RegionStore.cpp revision 1437425a62dbf7bdb0a855d3ed3b05ed2019ec1e
19066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
29066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//
39066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//                     The LLVM Compiler Infrastructure
49066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//
59066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// This file is distributed under the University of Illinois Open Source
69066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// License. See LICENSE.TXT for details.
79066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//
89066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//===----------------------------------------------------------------------===//
99066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//
109066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// This file defines a basic region store model. In this model, we do have field
119066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// sensitivity. But we assume nothing about the heap shape. So recursive data
129066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// structures are largely ignored. Basically we do 1-limiting analysis.
139066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// Parameter pointers are assumed with no aliasing. Pointee objects of
149066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// parameters are created lazily.
159066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//
169066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//===----------------------------------------------------------------------===//
179066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/AST/CharUnits.h"
189066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/AST/DeclCXX.h"
19655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown#include "clang/AST/ExprCXX.h"
209066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/Analysis/Analyses/LiveVariables.h"
2186b1df234397802895771fe14cd8f2813fa43415Svetoslav#include "clang/Analysis/AnalysisContext.h"
229066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/Basic/TargetInfo.h"
239066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
2486de0590b94bcce27e3038c27464bed510bb564aJeff Brown#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
2586de0590b94bcce27e3038c27464bed510bb564aJeff Brown#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
269066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
279066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "llvm/ADT/ImmutableList.h"
2886de0590b94bcce27e3038c27464bed510bb564aJeff Brown#include "llvm/ADT/ImmutableMap.h"
2986de0590b94bcce27e3038c27464bed510bb564aJeff Brown#include "llvm/ADT/Optional.h"
309066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project#include "llvm/Support/raw_ostream.h"
3186de0590b94bcce27e3038c27464bed510bb564aJeff Brown
329066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectusing namespace clang;
339066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectusing namespace ento;
3486de0590b94bcce27e3038c27464bed510bb564aJeff Brownusing llvm::Optional;
359066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
3686de0590b94bcce27e3038c27464bed510bb564aJeff Brown//===----------------------------------------------------------------------===//
379066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project// Representation of binding keys.
389066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project//===----------------------------------------------------------------------===//
399066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
409066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectnamespace {
419066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectclass BindingKey {
429066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectpublic:
439066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  enum Kind { Direct = 0x0, Default = 0x1 };
449066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectprivate:
459066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  llvm ::PointerIntPair<const MemRegion*, 1> P;
469066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  uint64_t Offset;
479066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
4886de0590b94bcce27e3038c27464bed510bb564aJeff Brown  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
499066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    : P(r, (unsigned) k), Offset(offset) {}
509066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectpublic:
519066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
529066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  bool isDirect() const { return P.getInt() == Direct; }
539066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
549066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  const MemRegion *getRegion() const { return P.getPointer(); }
559066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  uint64_t getOffset() const { return Offset; }
569066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
579066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  void Profile(llvm::FoldingSetNodeID& ID) const {
589066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    ID.AddPointer(P.getOpaqueValue());
599066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    ID.AddInteger(Offset);
609066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  }
619066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
629066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  static BindingKey Make(const MemRegion *R, Kind k);
6386de0590b94bcce27e3038c27464bed510bb564aJeff Brown
6486de0590b94bcce27e3038c27464bed510bb564aJeff Brown  bool operator<(const BindingKey &X) const {
659066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    if (P.getOpaqueValue() < X.P.getOpaqueValue())
669066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project      return true;
679066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    if (P.getOpaqueValue() > X.P.getOpaqueValue())
689066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project      return false;
699066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    return Offset < X.Offset;
709066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  }
719066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
729066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  bool operator==(const BindingKey &X) const {
739066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
7486de0590b94bcce27e3038c27464bed510bb564aJeff Brown           Offset == X.Offset;
7586de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
7686de0590b94bcce27e3038c27464bed510bb564aJeff Brown
7786de0590b94bcce27e3038c27464bed510bb564aJeff Brown  bool isValid() const {
7886de0590b94bcce27e3038c27464bed510bb564aJeff Brown    return getRegion() != NULL;
7986de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
8086de0590b94bcce27e3038c27464bed510bb564aJeff Brown};
819066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project} // end anonymous namespace
829066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
839066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source ProjectBindingKey BindingKey::Make(const MemRegion *R, Kind k) {
849066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
859066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project    const RegionRawOffset &O = ER->getAsArrayOffset();
869066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project
8786de0590b94bcce27e3038c27464bed510bb564aJeff Brown    // FIXME: There are some ElementRegions for which we cannot compute
88655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    // raw offsets yet, including regions with symbolic offsets. These will be
89655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    // ignored by the store.
90655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
9186de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
9286de0590b94bcce27e3038c27464bed510bb564aJeff Brown
939066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  return BindingKey(R, 0, k);
9486de0590b94bcce27e3038c27464bed510bb564aJeff Brown}
9586de0590b94bcce27e3038c27464bed510bb564aJeff Brown
9686de0590b94bcce27e3038c27464bed510bb564aJeff Brownnamespace llvm {
979066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  static inline
9886de0590b94bcce27e3038c27464bed510bb564aJeff Brown  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
99655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    os << '(' << K.getRegion() << ',' << K.getOffset()
100655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown       << ',' << (K.isDirect() ? "direct" : "default")
101655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown       << ')';
102655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    return os;
103655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  }
104655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown} // end llvm namespace
105655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
106655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown//===----------------------------------------------------------------------===//
107655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown// Actual Store type.
108655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown//===----------------------------------------------------------------------===//
109655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
110655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Browntypedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
111655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
112655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown//===----------------------------------------------------------------------===//
113655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown// Fine-grained control of RegionStoreManager.
114655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown//===----------------------------------------------------------------------===//
115655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
116655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brownnamespace {
117655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brownstruct minimal_features_tag {};
118655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brownstruct maximal_features_tag {};
119655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
120655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brownclass RegionStoreFeatures {
121655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  bool SupportsFields;
122655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brownpublic:
123655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  RegionStoreFeatures(minimal_features_tag) :
124655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    SupportsFields(false) {}
12586de0590b94bcce27e3038c27464bed510bb564aJeff Brown
126655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  RegionStoreFeatures(maximal_features_tag) :
127655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    SupportsFields(true) {}
128655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
129655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  void enableFields(bool t) { SupportsFields = t; }
130655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
131655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  bool supportsFields() const { return SupportsFields; }
132655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown};
133655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown}
13486b1df234397802895771fe14cd8f2813fa43415Svetoslav
13586b1df234397802895771fe14cd8f2813fa43415Svetoslav//===----------------------------------------------------------------------===//
13686b1df234397802895771fe14cd8f2813fa43415Svetoslav// Main RegionStore logic.
13786b1df234397802895771fe14cd8f2813fa43415Svetoslav//===----------------------------------------------------------------------===//
13886b1df234397802895771fe14cd8f2813fa43415Svetoslav
13986b1df234397802895771fe14cd8f2813fa43415Svetoslavnamespace {
14086b1df234397802895771fe14cd8f2813fa43415Svetoslav
14186b1df234397802895771fe14cd8f2813fa43415Svetoslavclass RegionStoreSubRegionMap : public SubRegionMap {
14286b1df234397802895771fe14cd8f2813fa43415Svetoslavpublic:
14386b1df234397802895771fe14cd8f2813fa43415Svetoslav  typedef llvm::ImmutableSet<const MemRegion*> Set;
14486b1df234397802895771fe14cd8f2813fa43415Svetoslav  typedef llvm::DenseMap<const MemRegion*, Set> Map;
14586b1df234397802895771fe14cd8f2813fa43415Svetoslavprivate:
14686b1df234397802895771fe14cd8f2813fa43415Svetoslav  Set::Factory F;
14786b1df234397802895771fe14cd8f2813fa43415Svetoslav  Map M;
14886b1df234397802895771fe14cd8f2813fa43415Svetoslavpublic:
149655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
150655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    Map::iterator I = M.find(Parent);
15186de0590b94bcce27e3038c27464bed510bb564aJeff Brown
15286de0590b94bcce27e3038c27464bed510bb564aJeff Brown    if (I == M.end()) {
15386de0590b94bcce27e3038c27464bed510bb564aJeff Brown      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
154655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown      return true;
15586de0590b94bcce27e3038c27464bed510bb564aJeff Brown    }
15686de0590b94bcce27e3038c27464bed510bb564aJeff Brown
157655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    I->second = F.add(I->second, SubRegion);
158655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    return false;
15986de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
160655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
1619066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
162655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
163655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  ~RegionStoreSubRegionMap() {}
164655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
165655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  const Set *getSubRegions(const MemRegion *Parent) const {
166655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    Map::const_iterator I = M.find(Parent);
167655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    return I == M.end() ? NULL : &I->second;
168655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  }
169655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
170655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
171655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    Map::const_iterator I = M.find(Parent);
172655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
173655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    if (I == M.end())
174655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown      return true;
175655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
176655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    Set S = I->second;
177655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
17886b1df234397802895771fe14cd8f2813fa43415Svetoslav      if (!V.Visit(Parent, *SI))
17986b1df234397802895771fe14cd8f2813fa43415Svetoslav        return false;
18086b1df234397802895771fe14cd8f2813fa43415Svetoslav    }
18186b1df234397802895771fe14cd8f2813fa43415Svetoslav
18286b1df234397802895771fe14cd8f2813fa43415Svetoslav    return true;
18386b1df234397802895771fe14cd8f2813fa43415Svetoslav  }
18486b1df234397802895771fe14cd8f2813fa43415Svetoslav};
18586b1df234397802895771fe14cd8f2813fa43415Svetoslav
18686b1df234397802895771fe14cd8f2813fa43415Svetoslavvoid
18786b1df234397802895771fe14cd8f2813fa43415SvetoslavRegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
18886b1df234397802895771fe14cd8f2813fa43415Svetoslav                                 const SubRegion *R) {
18986b1df234397802895771fe14cd8f2813fa43415Svetoslav  const MemRegion *superR = R->getSuperRegion();
19086b1df234397802895771fe14cd8f2813fa43415Svetoslav  if (add(superR, R))
19186b1df234397802895771fe14cd8f2813fa43415Svetoslav    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
19286b1df234397802895771fe14cd8f2813fa43415Svetoslav      WL.push_back(sr);
19386b1df234397802895771fe14cd8f2813fa43415Svetoslav}
19486b1df234397802895771fe14cd8f2813fa43415Svetoslav
1959066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectclass RegionStoreManager : public StoreManager {
19686b1df234397802895771fe14cd8f2813fa43415Svetoslav  const RegionStoreFeatures Features;
1979066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  RegionBindings::Factory RBFactory;
19886b1df234397802895771fe14cd8f2813fa43415Svetoslav
1999066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Projectpublic:
2009066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
20186de0590b94bcce27e3038c27464bed510bb564aJeff Brown    : StoreManager(mgr),
20286b1df234397802895771fe14cd8f2813fa43415Svetoslav      Features(f),
20386de0590b94bcce27e3038c27464bed510bb564aJeff Brown      RBFactory(mgr.getAllocator()) {}
204655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
205655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  SubRegionMap *getSubRegionMap(Store store) {
20686b1df234397802895771fe14cd8f2813fa43415Svetoslav    return getRegionStoreSubRegionMap(store);
20786de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
20886b1df234397802895771fe14cd8f2813fa43415Svetoslav
209655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
210655e66bceba7595a2b80e7a328433e6ed5dc28a9Jeff Brown
21186b1df234397802895771fe14cd8f2813fa43415Svetoslav  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
21286de0590b94bcce27e3038c27464bed510bb564aJeff Brown  /// getDefaultBinding - Returns an SVal* representing an optional default
21386de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  binding associated with a region and its subregions.
21486de0590b94bcce27e3038c27464bed510bb564aJeff Brown  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
21586de0590b94bcce27e3038c27464bed510bb564aJeff Brown
21686b1df234397802895771fe14cd8f2813fa43415Svetoslav  /// setImplicitDefaultValue - Set the default binding for the provided
21786de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  MemRegion to the value implicitly defined for compound literals when
21886de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  the value is not specified.
21986de0590b94bcce27e3038c27464bed510bb564aJeff Brown  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
22086de0590b94bcce27e3038c27464bed510bb564aJeff Brown
22186de0590b94bcce27e3038c27464bed510bb564aJeff Brown  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
22286de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  type.  'Array' represents the lvalue of the array being decayed
22386de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  to a pointer, and the returned SVal represents the decayed
22486de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  version of that lvalue (i.e., a pointer to the first element of
22586de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  the array).  This is called by ExprEngine when evaluating
22686de0590b94bcce27e3038c27464bed510bb564aJeff Brown  ///  casts from arrays to pointers.
22786de0590b94bcce27e3038c27464bed510bb564aJeff Brown  SVal ArrayToPointer(Loc Array);
22886b1df234397802895771fe14cd8f2813fa43415Svetoslav
22986de0590b94bcce27e3038c27464bed510bb564aJeff Brown  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
23086de0590b94bcce27e3038c27464bed510bb564aJeff Brown  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
23186b1df234397802895771fe14cd8f2813fa43415Svetoslav
23286de0590b94bcce27e3038c27464bed510bb564aJeff Brown  StoreRef getInitialStore(const LocationContext *InitLoc) {
23386de0590b94bcce27e3038c27464bed510bb564aJeff Brown    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
23486de0590b94bcce27e3038c27464bed510bb564aJeff Brown  }
23586de0590b94bcce27e3038c27464bed510bb564aJeff Brown
23686de0590b94bcce27e3038c27464bed510bb564aJeff Brown  //===-------------------------------------------------------------------===//
23786de0590b94bcce27e3038c27464bed510bb564aJeff Brown  // Binding values to regions.
23886de0590b94bcce27e3038c27464bed510bb564aJeff Brown  //===-------------------------------------------------------------------===//
2399066cfe9886ac131c34d59ed0e2d287b0e3c0087The Android Open Source Project  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
240                                        const Expr *Ex,
241                                        unsigned Count,
242                                        RegionBindings B,
243                                        InvalidatedRegions *Invalidated);
244
245  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
246                             const Expr *E, unsigned Count,
247                             InvalidatedSymbols &IS,
248                             const CallOrObjCMessage *Call,
249                             InvalidatedRegions *Invalidated);
250
251public:   // Made public for helper classes.
252
253  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
254                               RegionStoreSubRegionMap &M);
255
256  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
257
258  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
259                     BindingKey::Kind k, SVal V);
260
261  const SVal *lookup(RegionBindings B, BindingKey K);
262  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
263
264  RegionBindings removeBinding(RegionBindings B, BindingKey K);
265  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
266                        BindingKey::Kind k);
267
268  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
269    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
270                        BindingKey::Default);
271  }
272
273public: // Part of public interface to class.
274
275  StoreRef Bind(Store store, Loc LV, SVal V);
276
277  // BindDefault is only used to initialize a region with a default value.
278  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
279    RegionBindings B = GetRegionBindings(store);
280    assert(!lookup(B, R, BindingKey::Default));
281    assert(!lookup(B, R, BindingKey::Direct));
282    return StoreRef(addBinding(B, R, BindingKey::Default, V)
283                      .getRootWithoutRetain(), *this);
284  }
285
286  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
287                               const LocationContext *LC, SVal V);
288
289  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
290
291  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
292    return StoreRef(store, *this);
293  }
294
295  /// BindStruct - Bind a compound value to a structure.
296  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
297
298  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
299
300  /// KillStruct - Set the entire struct to unknown.
301  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
302
303  StoreRef Remove(Store store, Loc LV);
304
305  void incrementReferenceCount(Store store) {
306    GetRegionBindings(store).manualRetain();
307  }
308
309  /// If the StoreManager supports it, decrement the reference count of
310  /// the specified Store object.  If the reference count hits 0, the memory
311  /// associated with the object is recycled.
312  void decrementReferenceCount(Store store) {
313    GetRegionBindings(store).manualRelease();
314  }
315
316  bool includedInBindings(Store store, const MemRegion *region) const;
317
318  /// \brief Return the value bound to specified location in a given state.
319  ///
320  /// The high level logic for this method is this:
321  /// getBinding (L)
322  ///   if L has binding
323  ///     return L's binding
324  ///   else if L is in killset
325  ///     return unknown
326  ///   else
327  ///     if L is on stack or heap
328  ///       return undefined
329  ///     else
330  ///       return symbolic
331  SVal getBinding(Store store, Loc L, QualType T = QualType());
332
333  SVal getBindingForElement(Store store, const ElementRegion *R);
334
335  SVal getBindingForField(Store store, const FieldRegion *R);
336
337  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
338
339  SVal getBindingForVar(Store store, const VarRegion *R);
340
341  SVal getBindingForLazySymbol(const TypedValueRegion *R);
342
343  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
344                                         QualType Ty, const MemRegion *superR);
345
346  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
347                      Store lazyBindingStore);
348
349  /// Get bindings for the values in a struct and return a CompoundVal, used
350  /// when doing struct copy:
351  /// struct s x, y;
352  /// x = y;
353  /// y's value is retrieved by this method.
354  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
355
356  SVal getBindingForArray(Store store, const TypedValueRegion* R);
357
358  /// Used to lazily generate derived symbols for bindings that are defined
359  ///  implicitly by default bindings in a super region.
360  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
361                                                  const MemRegion *superR,
362                                                  const TypedValueRegion *R,
363                                                  QualType Ty);
364
365  /// Get the state and region whose binding this region R corresponds to.
366  std::pair<Store, const MemRegion*>
367  GetLazyBinding(RegionBindings B, const MemRegion *R,
368                 const MemRegion *originalRegion);
369
370  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
371                            const TypedRegion *R);
372
373  //===------------------------------------------------------------------===//
374  // State pruning.
375  //===------------------------------------------------------------------===//
376
377  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
378  ///  It returns a new Store with these values removed.
379  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
380                              SymbolReaper& SymReaper);
381
382  StoreRef enterStackFrame(const ProgramState *state,
383                           const StackFrameContext *frame);
384
385  //===------------------------------------------------------------------===//
386  // Region "extents".
387  //===------------------------------------------------------------------===//
388
389  // FIXME: This method will soon be eliminated; see the note in Store.h.
390  DefinedOrUnknownSVal getSizeInElements(const ProgramState *state,
391                                         const MemRegion* R, QualType EleTy);
392
393  //===------------------------------------------------------------------===//
394  // Utility methods.
395  //===------------------------------------------------------------------===//
396
397  static inline RegionBindings GetRegionBindings(Store store) {
398    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
399  }
400
401  void print(Store store, raw_ostream &Out, const char* nl,
402             const char *sep);
403
404  void iterBindings(Store store, BindingsHandler& f) {
405    RegionBindings B = GetRegionBindings(store);
406    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
407      const BindingKey &K = I.getKey();
408      if (!K.isDirect())
409        continue;
410      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
411        // FIXME: Possibly incorporate the offset?
412        if (!f.HandleBinding(*this, store, R, I.getData()))
413          return;
414      }
415    }
416  }
417};
418
419} // end anonymous namespace
420
421//===----------------------------------------------------------------------===//
422// RegionStore creation.
423//===----------------------------------------------------------------------===//
424
425StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
426  RegionStoreFeatures F = maximal_features_tag();
427  return new RegionStoreManager(StMgr, F);
428}
429
430StoreManager *
431ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
432  RegionStoreFeatures F = minimal_features_tag();
433  F.enableFields(true);
434  return new RegionStoreManager(StMgr, F);
435}
436
437
438RegionStoreSubRegionMap*
439RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
440  RegionBindings B = GetRegionBindings(store);
441  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
442
443  SmallVector<const SubRegion*, 10> WL;
444
445  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
446    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
447      M->process(WL, R);
448
449  // We also need to record in the subregion map "intermediate" regions that
450  // don't have direct bindings but are super regions of those that do.
451  while (!WL.empty()) {
452    const SubRegion *R = WL.back();
453    WL.pop_back();
454    M->process(WL, R);
455  }
456
457  return M;
458}
459
460//===----------------------------------------------------------------------===//
461// Region Cluster analysis.
462//===----------------------------------------------------------------------===//
463
464namespace {
465template <typename DERIVED>
466class ClusterAnalysis  {
467protected:
468  typedef BumpVector<BindingKey> RegionCluster;
469  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
470  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
471  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
472    WorkList;
473
474  BumpVectorContext BVC;
475  ClusterMap ClusterM;
476  WorkList WL;
477
478  RegionStoreManager &RM;
479  ASTContext &Ctx;
480  SValBuilder &svalBuilder;
481
482  RegionBindings B;
483
484  const bool includeGlobals;
485
486public:
487  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
488                  RegionBindings b, const bool includeGlobals)
489    : RM(rm), Ctx(StateMgr.getContext()),
490      svalBuilder(StateMgr.getSValBuilder()),
491      B(b), includeGlobals(includeGlobals) {}
492
493  RegionBindings getRegionBindings() const { return B; }
494
495  RegionCluster &AddToCluster(BindingKey K) {
496    const MemRegion *R = K.getRegion();
497    const MemRegion *baseR = R->getBaseRegion();
498    RegionCluster &C = getCluster(baseR);
499    C.push_back(K, BVC);
500    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
501    return C;
502  }
503
504  bool isVisited(const MemRegion *R) {
505    return (bool) Visited[&getCluster(R->getBaseRegion())];
506  }
507
508  RegionCluster& getCluster(const MemRegion *R) {
509    RegionCluster *&CRef = ClusterM[R];
510    if (!CRef) {
511      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
512      CRef = new (Mem) RegionCluster(BVC, 10);
513    }
514    return *CRef;
515  }
516
517  void GenerateClusters() {
518      // Scan the entire set of bindings and make the region clusters.
519    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
520      RegionCluster &C = AddToCluster(RI.getKey());
521      if (const MemRegion *R = RI.getData().getAsRegion()) {
522        // Generate a cluster, but don't add the region to the cluster
523        // if there aren't any bindings.
524        getCluster(R->getBaseRegion());
525      }
526      if (includeGlobals) {
527        const MemRegion *R = RI.getKey().getRegion();
528        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
529          AddToWorkList(R, C);
530      }
531    }
532  }
533
534  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
535    if (unsigned &visited = Visited[&C])
536      return false;
537    else
538      visited = 1;
539
540    WL.push_back(std::make_pair(R, &C));
541    return true;
542  }
543
544  bool AddToWorkList(BindingKey K) {
545    return AddToWorkList(K.getRegion());
546  }
547
548  bool AddToWorkList(const MemRegion *R) {
549    const MemRegion *baseR = R->getBaseRegion();
550    return AddToWorkList(baseR, getCluster(baseR));
551  }
552
553  void RunWorkList() {
554    while (!WL.empty()) {
555      const MemRegion *baseR;
556      RegionCluster *C;
557      llvm::tie(baseR, C) = WL.back();
558      WL.pop_back();
559
560        // First visit the cluster.
561      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
562
563        // Next, visit the base region.
564      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
565    }
566  }
567
568public:
569  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
570  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
571  void VisitBaseRegion(const MemRegion *baseR) {}
572};
573}
574
575//===----------------------------------------------------------------------===//
576// Binding invalidation.
577//===----------------------------------------------------------------------===//
578
579void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
580                                                 const MemRegion *R,
581                                                 RegionStoreSubRegionMap &M) {
582
583  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
584    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
585         I != E; ++I)
586      RemoveSubRegionBindings(B, *I, M);
587
588  B = removeBinding(B, R);
589}
590
591namespace {
592class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
593{
594  const Expr *Ex;
595  unsigned Count;
596  StoreManager::InvalidatedSymbols &IS;
597  StoreManager::InvalidatedRegions *Regions;
598public:
599  invalidateRegionsWorker(RegionStoreManager &rm,
600                          ProgramStateManager &stateMgr,
601                          RegionBindings b,
602                          const Expr *ex, unsigned count,
603                          StoreManager::InvalidatedSymbols &is,
604                          StoreManager::InvalidatedRegions *r,
605                          bool includeGlobals)
606    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
607      Ex(ex), Count(count), IS(is), Regions(r) {}
608
609  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
610  void VisitBaseRegion(const MemRegion *baseR);
611
612private:
613  void VisitBinding(SVal V);
614};
615}
616
617void invalidateRegionsWorker::VisitBinding(SVal V) {
618  // A symbol?  Mark it touched by the invalidation.
619  if (SymbolRef Sym = V.getAsSymbol())
620    IS.insert(Sym);
621
622  if (const MemRegion *R = V.getAsRegion()) {
623    AddToWorkList(R);
624    return;
625  }
626
627  // Is it a LazyCompoundVal?  All references get invalidated as well.
628  if (const nonloc::LazyCompoundVal *LCS =
629        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
630
631    const MemRegion *LazyR = LCS->getRegion();
632    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
633
634    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
635      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
636      if (baseR && baseR->isSubRegionOf(LazyR))
637        VisitBinding(RI.getData());
638    }
639
640    return;
641  }
642}
643
644void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
645                                           BindingKey *I, BindingKey *E) {
646  for ( ; I != E; ++I) {
647    // Get the old binding.  Is it a region?  If so, add it to the worklist.
648    const BindingKey &K = *I;
649    if (const SVal *V = RM.lookup(B, K))
650      VisitBinding(*V);
651
652    B = RM.removeBinding(B, K);
653  }
654}
655
656void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
657  // Symbolic region?  Mark that symbol touched by the invalidation.
658  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
659    IS.insert(SR->getSymbol());
660
661  // BlockDataRegion?  If so, invalidate captured variables that are passed
662  // by reference.
663  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
664    for (BlockDataRegion::referenced_vars_iterator
665         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
666         BI != BE; ++BI) {
667      const VarRegion *VR = *BI;
668      const VarDecl *VD = VR->getDecl();
669      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
670        AddToWorkList(VR);
671    }
672    return;
673  }
674
675  // Otherwise, we have a normal data region. Record that we touched the region.
676  if (Regions)
677    Regions->push_back(baseR);
678
679  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
680    // Invalidate the region by setting its default value to
681    // conjured symbol. The type of the symbol is irrelavant.
682    DefinedOrUnknownSVal V =
683      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
684    B = RM.addBinding(B, baseR, BindingKey::Default, V);
685    return;
686  }
687
688  if (!baseR->isBoundable())
689    return;
690
691  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
692  QualType T = TR->getValueType();
693
694    // Invalidate the binding.
695  if (T->isStructureOrClassType()) {
696    // Invalidate the region by setting its default value to
697    // conjured symbol. The type of the symbol is irrelavant.
698    DefinedOrUnknownSVal V =
699      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
700    B = RM.addBinding(B, baseR, BindingKey::Default, V);
701    return;
702  }
703
704  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
705      // Set the default value of the array to conjured symbol.
706    DefinedOrUnknownSVal V =
707    svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
708    B = RM.addBinding(B, baseR, BindingKey::Default, V);
709    return;
710  }
711
712  if (includeGlobals &&
713      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
714    // If the region is a global and we are invalidating all globals,
715    // just erase the entry.  This causes all globals to be lazily
716    // symbolicated from the same base symbol.
717    B = RM.removeBinding(B, baseR);
718    return;
719  }
720
721
722  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T,Count);
723  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
724  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
725}
726
727RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
728                                                          const Expr *Ex,
729                                                          unsigned Count,
730                                                          RegionBindings B,
731                                            InvalidatedRegions *Invalidated) {
732  // Bind the globals memory space to a new symbol that we will use to derive
733  // the bindings for all globals.
734  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
735  SVal V =
736      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
737          /* symbol type, doesn't matter */ Ctx.IntTy,
738          Count);
739
740  B = removeBinding(B, GS);
741  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
742
743  // Even if there are no bindings in the global scope, we still need to
744  // record that we touched it.
745  if (Invalidated)
746    Invalidated->push_back(GS);
747
748  return B;
749}
750
751StoreRef RegionStoreManager::invalidateRegions(Store store,
752                                            ArrayRef<const MemRegion *> Regions,
753                                               const Expr *Ex, unsigned Count,
754                                               InvalidatedSymbols &IS,
755                                               const CallOrObjCMessage *Call,
756                                              InvalidatedRegions *Invalidated) {
757  invalidateRegionsWorker W(*this, StateMgr,
758                            RegionStoreManager::GetRegionBindings(store),
759                            Ex, Count, IS, Invalidated, false);
760
761  // Scan the bindings and generate the clusters.
762  W.GenerateClusters();
763
764  // Add the regions to the worklist.
765  for (ArrayRef<const MemRegion *>::iterator
766       I = Regions.begin(), E = Regions.end(); I != E; ++I)
767    W.AddToWorkList(*I);
768
769  W.RunWorkList();
770
771  // Return the new bindings.
772  RegionBindings B = W.getRegionBindings();
773
774  // For all globals which are not static nor immutable: determine which global
775  // regions should be invalidated and invalidate them.
776  // TODO: This could possibly be more precise with modules.
777  //
778  // System calls invalidate only system globals.
779  if (Call && Call->isInSystemHeader()) {
780    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
781                               Ex, Count, B, Invalidated);
782  // Internal calls might invalidate both system and internal globals.
783  } else {
784    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
785                               Ex, Count, B, Invalidated);
786    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
787                               Ex, Count, B, Invalidated);
788  }
789
790  return StoreRef(B.getRootWithoutRetain(), *this);
791}
792
793//===----------------------------------------------------------------------===//
794// Extents for regions.
795//===----------------------------------------------------------------------===//
796
797DefinedOrUnknownSVal
798RegionStoreManager::getSizeInElements(const ProgramState *state,
799                                      const MemRegion *R,
800                                      QualType EleTy) {
801  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
802  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
803  if (!SizeInt)
804    return UnknownVal();
805
806  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
807
808  if (Ctx.getAsVariableArrayType(EleTy)) {
809    // FIXME: We need to track extra state to properly record the size
810    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
811    // we don't have a divide-by-zero below.
812    return UnknownVal();
813  }
814
815  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
816
817  // If a variable is reinterpreted as a type that doesn't fit into a larger
818  // type evenly, round it down.
819  // This is a signed value, since it's used in arithmetic with signed indices.
820  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
821}
822
823//===----------------------------------------------------------------------===//
824// Location and region casting.
825//===----------------------------------------------------------------------===//
826
827/// ArrayToPointer - Emulates the "decay" of an array to a pointer
828///  type.  'Array' represents the lvalue of the array being decayed
829///  to a pointer, and the returned SVal represents the decayed
830///  version of that lvalue (i.e., a pointer to the first element of
831///  the array).  This is called by ExprEngine when evaluating casts
832///  from arrays to pointers.
833SVal RegionStoreManager::ArrayToPointer(Loc Array) {
834  if (!isa<loc::MemRegionVal>(Array))
835    return UnknownVal();
836
837  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
838  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
839
840  if (!ArrayR)
841    return UnknownVal();
842
843  // Strip off typedefs from the ArrayRegion's ValueType.
844  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
845  const ArrayType *AT = cast<ArrayType>(T);
846  T = AT->getElementType();
847
848  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
849  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
850}
851
852SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
853  const CXXRecordDecl *baseDecl;
854  if (baseType->isPointerType())
855    baseDecl = baseType->getCXXRecordDeclForPointerType();
856  else
857    baseDecl = baseType->getAsCXXRecordDecl();
858
859  assert(baseDecl && "not a CXXRecordDecl?");
860
861  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
862  if (!derivedRegVal)
863    return derived;
864
865  const MemRegion *baseReg =
866    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
867
868  return loc::MemRegionVal(baseReg);
869}
870
871//===----------------------------------------------------------------------===//
872// Loading values from regions.
873//===----------------------------------------------------------------------===//
874
875Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
876                                                    const MemRegion *R) {
877
878  if (const SVal *V = lookup(B, R, BindingKey::Direct))
879    return *V;
880
881  return Optional<SVal>();
882}
883
884Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
885                                                     const MemRegion *R) {
886  if (R->isBoundable())
887    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
888      if (TR->getValueType()->isUnionType())
889        return UnknownVal();
890
891  if (const SVal *V = lookup(B, R, BindingKey::Default))
892    return *V;
893
894  return Optional<SVal>();
895}
896
897SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
898  assert(!isa<UnknownVal>(L) && "location unknown");
899  assert(!isa<UndefinedVal>(L) && "location undefined");
900
901  // For access to concrete addresses, return UnknownVal.  Checks
902  // for null dereferences (and similar errors) are done by checkers, not
903  // the Store.
904  // FIXME: We can consider lazily symbolicating such memory, but we really
905  // should defer this when we can reason easily about symbolicating arrays
906  // of bytes.
907  if (isa<loc::ConcreteInt>(L)) {
908    return UnknownVal();
909  }
910  if (!isa<loc::MemRegionVal>(L)) {
911    return UnknownVal();
912  }
913
914  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
915
916  if (isa<AllocaRegion>(MR) ||
917      isa<SymbolicRegion>(MR) ||
918      isa<CodeTextRegion>(MR)) {
919    if (T.isNull()) {
920      const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
921      T = SR->getSymbol()->getType(Ctx);
922    }
923    MR = GetElementZeroRegion(MR, T);
924  }
925
926  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
927  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
928  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
929  QualType RTy = R->getValueType();
930
931  // FIXME: We should eventually handle funny addressing.  e.g.:
932  //
933  //   int x = ...;
934  //   int *p = &x;
935  //   char *q = (char*) p;
936  //   char c = *q;  // returns the first byte of 'x'.
937  //
938  // Such funny addressing will occur due to layering of regions.
939
940  if (RTy->isStructureOrClassType())
941    return getBindingForStruct(store, R);
942
943  // FIXME: Handle unions.
944  if (RTy->isUnionType())
945    return UnknownVal();
946
947  if (RTy->isArrayType())
948    return getBindingForArray(store, R);
949
950  // FIXME: handle Vector types.
951  if (RTy->isVectorType())
952    return UnknownVal();
953
954  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
955    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
956
957  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
958    // FIXME: Here we actually perform an implicit conversion from the loaded
959    // value to the element type.  Eventually we want to compose these values
960    // more intelligently.  For example, an 'element' can encompass multiple
961    // bound regions (e.g., several bound bytes), or could be a subset of
962    // a larger value.
963    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
964  }
965
966  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
967    // FIXME: Here we actually perform an implicit conversion from the loaded
968    // value to the ivar type.  What we should model is stores to ivars
969    // that blow past the extent of the ivar.  If the address of the ivar is
970    // reinterpretted, it is possible we stored a different value that could
971    // fit within the ivar.  Either we need to cast these when storing them
972    // or reinterpret them lazily (as we do here).
973    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
974  }
975
976  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
977    // FIXME: Here we actually perform an implicit conversion from the loaded
978    // value to the variable type.  What we should model is stores to variables
979    // that blow past the extent of the variable.  If the address of the
980    // variable is reinterpretted, it is possible we stored a different value
981    // that could fit within the variable.  Either we need to cast these when
982    // storing them or reinterpret them lazily (as we do here).
983    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
984  }
985
986  RegionBindings B = GetRegionBindings(store);
987  const SVal *V = lookup(B, R, BindingKey::Direct);
988
989  // Check if the region has a binding.
990  if (V)
991    return *V;
992
993  // The location does not have a bound value.  This means that it has
994  // the value it had upon its creation and/or entry to the analyzed
995  // function/method.  These are either symbolic values or 'undefined'.
996  if (R->hasStackNonParametersStorage()) {
997    // All stack variables are considered to have undefined values
998    // upon creation.  All heap allocated blocks are considered to
999    // have undefined values as well unless they are explicitly bound
1000    // to specific values.
1001    return UndefinedVal();
1002  }
1003
1004  // All other values are symbolic.
1005  return svalBuilder.getRegionValueSymbolVal(R);
1006}
1007
1008std::pair<Store, const MemRegion *>
1009RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1010                                   const MemRegion *originalRegion) {
1011
1012  if (originalRegion != R) {
1013    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1014      if (const nonloc::LazyCompoundVal *V =
1015          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1016        return std::make_pair(V->getStore(), V->getRegion());
1017    }
1018  }
1019
1020  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1021    const std::pair<Store, const MemRegion *> &X =
1022      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1023
1024    if (X.second)
1025      return std::make_pair(X.first,
1026                            MRMgr.getElementRegionWithSuper(ER, X.second));
1027  }
1028  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1029    const std::pair<Store, const MemRegion *> &X =
1030      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1031
1032    if (X.second)
1033      return std::make_pair(X.first,
1034                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1035  }
1036  // C++ base object region is another kind of region that we should blast
1037  // through to look for lazy compound value. It is like a field region.
1038  else if (const CXXBaseObjectRegion *baseReg =
1039                            dyn_cast<CXXBaseObjectRegion>(R)) {
1040    const std::pair<Store, const MemRegion *> &X =
1041      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1042
1043    if (X.second)
1044      return std::make_pair(X.first,
1045                     MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1046  }
1047
1048  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1049  // possible for a valid lazy binding.
1050  return std::make_pair((Store) 0, (const MemRegion *) 0);
1051}
1052
1053SVal RegionStoreManager::getBindingForElement(Store store,
1054                                         const ElementRegion* R) {
1055  // Check if the region has a binding.
1056  RegionBindings B = GetRegionBindings(store);
1057  if (const Optional<SVal> &V = getDirectBinding(B, R))
1058    return *V;
1059
1060  const MemRegion* superR = R->getSuperRegion();
1061
1062  // Check if the region is an element region of a string literal.
1063  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1064    // FIXME: Handle loads from strings where the literal is treated as
1065    // an integer, e.g., *((unsigned int*)"hello")
1066    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1067    if (T != Ctx.getCanonicalType(R->getElementType()))
1068      return UnknownVal();
1069
1070    const StringLiteral *Str = StrR->getStringLiteral();
1071    SVal Idx = R->getIndex();
1072    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1073      int64_t i = CI->getValue().getSExtValue();
1074      // Abort on string underrun.  This can be possible by arbitrary
1075      // clients of getBindingForElement().
1076      if (i < 0)
1077        return UndefinedVal();
1078      int64_t length = Str->getLength();
1079      // Technically, only i == length is guaranteed to be null.
1080      // However, such overflows should be caught before reaching this point;
1081      // the only time such an access would be made is if a string literal was
1082      // used to initialize a larger array.
1083      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1084      return svalBuilder.makeIntVal(c, T);
1085    }
1086  }
1087
1088  // Check for loads from a code text region.  For such loads, just give up.
1089  if (isa<CodeTextRegion>(superR))
1090    return UnknownVal();
1091
1092  // Handle the case where we are indexing into a larger scalar object.
1093  // For example, this handles:
1094  //   int x = ...
1095  //   char *y = &x;
1096  //   return *y;
1097  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1098  const RegionRawOffset &O = R->getAsArrayOffset();
1099
1100  // If we cannot reason about the offset, return an unknown value.
1101  if (!O.getRegion())
1102    return UnknownVal();
1103
1104  if (const TypedValueRegion *baseR =
1105        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1106    QualType baseT = baseR->getValueType();
1107    if (baseT->isScalarType()) {
1108      QualType elemT = R->getElementType();
1109      if (elemT->isScalarType()) {
1110        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1111          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1112            if (SymbolRef parentSym = V->getAsSymbol())
1113              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1114
1115            if (V->isUnknownOrUndef())
1116              return *V;
1117            // Other cases: give up.  We are indexing into a larger object
1118            // that has some value, but we don't know how to handle that yet.
1119            return UnknownVal();
1120          }
1121        }
1122      }
1123    }
1124  }
1125  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1126                                           superR);
1127}
1128
1129SVal RegionStoreManager::getBindingForField(Store store,
1130                                       const FieldRegion* R) {
1131
1132  // Check if the region has a binding.
1133  RegionBindings B = GetRegionBindings(store);
1134  if (const Optional<SVal> &V = getDirectBinding(B, R))
1135    return *V;
1136
1137  QualType Ty = R->getValueType();
1138  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1139}
1140
1141Optional<SVal>
1142RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1143                                                     const MemRegion *superR,
1144                                                     const TypedValueRegion *R,
1145                                                     QualType Ty) {
1146
1147  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1148    const SVal &val = D.getValue();
1149    if (SymbolRef parentSym = val.getAsSymbol())
1150      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1151
1152    if (val.isZeroConstant())
1153      return svalBuilder.makeZeroVal(Ty);
1154
1155    if (val.isUnknownOrUndef())
1156      return val;
1157
1158    // Lazy bindings are handled later.
1159    if (isa<nonloc::LazyCompoundVal>(val))
1160      return Optional<SVal>();
1161
1162    llvm_unreachable("Unknown default value");
1163  }
1164
1165  return Optional<SVal>();
1166}
1167
1168SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1169                                             Store lazyBindingStore) {
1170  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1171    return getBindingForElement(lazyBindingStore, ER);
1172
1173  return getBindingForField(lazyBindingStore,
1174                            cast<FieldRegion>(lazyBindingRegion));
1175}
1176
1177SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1178                                                      const TypedValueRegion *R,
1179                                                      QualType Ty,
1180                                                      const MemRegion *superR) {
1181
1182  // At this point we have already checked in either getBindingForElement or
1183  // getBindingForField if 'R' has a direct binding.
1184
1185  RegionBindings B = GetRegionBindings(store);
1186
1187  while (superR) {
1188    if (const Optional<SVal> &D =
1189        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1190      return *D;
1191
1192    // If our super region is a field or element itself, walk up the region
1193    // hierarchy to see if there is a default value installed in an ancestor.
1194    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1195      superR = SR->getSuperRegion();
1196      continue;
1197    }
1198    break;
1199  }
1200
1201  // Lazy binding?
1202  Store lazyBindingStore = NULL;
1203  const MemRegion *lazyBindingRegion = NULL;
1204  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1205
1206  if (lazyBindingRegion)
1207    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1208
1209  if (R->hasStackNonParametersStorage()) {
1210    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1211      // Currently we don't reason specially about Clang-style vectors.  Check
1212      // if superR is a vector and if so return Unknown.
1213      if (const TypedValueRegion *typedSuperR =
1214            dyn_cast<TypedValueRegion>(superR)) {
1215        if (typedSuperR->getValueType()->isVectorType())
1216          return UnknownVal();
1217      }
1218
1219      // FIXME: We also need to take ElementRegions with symbolic indexes into
1220      // account.
1221      if (!ER->getIndex().isConstant())
1222        return UnknownVal();
1223    }
1224
1225    return UndefinedVal();
1226  }
1227
1228  // All other values are symbolic.
1229  return svalBuilder.getRegionValueSymbolVal(R);
1230}
1231
1232SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1233                                               const ObjCIvarRegion* R) {
1234
1235    // Check if the region has a binding.
1236  RegionBindings B = GetRegionBindings(store);
1237
1238  if (const Optional<SVal> &V = getDirectBinding(B, R))
1239    return *V;
1240
1241  const MemRegion *superR = R->getSuperRegion();
1242
1243  // Check if the super region has a default binding.
1244  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1245    if (SymbolRef parentSym = V->getAsSymbol())
1246      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1247
1248    // Other cases: give up.
1249    return UnknownVal();
1250  }
1251
1252  return getBindingForLazySymbol(R);
1253}
1254
1255SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1256
1257  // Check if the region has a binding.
1258  RegionBindings B = GetRegionBindings(store);
1259
1260  if (const Optional<SVal> &V = getDirectBinding(B, R))
1261    return *V;
1262
1263  // Lazily derive a value for the VarRegion.
1264  const VarDecl *VD = R->getDecl();
1265  QualType T = VD->getType();
1266  const MemSpaceRegion *MS = R->getMemorySpace();
1267
1268  if (isa<UnknownSpaceRegion>(MS) ||
1269      isa<StackArgumentsSpaceRegion>(MS))
1270    return svalBuilder.getRegionValueSymbolVal(R);
1271
1272  if (isa<GlobalsSpaceRegion>(MS)) {
1273    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1274      // Is 'VD' declared constant?  If so, retrieve the constant value.
1275      QualType CT = Ctx.getCanonicalType(T);
1276      if (CT.isConstQualified()) {
1277        const Expr *Init = VD->getInit();
1278        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1279        if (Init)
1280          if (const IntegerLiteral *IL =
1281              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1282            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1283            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1284          }
1285      }
1286
1287      if (const Optional<SVal> &V
1288            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1289        return V.getValue();
1290
1291      return svalBuilder.getRegionValueSymbolVal(R);
1292    }
1293
1294    if (T->isIntegerType())
1295      return svalBuilder.makeIntVal(0, T);
1296    if (T->isPointerType())
1297      return svalBuilder.makeNull();
1298
1299    return UnknownVal();
1300  }
1301
1302  return UndefinedVal();
1303}
1304
1305SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1306  // All other values are symbolic.
1307  return svalBuilder.getRegionValueSymbolVal(R);
1308}
1309
1310SVal RegionStoreManager::getBindingForStruct(Store store,
1311                                        const TypedValueRegion* R) {
1312  QualType T = R->getValueType();
1313  assert(T->isStructureOrClassType());
1314  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1315}
1316
1317SVal RegionStoreManager::getBindingForArray(Store store,
1318                                       const TypedValueRegion * R) {
1319  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1320  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1321}
1322
1323bool RegionStoreManager::includedInBindings(Store store,
1324                                            const MemRegion *region) const {
1325  RegionBindings B = GetRegionBindings(store);
1326  region = region->getBaseRegion();
1327
1328  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1329    const BindingKey &K = it.getKey();
1330    if (region == K.getRegion())
1331      return true;
1332    const SVal &D = it.getData();
1333    if (const MemRegion *r = D.getAsRegion())
1334      if (r == region)
1335        return true;
1336  }
1337  return false;
1338}
1339
1340//===----------------------------------------------------------------------===//
1341// Binding values to regions.
1342//===----------------------------------------------------------------------===//
1343
1344StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1345  if (isa<loc::MemRegionVal>(L))
1346    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1347      return StoreRef(removeBinding(GetRegionBindings(store),
1348                                    R).getRootWithoutRetain(),
1349                      *this);
1350
1351  return StoreRef(store, *this);
1352}
1353
1354StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1355  if (isa<loc::ConcreteInt>(L))
1356    return StoreRef(store, *this);
1357
1358  // If we get here, the location should be a region.
1359  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1360
1361  // Check if the region is a struct region.
1362  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
1363    if (TR->getValueType()->isStructureOrClassType())
1364      return BindStruct(store, TR, V);
1365
1366  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1367    if (ER->getIndex().isZeroConstant()) {
1368      if (const TypedValueRegion *superR =
1369            dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1370        QualType superTy = superR->getValueType();
1371        // For now, just invalidate the fields of the struct/union/class.
1372        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1373        // FIXME: Precisely handle the fields of the record.
1374        if (superTy->isStructureOrClassType())
1375          return KillStruct(store, superR, UnknownVal());
1376      }
1377    }
1378  }
1379  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1380    // Binding directly to a symbolic region should be treated as binding
1381    // to element 0.
1382    QualType T = SR->getSymbol()->getType(Ctx);
1383
1384    // FIXME: Is this the right way to handle symbols that are references?
1385    if (const PointerType *PT = T->getAs<PointerType>())
1386      T = PT->getPointeeType();
1387    else
1388      T = T->getAs<ReferenceType>()->getPointeeType();
1389
1390    R = GetElementZeroRegion(SR, T);
1391  }
1392
1393  // Perform the binding.
1394  RegionBindings B = GetRegionBindings(store);
1395  return StoreRef(addBinding(B, R, BindingKey::Direct,
1396                             V).getRootWithoutRetain(), *this);
1397}
1398
1399StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1400                                      SVal InitVal) {
1401
1402  QualType T = VR->getDecl()->getType();
1403
1404  if (T->isArrayType())
1405    return BindArray(store, VR, InitVal);
1406  if (T->isStructureOrClassType())
1407    return BindStruct(store, VR, InitVal);
1408
1409  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1410}
1411
1412// FIXME: this method should be merged into Bind().
1413StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1414                                                 const CompoundLiteralExpr *CL,
1415                                                 const LocationContext *LC,
1416                                                 SVal V) {
1417  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1418              V);
1419}
1420
1421StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1422                                                     const MemRegion *R,
1423                                                     QualType T) {
1424  RegionBindings B = GetRegionBindings(store);
1425  SVal V;
1426
1427  if (Loc::isLocType(T))
1428    V = svalBuilder.makeNull();
1429  else if (T->isIntegerType())
1430    V = svalBuilder.makeZeroVal(T);
1431  else if (T->isStructureOrClassType() || T->isArrayType()) {
1432    // Set the default value to a zero constant when it is a structure
1433    // or array.  The type doesn't really matter.
1434    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1435  }
1436  else {
1437    // We can't represent values of this type, but we still need to set a value
1438    // to record that the region has been initialized.
1439    // If this assertion ever fires, a new case should be added above -- we
1440    // should know how to default-initialize any value we can symbolicate.
1441    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1442    V = UnknownVal();
1443  }
1444
1445  return StoreRef(addBinding(B, R, BindingKey::Default,
1446                             V).getRootWithoutRetain(), *this);
1447}
1448
1449StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1450                                       SVal Init) {
1451
1452  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1453  QualType ElementTy = AT->getElementType();
1454  Optional<uint64_t> Size;
1455
1456  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1457    Size = CAT->getSize().getZExtValue();
1458
1459  // Check if the init expr is a string literal.
1460  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1461    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1462
1463    // Treat the string as a lazy compound value.
1464    nonloc::LazyCompoundVal LCV =
1465      cast<nonloc::LazyCompoundVal>(svalBuilder.
1466                                makeLazyCompoundVal(StoreRef(store, *this), S));
1467    return CopyLazyBindings(LCV, store, R);
1468  }
1469
1470  // Handle lazy compound values.
1471  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1472    return CopyLazyBindings(*LCV, store, R);
1473
1474  // Remaining case: explicit compound values.
1475
1476  if (Init.isUnknown())
1477    return setImplicitDefaultValue(store, R, ElementTy);
1478
1479  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1480  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1481  uint64_t i = 0;
1482
1483  StoreRef newStore(store, *this);
1484  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1485    // The init list might be shorter than the array length.
1486    if (VI == VE)
1487      break;
1488
1489    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1490    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1491
1492    if (ElementTy->isStructureOrClassType())
1493      newStore = BindStruct(newStore.getStore(), ER, *VI);
1494    else if (ElementTy->isArrayType())
1495      newStore = BindArray(newStore.getStore(), ER, *VI);
1496    else
1497      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1498  }
1499
1500  // If the init list is shorter than the array length, set the
1501  // array default value.
1502  if (Size.hasValue() && i < Size.getValue())
1503    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1504
1505  return newStore;
1506}
1507
1508StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1509                                        SVal V) {
1510
1511  if (!Features.supportsFields())
1512    return StoreRef(store, *this);
1513
1514  QualType T = R->getValueType();
1515  assert(T->isStructureOrClassType());
1516
1517  const RecordType* RT = T->getAs<RecordType>();
1518  RecordDecl *RD = RT->getDecl();
1519
1520  if (!RD->isCompleteDefinition())
1521    return StoreRef(store, *this);
1522
1523  // Handle lazy compound values.
1524  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1525    return CopyLazyBindings(*LCV, store, R);
1526
1527  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1528  // that we are binding symbolic struct value. Kill the field values, and if
1529  // the value is symbolic go and bind it as a "default" binding.
1530  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1531    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1532    return KillStruct(store, R, SV);
1533  }
1534
1535  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1536  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1537
1538  RecordDecl::field_iterator FI, FE;
1539  StoreRef newStore(store, *this);
1540
1541  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1542
1543    if (VI == VE)
1544      break;
1545
1546    // Skip any unnamed bitfields to stay in sync with the initializers.
1547    if ((*FI)->isUnnamedBitfield())
1548      continue;
1549
1550    QualType FTy = (*FI)->getType();
1551    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1552
1553    if (FTy->isArrayType())
1554      newStore = BindArray(newStore.getStore(), FR, *VI);
1555    else if (FTy->isStructureOrClassType())
1556      newStore = BindStruct(newStore.getStore(), FR, *VI);
1557    else
1558      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1559    ++VI;
1560  }
1561
1562  // There may be fewer values in the initialize list than the fields of struct.
1563  if (FI != FE) {
1564    RegionBindings B = GetRegionBindings(newStore.getStore());
1565    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1566    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1567  }
1568
1569  return newStore;
1570}
1571
1572StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1573                                     SVal DefaultVal) {
1574  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1575
1576  // The BindingKey may be "invalid" if we cannot handle the region binding
1577  // explicitly.  One example is something like array[index], where index
1578  // is a symbolic value.  In such cases, we want to invalidate the entire
1579  // array, as the index assignment could have been to any element.  In
1580  // the case of nested symbolic indices, we need to march up the region
1581  // hierarchy untile we reach a region whose binding we can reason about.
1582  const SubRegion *subReg = R;
1583
1584  while (!key.isValid()) {
1585    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1586      subReg = tmp;
1587      key = BindingKey::Make(tmp, BindingKey::Default);
1588    }
1589    else
1590      break;
1591  }
1592
1593  // Remove the old bindings, using 'subReg' as the root of all regions
1594  // we will invalidate.
1595  RegionBindings B = GetRegionBindings(store);
1596  llvm::OwningPtr<RegionStoreSubRegionMap>
1597    SubRegions(getRegionStoreSubRegionMap(store));
1598  RemoveSubRegionBindings(B, subReg, *SubRegions);
1599
1600  // Set the default value of the struct region to "unknown".
1601  if (!key.isValid())
1602    return StoreRef(B.getRootWithoutRetain(), *this);
1603
1604  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1605}
1606
1607StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1608                                              Store store,
1609                                              const TypedRegion *R) {
1610
1611  // Nuke the old bindings stemming from R.
1612  RegionBindings B = GetRegionBindings(store);
1613
1614  llvm::OwningPtr<RegionStoreSubRegionMap>
1615    SubRegions(getRegionStoreSubRegionMap(store));
1616
1617  // B and DVM are updated after the call to RemoveSubRegionBindings.
1618  RemoveSubRegionBindings(B, R, *SubRegions.get());
1619
1620  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1621  // results in a zero-copy algorithm.
1622  return StoreRef(addBinding(B, R, BindingKey::Default,
1623                             V).getRootWithoutRetain(), *this);
1624}
1625
1626//===----------------------------------------------------------------------===//
1627// "Raw" retrievals and bindings.
1628//===----------------------------------------------------------------------===//
1629
1630
1631RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1632                                              SVal V) {
1633  if (!K.isValid())
1634    return B;
1635  return RBFactory.add(B, K, V);
1636}
1637
1638RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1639                                              const MemRegion *R,
1640                                              BindingKey::Kind k, SVal V) {
1641  return addBinding(B, BindingKey::Make(R, k), V);
1642}
1643
1644const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1645  if (!K.isValid())
1646    return NULL;
1647  return B.lookup(K);
1648}
1649
1650const SVal *RegionStoreManager::lookup(RegionBindings B,
1651                                       const MemRegion *R,
1652                                       BindingKey::Kind k) {
1653  return lookup(B, BindingKey::Make(R, k));
1654}
1655
1656RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1657                                                 BindingKey K) {
1658  if (!K.isValid())
1659    return B;
1660  return RBFactory.remove(B, K);
1661}
1662
1663RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1664                                                 const MemRegion *R,
1665                                                BindingKey::Kind k){
1666  return removeBinding(B, BindingKey::Make(R, k));
1667}
1668
1669//===----------------------------------------------------------------------===//
1670// State pruning.
1671//===----------------------------------------------------------------------===//
1672
1673namespace {
1674class removeDeadBindingsWorker :
1675  public ClusterAnalysis<removeDeadBindingsWorker> {
1676  SmallVector<const SymbolicRegion*, 12> Postponed;
1677  SymbolReaper &SymReaper;
1678  const StackFrameContext *CurrentLCtx;
1679
1680public:
1681  removeDeadBindingsWorker(RegionStoreManager &rm,
1682                           ProgramStateManager &stateMgr,
1683                           RegionBindings b, SymbolReaper &symReaper,
1684                           const StackFrameContext *LCtx)
1685    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1686                                                /* includeGlobals = */ false),
1687      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1688
1689  // Called by ClusterAnalysis.
1690  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1691  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1692
1693  void VisitBindingKey(BindingKey K);
1694  bool UpdatePostponed();
1695  void VisitBinding(SVal V);
1696};
1697}
1698
1699void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1700                                                   RegionCluster &C) {
1701
1702  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1703    if (SymReaper.isLive(VR))
1704      AddToWorkList(baseR, C);
1705
1706    return;
1707  }
1708
1709  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1710    if (SymReaper.isLive(SR->getSymbol()))
1711      AddToWorkList(SR, C);
1712    else
1713      Postponed.push_back(SR);
1714
1715    return;
1716  }
1717
1718  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1719    AddToWorkList(baseR, C);
1720    return;
1721  }
1722
1723  // CXXThisRegion in the current or parent location context is live.
1724  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1725    const StackArgumentsSpaceRegion *StackReg =
1726      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1727    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1728    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1729      AddToWorkList(TR, C);
1730  }
1731}
1732
1733void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1734                                            BindingKey *I, BindingKey *E) {
1735  for ( ; I != E; ++I)
1736    VisitBindingKey(*I);
1737}
1738
1739void removeDeadBindingsWorker::VisitBinding(SVal V) {
1740  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1741  if (const nonloc::LazyCompoundVal *LCS =
1742      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1743
1744    const MemRegion *LazyR = LCS->getRegion();
1745    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1746    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1747      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1748      if (baseR && baseR->isSubRegionOf(LazyR))
1749        VisitBinding(RI.getData());
1750    }
1751    return;
1752  }
1753
1754  // If V is a region, then add it to the worklist.
1755  if (const MemRegion *R = V.getAsRegion())
1756    AddToWorkList(R);
1757
1758  // Update the set of live symbols.
1759  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1760       SI!=SE; ++SI)
1761    SymReaper.markLive(*SI);
1762}
1763
1764void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1765  const MemRegion *R = K.getRegion();
1766
1767  // Mark this region "live" by adding it to the worklist.  This will cause
1768  // use to visit all regions in the cluster (if we haven't visited them
1769  // already).
1770  if (AddToWorkList(R)) {
1771    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1772    // should continue to track that symbol.
1773    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1774      SymReaper.markLive(SymR->getSymbol());
1775
1776    // For BlockDataRegions, enqueue the VarRegions for variables marked
1777    // with __block (passed-by-reference).
1778    // via BlockDeclRefExprs.
1779    if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1780      for (BlockDataRegion::referenced_vars_iterator
1781           RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1782           RI != RE; ++RI) {
1783        if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1784          AddToWorkList(*RI);
1785      }
1786
1787      // No possible data bindings on a BlockDataRegion.
1788      return;
1789    }
1790  }
1791
1792  // Visit the data binding for K.
1793  if (const SVal *V = RM.lookup(B, K))
1794    VisitBinding(*V);
1795}
1796
1797bool removeDeadBindingsWorker::UpdatePostponed() {
1798  // See if any postponed SymbolicRegions are actually live now, after
1799  // having done a scan.
1800  bool changed = false;
1801
1802  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1803        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1804    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1805      if (SymReaper.isLive(SR->getSymbol())) {
1806        changed |= AddToWorkList(SR);
1807        *I = NULL;
1808      }
1809    }
1810  }
1811
1812  return changed;
1813}
1814
1815StoreRef RegionStoreManager::removeDeadBindings(Store store,
1816                                                const StackFrameContext *LCtx,
1817                                                SymbolReaper& SymReaper) {
1818  RegionBindings B = GetRegionBindings(store);
1819  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1820  W.GenerateClusters();
1821
1822  // Enqueue the region roots onto the worklist.
1823  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1824       E = SymReaper.region_end(); I != E; ++I) {
1825    W.AddToWorkList(*I);
1826  }
1827
1828  do W.RunWorkList(); while (W.UpdatePostponed());
1829
1830  // We have now scanned the store, marking reachable regions and symbols
1831  // as live.  We now remove all the regions that are dead from the store
1832  // as well as update DSymbols with the set symbols that are now dead.
1833  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1834    const BindingKey &K = I.getKey();
1835
1836    // If the cluster has been visited, we know the region has been marked.
1837    if (W.isVisited(K.getRegion()))
1838      continue;
1839
1840    // Remove the dead entry.
1841    B = removeBinding(B, K);
1842
1843    // Mark all non-live symbols that this binding references as dead.
1844    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1845      SymReaper.maybeDead(SymR->getSymbol());
1846
1847    SVal X = I.getData();
1848    SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1849    for (; SI != SE; ++SI)
1850      SymReaper.maybeDead(*SI);
1851  }
1852
1853  return StoreRef(B.getRootWithoutRetain(), *this);
1854}
1855
1856
1857StoreRef RegionStoreManager::enterStackFrame(const ProgramState *state,
1858                                             const StackFrameContext *frame) {
1859  FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1860  FunctionDecl::param_const_iterator PI = FD->param_begin(),
1861                                     PE = FD->param_end();
1862  StoreRef store = StoreRef(state->getStore(), *this);
1863
1864  if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1865    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1866
1867    // Copy the arg expression value to the arg variables.  We check that
1868    // PI != PE because the actual number of arguments may be different than
1869    // the function declaration.
1870    for (; AI != AE && PI != PE; ++AI, ++PI) {
1871      SVal ArgVal = state->getSVal(*AI, frame);
1872      store = Bind(store.getStore(),
1873                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1874    }
1875  } else if (const CXXConstructExpr *CE =
1876               dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1877    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1878      AE = CE->arg_end();
1879
1880    // Copy the arg expression value to the arg variables.
1881    for (; AI != AE; ++AI, ++PI) {
1882      SVal ArgVal = state->getSVal(*AI, frame);
1883      store = Bind(store.getStore(),
1884                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1885    }
1886  } else
1887    assert(isa<CXXDestructorDecl>(frame->getDecl()));
1888
1889  return store;
1890}
1891
1892//===----------------------------------------------------------------------===//
1893// Utility methods.
1894//===----------------------------------------------------------------------===//
1895
1896void RegionStoreManager::print(Store store, raw_ostream &OS,
1897                               const char* nl, const char *sep) {
1898  RegionBindings B = GetRegionBindings(store);
1899  OS << "Store (direct and default bindings):" << nl;
1900
1901  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1902    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1903}
1904