
1765  return NewB;
1766}
1767
1768RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
1769                                                 const TypedValueRegion* R,
1770                                                 SVal V) {
1771  QualType T = R->getValueType();
1772  assert(T->isVectorType());
1773  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1774
1775  // Handle lazy compound values and symbolic values.
1776  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1777    return bindAggregate(B, R, V);
1778
1779  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1780  // that we are binding symbolic struct value. Kill the field values, and if
1781  // the value is symbolic go and bind it as a "default" binding.
1782  if (!isa<nonloc::CompoundVal>(V)) {
1783    return bindAggregate(B, R, UnknownVal());
1784  }
1785
1786  QualType ElemType = VT->getElementType();
1787  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1788  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1789  unsigned index = 0, numElements = VT->getNumElements();
1790  RegionBindingsRef NewB(B);
1791
1792  for ( ; index != numElements ; ++index) {
1793    if (VI == VE)
1794      break;
1795
1796    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1797    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1798
1799    if (ElemType->isArrayType())
1800      NewB = bindArray(NewB, ER, *VI);
1801    else if (ElemType->isStructureOrClassType())
1802      NewB = bindStruct(NewB, ER, *VI);
1803    else
1804      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1805  }
1806  return NewB;
1807}
1808
1809RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
1810                                                 const TypedValueRegion* R,
1811                                                 SVal V) {
1812  if (!Features.supportsFields())
1813    return B;
1814
1815  QualType T = R->getValueType();
1816  assert(T->isStructureOrClassType());
1817
1818  const RecordType* RT = T->getAs<RecordType>();
1819  RecordDecl *RD = RT->getDecl();
1820
1821  if (!RD->isCompleteDefinition())
1822    return B;
1823
1824  // Handle lazy compound values and symbolic values.
1825  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1826    return bindAggregate(B, R, V);
1827
1828  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1829  // that we are binding symbolic struct value. Kill the field values, and if
1830  // the value is symbolic go and bind it as a "default" binding.
1831  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
1832    return bindAggregate(B, R, UnknownVal());
1833
1834  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1835  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1836
1837  RecordDecl::field_iterator FI, FE;
1838  RegionBindingsRef NewB(B);
1839
1840  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1841
1842    if (VI == VE)
1843      break;
1844
1845    // Skip any unnamed bitfields to stay in sync with the initializers.
1846    if (FI->isUnnamedBitfield())
1847      continue;
1848
1849    QualType FTy = FI->getType();
1850    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1851
1852    if (FTy->isArrayType())
1853      NewB = bindArray(NewB, FR, *VI);
1854    else if (FTy->isStructureOrClassType())
1855      NewB = bindStruct(NewB, FR, *VI);
1856    else
1857      NewB = bind(NewB, svalBuilder.makeLoc(FR), *VI);
1858    ++VI;
1859  }
1860
1861  // There may be fewer values in the initialize list than the fields of struct.
1862  if (FI != FE) {
1863    NewB = NewB.addBinding(R, BindingKey::Default,
1864                           svalBuilder.makeIntVal(0, false));
1865  }
1866
1867  return NewB;
1868}
1869
1870RegionBindingsRef
1871RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
1872                                  const TypedRegion *R,
1873                                  SVal Val) {
1874  // Remove the old bindings, using 'R' as the root of all regions
1875  // we will invalidate. Then add the new binding.
1876  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
1877}
1878
1879//===----------------------------------------------------------------------===//
1880// State pruning.
1881//===----------------------------------------------------------------------===//
1882
1883namespace {
1884class removeDeadBindingsWorker :
1885  public ClusterAnalysis<removeDeadBindingsWorker> {
1886  SmallVector<const SymbolicRegion*, 12> Postponed;
1887  SymbolReaper &SymReaper;
1888  const StackFrameContext *CurrentLCtx;
1889
1890public:
1891  removeDeadBindingsWorker(RegionStoreManager &rm,
1892                           ProgramStateManager &stateMgr,
1893                           RegionBindingsRef b, SymbolReaper &symReaper,
1894                           const StackFrameContext *LCtx)
1895    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1896                                                /* includeGlobals = */ false),
1897      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1898
1899  // Called by ClusterAnalysis.
1900  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
1901  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
1902
1903  bool UpdatePostponed();
1904  void VisitBinding(SVal V);
1905};
1906}
1907
1908void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1909                                                   const ClusterBindings &C) {
1910
1911  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1912    if (SymReaper.isLive(VR))
1913      AddToWorkList(baseR, &C);
1914
1915    return;
1916  }
1917
1918  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1919    if (SymReaper.isLive(SR->getSymbol()))
1920      AddToWorkList(SR, &C);
1921    else
1922      Postponed.push_back(SR);
1923
1924    return;
1925  }
1926
1927  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1928    AddToWorkList(baseR, &C);
1929    return;
1930  }
1931
1932  // CXXThisRegion in the current or parent location context is live.
1933  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1934    const StackArgumentsSpaceRegion *StackReg =
1935      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1936    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1937    if (CurrentLCtx &&
1938        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
1939      AddToWorkList(TR, &C);
1940  }
1941}
1942
1943void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1944                                            const ClusterBindings &C) {
1945  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
1946  // This means we should continue to track that symbol.
1947  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
1948    SymReaper.markLive(SymR->getSymbol());
1949
1950  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
1951    VisitBinding(I.getData());
1952}
1953
1954void removeDeadBindingsWorker::VisitBinding(SVal V) {
1955  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1956  if (const nonloc::LazyCompoundVal *LCS =
1957        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1958
1959    const MemRegion *LazyR = LCS->getRegion();
1960    RegionBindingsRef B = RM.getRegionBindings(LCS->getStore());
1961
1962    // FIXME: This should not have to walk all bindings in the old store.
1963    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
1964         RI != RE; ++RI){
1965      const ClusterBindings &Cluster = RI.getData();
1966      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1967           CI != CE; ++CI) {
1968        BindingKey K = CI.getKey();
1969        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
1970          if (BaseR == LazyR)
1971            VisitBinding(CI.getData());
1972          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
1973            VisitBinding(CI.getData());
1974        }
1975      }
1976    }
1977
1978    return;
1979  }
1980
1981  // If V is a region, then add it to the worklist.
1982  if (const MemRegion *R = V.getAsRegion()) {
1983    AddToWorkList(R);
1984
1985    // All regions captured by a block are also live.
1986    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1987      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1988                                                E = BR->referenced_vars_end();
1989      for ( ; I != E; ++I)
1990        AddToWorkList(I.getCapturedRegion());
1991    }
1992  }
1993
1994
1995  // Update the set of live symbols.
1996  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1997       SI!=SE; ++SI)
1998    SymReaper.markLive(*SI);
1999}
2000
2001bool removeDeadBindingsWorker::UpdatePostponed() {
2002  // See if any postponed SymbolicRegions are actually live now, after
2003  // having done a scan.
2004  bool changed = false;
2005
2006  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2007        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2008    if (const SymbolicRegion *SR = *I) {
2009      if (SymReaper.isLive(SR->getSymbol())) {
2010        changed |= AddToWorkList(SR);
2011        *I = NULL;
2012      }
2013    }
2014  }
2015
2016  return changed;
2017}
2018
2019StoreRef RegionStoreManager::removeDeadBindings(Store store,
2020                                                const StackFrameContext *LCtx,
2021                                                SymbolReaper& SymReaper) {
2022  RegionBindingsRef B = getRegionBindings(store);
2023  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2024  W.GenerateClusters();
2025
2026  // Enqueue the region roots onto the worklist.
2027  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2028       E = SymReaper.region_end(); I != E; ++I) {
2029    W.AddToWorkList(*I);
2030  }
2031
2032  do W.RunWorkList(); while (W.UpdatePostponed());
2033
2034  // We have now scanned the store, marking reachable regions and symbols
2035  // as live.  We now remove all the regions that are dead from the store
2036  // as well as update DSymbols with the set symbols that are now dead.
2037  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2038    const MemRegion *Base = I.getKey();
2039
2040    // If the cluster has been visited, we know the region has been marked.
2041    if (W.isVisited(Base))
2042      continue;
2043
2044    // Remove the dead entry.
2045    B = B.remove(Base);
2046
2047    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2048      SymReaper.maybeDead(SymR->getSymbol());
2049
2050    // Mark all non-live symbols that this binding references as dead.
2051    const ClusterBindings &Cluster = I.getData();
2052    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2053         CI != CE; ++CI) {
2054      SVal X = CI.getData();
2055      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2056      for (; SI != SE; ++SI)
2057        SymReaper.maybeDead(*SI);
2058    }
2059  }
2060
2061  return StoreRef(B.asStore(), *this);
2062}
2063
2064//===----------------------------------------------------------------------===//
2065// Utility methods.
2066//===----------------------------------------------------------------------===//
2067
2068void RegionStoreManager::print(Store store, raw_ostream &OS,
2069                               const char* nl, const char *sep) {
2070  RegionBindingsRef B = getRegionBindings(store);
2071  OS << "Store (direct and default bindings), "
2072     << B.asStore()
2073     << " :" << nl;
2074  B.dump(OS, nl);
2075}
2076