RegionStore.cpp revision 262bc18e32500558af7cb0afa205b34bd37bafed
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27#include "llvm/ADT/ImmutableList.h"
28#include "llvm/ADT/ImmutableMap.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33using namespace ento;
34using llvm::Optional;
35
36//===----------------------------------------------------------------------===//
37// Representation of binding keys.
38//===----------------------------------------------------------------------===//
39
40namespace {
41class BindingKey {
42public:
43  enum Kind { Direct = 0x0, Default = 0x1 };
44private:
45  llvm ::PointerIntPair<const MemRegion*, 1> P;
46  uint64_t Offset;
47
48  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49    : P(r, (unsigned) k), Offset(offset) {}
50public:
51
52  bool isDirect() const { return P.getInt() == Direct; }
53
54  const MemRegion *getRegion() const { return P.getPointer(); }
55  uint64_t getOffset() const { return Offset; }
56
57  void Profile(llvm::FoldingSetNodeID& ID) const {
58    ID.AddPointer(P.getOpaqueValue());
59    ID.AddInteger(Offset);
60  }
61
62  static BindingKey Make(const MemRegion *R, Kind k);
63
64  bool operator<(const BindingKey &X) const {
65    if (P.getOpaqueValue() < X.P.getOpaqueValue())
66      return true;
67    if (P.getOpaqueValue() > X.P.getOpaqueValue())
68      return false;
69    return Offset < X.Offset;
70  }
71
72  bool operator==(const BindingKey &X) const {
73    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74           Offset == X.Offset;
75  }
76
77  bool isValid() const {
78    return getRegion() != NULL;
79  }
80};
81} // end anonymous namespace
82
83BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
85    const RegionRawOffset &O = ER->getAsArrayOffset();
86
87    // FIXME: There are some ElementRegions for which we cannot compute
88    // raw offsets yet, including regions with symbolic offsets. These will be
89    // ignored by the store.
90    return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
91  }
92
93  return BindingKey(R, 0, k);
94}
95
96namespace llvm {
97  static inline
98  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
99    os << '(' << K.getRegion() << ',' << K.getOffset()
100       << ',' << (K.isDirect() ? "direct" : "default")
101       << ')';
102    return os;
103  }
104} // end llvm namespace
105
106//===----------------------------------------------------------------------===//
107// Actual Store type.
108//===----------------------------------------------------------------------===//
109
110typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
111
112//===----------------------------------------------------------------------===//
113// Fine-grained control of RegionStoreManager.
114//===----------------------------------------------------------------------===//
115
116namespace {
117struct minimal_features_tag {};
118struct maximal_features_tag {};
119
120class RegionStoreFeatures {
121  bool SupportsFields;
122public:
123  RegionStoreFeatures(minimal_features_tag) :
124    SupportsFields(false) {}
125
126  RegionStoreFeatures(maximal_features_tag) :
127    SupportsFields(true) {}
128
129  void enableFields(bool t) { SupportsFields = t; }
130
131  bool supportsFields() const { return SupportsFields; }
132};
133}
134
135//===----------------------------------------------------------------------===//
136// Main RegionStore logic.
137//===----------------------------------------------------------------------===//
138
139namespace {
140
141class RegionStoreSubRegionMap : public SubRegionMap {
142public:
143  typedef llvm::ImmutableSet<const MemRegion*> Set;
144  typedef llvm::DenseMap<const MemRegion*, Set> Map;
145private:
146  Set::Factory F;
147  Map M;
148public:
149  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
150    Map::iterator I = M.find(Parent);
151
152    if (I == M.end()) {
153      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
154      return true;
155    }
156
157    I->second = F.add(I->second, SubRegion);
158    return false;
159  }
160
161  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
162
163  ~RegionStoreSubRegionMap() {}
164
165  const Set *getSubRegions(const MemRegion *Parent) const {
166    Map::const_iterator I = M.find(Parent);
167    return I == M.end() ? NULL : &I->second;
168  }
169
170  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
171    Map::const_iterator I = M.find(Parent);
172
173    if (I == M.end())
174      return true;
175
176    Set S = I->second;
177    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
178      if (!V.Visit(Parent, *SI))
179        return false;
180    }
181
182    return true;
183  }
184};
185
186void
187RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
188                                 const SubRegion *R) {
189  const MemRegion *superR = R->getSuperRegion();
190  if (add(superR, R))
191    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
192      WL.push_back(sr);
193}
194
195class RegionStoreManager : public StoreManager {
196  const RegionStoreFeatures Features;
197  RegionBindings::Factory RBFactory;
198
199public:
200  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
201    : StoreManager(mgr),
202      Features(f),
203      RBFactory(mgr.getAllocator()) {}
204
205  SubRegionMap *getSubRegionMap(Store store) {
206    return getRegionStoreSubRegionMap(store);
207  }
208
209  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
210
211  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
212  /// getDefaultBinding - Returns an SVal* representing an optional default
213  ///  binding associated with a region and its subregions.
214  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
215
216  /// setImplicitDefaultValue - Set the default binding for the provided
217  ///  MemRegion to the value implicitly defined for compound literals when
218  ///  the value is not specified.
219  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
220
221  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
222  ///  type.  'Array' represents the lvalue of the array being decayed
223  ///  to a pointer, and the returned SVal represents the decayed
224  ///  version of that lvalue (i.e., a pointer to the first element of
225  ///  the array).  This is called by ExprEngine when evaluating
226  ///  casts from arrays to pointers.
227  SVal ArrayToPointer(Loc Array);
228
229  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
230  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
231
232  /// \brief Evaluates C++ dynamic_cast cast.
233  /// The callback may result in the following 3 scenarios:
234  ///  - Successful cast (ex: derived is subclass of base).
235  ///  - Failed cast (ex: derived is definitely not a subclass of base).
236  ///  - We don't know (base is a symbolic region and we don't have
237  ///    enough info to determine if the cast will succeed at run time).
238  /// The function returns an SVal representing the derived class; it's
239  /// valid only if Failed flag is set to false.
240  virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
241
242  StoreRef getInitialStore(const LocationContext *InitLoc) {
243    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
244  }
245
246  //===-------------------------------------------------------------------===//
247  // Binding values to regions.
248  //===-------------------------------------------------------------------===//
249  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
250                                        const Expr *Ex,
251                                        unsigned Count,
252                                        const LocationContext *LCtx,
253                                        RegionBindings B,
254                                        InvalidatedRegions *Invalidated);
255
256  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
257                             const Expr *E, unsigned Count,
258                             const LocationContext *LCtx,
259                             InvalidatedSymbols &IS,
260                             const CallOrObjCMessage *Call,
261                             InvalidatedRegions *Invalidated);
262
263public:   // Made public for helper classes.
264
265  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
266                               RegionStoreSubRegionMap &M);
267
268  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
269
270  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
271                     BindingKey::Kind k, SVal V);
272
273  const SVal *lookup(RegionBindings B, BindingKey K);
274  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
275
276  RegionBindings removeBinding(RegionBindings B, BindingKey K);
277  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
278                        BindingKey::Kind k);
279
280  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
281    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
282                        BindingKey::Default);
283  }
284
285public: // Part of public interface to class.
286
287  StoreRef Bind(Store store, Loc LV, SVal V);
288
289  // BindDefault is only used to initialize a region with a default value.
290  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
291    RegionBindings B = GetRegionBindings(store);
292    assert(!lookup(B, R, BindingKey::Default));
293    assert(!lookup(B, R, BindingKey::Direct));
294    return StoreRef(addBinding(B, R, BindingKey::Default, V)
295                      .getRootWithoutRetain(), *this);
296  }
297
298  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
299                               const LocationContext *LC, SVal V);
300
301  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
302
303  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
304    return StoreRef(store, *this);
305  }
306
307  /// BindStruct - Bind a compound value to a structure.
308  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
309
310  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
311
312  /// KillStruct - Set the entire struct to unknown.
313  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
314
315  StoreRef Remove(Store store, Loc LV);
316
317  void incrementReferenceCount(Store store) {
318    GetRegionBindings(store).manualRetain();
319  }
320
321  /// If the StoreManager supports it, decrement the reference count of
322  /// the specified Store object.  If the reference count hits 0, the memory
323  /// associated with the object is recycled.
324  void decrementReferenceCount(Store store) {
325    GetRegionBindings(store).manualRelease();
326  }
327
328  bool includedInBindings(Store store, const MemRegion *region) const;
329
330  /// \brief Return the value bound to specified location in a given state.
331  ///
332  /// The high level logic for this method is this:
333  /// getBinding (L)
334  ///   if L has binding
335  ///     return L's binding
336  ///   else if L is in killset
337  ///     return unknown
338  ///   else
339  ///     if L is on stack or heap
340  ///       return undefined
341  ///     else
342  ///       return symbolic
343  SVal getBinding(Store store, Loc L, QualType T = QualType());
344
345  SVal getBindingForElement(Store store, const ElementRegion *R);
346
347  SVal getBindingForField(Store store, const FieldRegion *R);
348
349  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
350
351  SVal getBindingForVar(Store store, const VarRegion *R);
352
353  SVal getBindingForLazySymbol(const TypedValueRegion *R);
354
355  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
356                                         QualType Ty, const MemRegion *superR);
357
358  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
359                      Store lazyBindingStore);
360
361  /// Get bindings for the values in a struct and return a CompoundVal, used
362  /// when doing struct copy:
363  /// struct s x, y;
364  /// x = y;
365  /// y's value is retrieved by this method.
366  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
367
368  SVal getBindingForArray(Store store, const TypedValueRegion* R);
369
370  /// Used to lazily generate derived symbols for bindings that are defined
371  ///  implicitly by default bindings in a super region.
372  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
373                                                  const MemRegion *superR,
374                                                  const TypedValueRegion *R,
375                                                  QualType Ty);
376
377  /// Get the state and region whose binding this region R corresponds to.
378  std::pair<Store, const MemRegion*>
379  GetLazyBinding(RegionBindings B, const MemRegion *R,
380                 const MemRegion *originalRegion);
381
382  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
383                            const TypedRegion *R);
384
385  //===------------------------------------------------------------------===//
386  // State pruning.
387  //===------------------------------------------------------------------===//
388
389  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
390  ///  It returns a new Store with these values removed.
391  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
392                              SymbolReaper& SymReaper);
393
394  StoreRef enterStackFrame(ProgramStateRef state,
395                           const LocationContext *callerCtx,
396                           const StackFrameContext *calleeCtx);
397
398  //===------------------------------------------------------------------===//
399  // Region "extents".
400  //===------------------------------------------------------------------===//
401
402  // FIXME: This method will soon be eliminated; see the note in Store.h.
403  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
404                                         const MemRegion* R, QualType EleTy);
405
406  //===------------------------------------------------------------------===//
407  // Utility methods.
408  //===------------------------------------------------------------------===//
409
410  static inline RegionBindings GetRegionBindings(Store store) {
411    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
412  }
413
414  void print(Store store, raw_ostream &Out, const char* nl,
415             const char *sep);
416
417  void iterBindings(Store store, BindingsHandler& f) {
418    RegionBindings B = GetRegionBindings(store);
419    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
420      const BindingKey &K = I.getKey();
421      if (!K.isDirect())
422        continue;
423      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
424        // FIXME: Possibly incorporate the offset?
425        if (!f.HandleBinding(*this, store, R, I.getData()))
426          return;
427      }
428    }
429  }
430};
431
432} // end anonymous namespace
433
434//===----------------------------------------------------------------------===//
435// RegionStore creation.
436//===----------------------------------------------------------------------===//
437
438StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
439  RegionStoreFeatures F = maximal_features_tag();
440  return new RegionStoreManager(StMgr, F);
441}
442
443StoreManager *
444ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
445  RegionStoreFeatures F = minimal_features_tag();
446  F.enableFields(true);
447  return new RegionStoreManager(StMgr, F);
448}
449
450
451RegionStoreSubRegionMap*
452RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
453  RegionBindings B = GetRegionBindings(store);
454  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
455
456  SmallVector<const SubRegion*, 10> WL;
457
458  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
459    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
460      M->process(WL, R);
461
462  // We also need to record in the subregion map "intermediate" regions that
463  // don't have direct bindings but are super regions of those that do.
464  while (!WL.empty()) {
465    const SubRegion *R = WL.back();
466    WL.pop_back();
467    M->process(WL, R);
468  }
469
470  return M;
471}
472
473//===----------------------------------------------------------------------===//
474// Region Cluster analysis.
475//===----------------------------------------------------------------------===//
476
477namespace {
478template <typename DERIVED>
479class ClusterAnalysis  {
480protected:
481  typedef BumpVector<BindingKey> RegionCluster;
482  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
483  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
484  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
485    WorkList;
486
487  BumpVectorContext BVC;
488  ClusterMap ClusterM;
489  WorkList WL;
490
491  RegionStoreManager &RM;
492  ASTContext &Ctx;
493  SValBuilder &svalBuilder;
494
495  RegionBindings B;
496
497  const bool includeGlobals;
498
499public:
500  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
501                  RegionBindings b, const bool includeGlobals)
502    : RM(rm), Ctx(StateMgr.getContext()),
503      svalBuilder(StateMgr.getSValBuilder()),
504      B(b), includeGlobals(includeGlobals) {}
505
506  RegionBindings getRegionBindings() const { return B; }
507
508  RegionCluster &AddToCluster(BindingKey K) {
509    const MemRegion *R = K.getRegion();
510    const MemRegion *baseR = R->getBaseRegion();
511    RegionCluster &C = getCluster(baseR);
512    C.push_back(K, BVC);
513    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
514    return C;
515  }
516
517  bool isVisited(const MemRegion *R) {
518    return (bool) Visited[&getCluster(R->getBaseRegion())];
519  }
520
521  RegionCluster& getCluster(const MemRegion *R) {
522    RegionCluster *&CRef = ClusterM[R];
523    if (!CRef) {
524      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
525      CRef = new (Mem) RegionCluster(BVC, 10);
526    }
527    return *CRef;
528  }
529
530  void GenerateClusters() {
531      // Scan the entire set of bindings and make the region clusters.
532    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
533      RegionCluster &C = AddToCluster(RI.getKey());
534      if (const MemRegion *R = RI.getData().getAsRegion()) {
535        // Generate a cluster, but don't add the region to the cluster
536        // if there aren't any bindings.
537        getCluster(R->getBaseRegion());
538      }
539      if (includeGlobals) {
540        const MemRegion *R = RI.getKey().getRegion();
541        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
542          AddToWorkList(R, C);
543      }
544    }
545  }
546
547  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
548    if (unsigned &visited = Visited[&C])
549      return false;
550    else
551      visited = 1;
552
553    WL.push_back(std::make_pair(R, &C));
554    return true;
555  }
556
557  bool AddToWorkList(BindingKey K) {
558    return AddToWorkList(K.getRegion());
559  }
560
561  bool AddToWorkList(const MemRegion *R) {
562    const MemRegion *baseR = R->getBaseRegion();
563    return AddToWorkList(baseR, getCluster(baseR));
564  }
565
566  void RunWorkList() {
567    while (!WL.empty()) {
568      const MemRegion *baseR;
569      RegionCluster *C;
570      llvm::tie(baseR, C) = WL.back();
571      WL.pop_back();
572
573        // First visit the cluster.
574      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
575
576        // Next, visit the base region.
577      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
578    }
579  }
580
581public:
582  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
583  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
584  void VisitBaseRegion(const MemRegion *baseR) {}
585};
586}
587
588//===----------------------------------------------------------------------===//
589// Binding invalidation.
590//===----------------------------------------------------------------------===//
591
592void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
593                                                 const MemRegion *R,
594                                                 RegionStoreSubRegionMap &M) {
595
596  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
597    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
598         I != E; ++I)
599      RemoveSubRegionBindings(B, *I, M);
600
601  B = removeBinding(B, R);
602}
603
604namespace {
605class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
606{
607  const Expr *Ex;
608  unsigned Count;
609  const LocationContext *LCtx;
610  StoreManager::InvalidatedSymbols &IS;
611  StoreManager::InvalidatedRegions *Regions;
612public:
613  invalidateRegionsWorker(RegionStoreManager &rm,
614                          ProgramStateManager &stateMgr,
615                          RegionBindings b,
616                          const Expr *ex, unsigned count,
617                          const LocationContext *lctx,
618                          StoreManager::InvalidatedSymbols &is,
619                          StoreManager::InvalidatedRegions *r,
620                          bool includeGlobals)
621    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
622      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
623
624  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
625  void VisitBaseRegion(const MemRegion *baseR);
626
627private:
628  void VisitBinding(SVal V);
629};
630}
631
632void invalidateRegionsWorker::VisitBinding(SVal V) {
633  // A symbol?  Mark it touched by the invalidation.
634  if (SymbolRef Sym = V.getAsSymbol())
635    IS.insert(Sym);
636
637  if (const MemRegion *R = V.getAsRegion()) {
638    AddToWorkList(R);
639    return;
640  }
641
642  // Is it a LazyCompoundVal?  All references get invalidated as well.
643  if (const nonloc::LazyCompoundVal *LCS =
644        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
645
646    const MemRegion *LazyR = LCS->getRegion();
647    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
648
649    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
650      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
651      if (baseR && baseR->isSubRegionOf(LazyR))
652        VisitBinding(RI.getData());
653    }
654
655    return;
656  }
657}
658
659void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
660                                           BindingKey *I, BindingKey *E) {
661  for ( ; I != E; ++I) {
662    // Get the old binding.  Is it a region?  If so, add it to the worklist.
663    const BindingKey &K = *I;
664    if (const SVal *V = RM.lookup(B, K))
665      VisitBinding(*V);
666
667    B = RM.removeBinding(B, K);
668  }
669}
670
671void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
672  // Symbolic region?  Mark that symbol touched by the invalidation.
673  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
674    IS.insert(SR->getSymbol());
675
676  // BlockDataRegion?  If so, invalidate captured variables that are passed
677  // by reference.
678  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
679    for (BlockDataRegion::referenced_vars_iterator
680         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
681         BI != BE; ++BI) {
682      const VarRegion *VR = *BI;
683      const VarDecl *VD = VR->getDecl();
684      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
685        AddToWorkList(VR);
686    }
687    return;
688  }
689
690  // Otherwise, we have a normal data region. Record that we touched the region.
691  if (Regions)
692    Regions->push_back(baseR);
693
694  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
695    // Invalidate the region by setting its default value to
696    // conjured symbol. The type of the symbol is irrelavant.
697    DefinedOrUnknownSVal V =
698      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
699    B = RM.addBinding(B, baseR, BindingKey::Default, V);
700    return;
701  }
702
703  if (!baseR->isBoundable())
704    return;
705
706  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
707  QualType T = TR->getValueType();
708
709    // Invalidate the binding.
710  if (T->isStructureOrClassType()) {
711    // Invalidate the region by setting its default value to
712    // conjured symbol. The type of the symbol is irrelavant.
713    DefinedOrUnknownSVal V =
714      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
715    B = RM.addBinding(B, baseR, BindingKey::Default, V);
716    return;
717  }
718
719  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
720      // Set the default value of the array to conjured symbol.
721    DefinedOrUnknownSVal V =
722    svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
723                                     AT->getElementType(), Count);
724    B = RM.addBinding(B, baseR, BindingKey::Default, V);
725    return;
726  }
727
728  if (includeGlobals &&
729      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
730    // If the region is a global and we are invalidating all globals,
731    // just erase the entry.  This causes all globals to be lazily
732    // symbolicated from the same base symbol.
733    B = RM.removeBinding(B, baseR);
734    return;
735  }
736
737
738  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
739                                                            T,Count);
740  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
741  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
742}
743
744RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
745                                                          const Expr *Ex,
746                                                          unsigned Count,
747                                                    const LocationContext *LCtx,
748                                                          RegionBindings B,
749                                            InvalidatedRegions *Invalidated) {
750  // Bind the globals memory space to a new symbol that we will use to derive
751  // the bindings for all globals.
752  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
753  SVal V =
754      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
755          /* symbol type, doesn't matter */ Ctx.IntTy,
756          Count);
757
758  B = removeBinding(B, GS);
759  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
760
761  // Even if there are no bindings in the global scope, we still need to
762  // record that we touched it.
763  if (Invalidated)
764    Invalidated->push_back(GS);
765
766  return B;
767}
768
769StoreRef RegionStoreManager::invalidateRegions(Store store,
770                                            ArrayRef<const MemRegion *> Regions,
771                                               const Expr *Ex, unsigned Count,
772                                               const LocationContext *LCtx,
773                                               InvalidatedSymbols &IS,
774                                               const CallOrObjCMessage *Call,
775                                              InvalidatedRegions *Invalidated) {
776  invalidateRegionsWorker W(*this, StateMgr,
777                            RegionStoreManager::GetRegionBindings(store),
778                            Ex, Count, LCtx, IS, Invalidated, false);
779
780  // Scan the bindings and generate the clusters.
781  W.GenerateClusters();
782
783  // Add the regions to the worklist.
784  for (ArrayRef<const MemRegion *>::iterator
785       I = Regions.begin(), E = Regions.end(); I != E; ++I)
786    W.AddToWorkList(*I);
787
788  W.RunWorkList();
789
790  // Return the new bindings.
791  RegionBindings B = W.getRegionBindings();
792
793  // For all globals which are not static nor immutable: determine which global
794  // regions should be invalidated and invalidate them.
795  // TODO: This could possibly be more precise with modules.
796  //
797  // System calls invalidate only system globals.
798  if (Call && Call->isInSystemHeader()) {
799    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
800                               Ex, Count, LCtx, B, Invalidated);
801  // Internal calls might invalidate both system and internal globals.
802  } else {
803    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
804                               Ex, Count, LCtx, B, Invalidated);
805    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
806                               Ex, Count, LCtx, B, Invalidated);
807  }
808
809  return StoreRef(B.getRootWithoutRetain(), *this);
810}
811
812//===----------------------------------------------------------------------===//
813// Extents for regions.
814//===----------------------------------------------------------------------===//
815
816DefinedOrUnknownSVal
817RegionStoreManager::getSizeInElements(ProgramStateRef state,
818                                      const MemRegion *R,
819                                      QualType EleTy) {
820  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
821  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
822  if (!SizeInt)
823    return UnknownVal();
824
825  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
826
827  if (Ctx.getAsVariableArrayType(EleTy)) {
828    // FIXME: We need to track extra state to properly record the size
829    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
830    // we don't have a divide-by-zero below.
831    return UnknownVal();
832  }
833
834  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
835
836  // If a variable is reinterpreted as a type that doesn't fit into a larger
837  // type evenly, round it down.
838  // This is a signed value, since it's used in arithmetic with signed indices.
839  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
840}
841
842//===----------------------------------------------------------------------===//
843// Location and region casting.
844//===----------------------------------------------------------------------===//
845
846/// ArrayToPointer - Emulates the "decay" of an array to a pointer
847///  type.  'Array' represents the lvalue of the array being decayed
848///  to a pointer, and the returned SVal represents the decayed
849///  version of that lvalue (i.e., a pointer to the first element of
850///  the array).  This is called by ExprEngine when evaluating casts
851///  from arrays to pointers.
852SVal RegionStoreManager::ArrayToPointer(Loc Array) {
853  if (!isa<loc::MemRegionVal>(Array))
854    return UnknownVal();
855
856  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
857  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
858
859  if (!ArrayR)
860    return UnknownVal();
861
862  // Strip off typedefs from the ArrayRegion's ValueType.
863  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
864  const ArrayType *AT = cast<ArrayType>(T);
865  T = AT->getElementType();
866
867  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
868  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
869}
870
871SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
872  const CXXRecordDecl *baseDecl;
873  if (baseType->isPointerType())
874    baseDecl = baseType->getCXXRecordDeclForPointerType();
875  else
876    baseDecl = baseType->getAsCXXRecordDecl();
877
878  assert(baseDecl && "not a CXXRecordDecl?");
879
880  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
881  if (!derivedRegVal)
882    return derived;
883
884  const MemRegion *baseReg =
885    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
886
887  return loc::MemRegionVal(baseReg);
888}
889
890SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
891                                         bool &Failed) {
892  Failed = false;
893
894  loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
895  if (!baseRegVal)
896    return UnknownVal();
897  const MemRegion *BaseRegion = baseRegVal->stripCasts();
898
899  // Assume the derived class is a pointer or a reference to a CXX record.
900  derivedType = derivedType->getPointeeType();
901  assert(!derivedType.isNull());
902  const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
903  if (!DerivedDecl && !derivedType->isVoidType())
904    return UnknownVal();
905
906  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
907  // derived to base).
908  const MemRegion *SR = BaseRegion;
909  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
910    QualType BaseType = TSR->getLocationType()->getPointeeType();
911    assert(!BaseType.isNull());
912    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
913    if (!SRDecl)
914      return UnknownVal();
915
916    // If found the derived class, the cast succeeds.
917    if (SRDecl == DerivedDecl)
918      return loc::MemRegionVal(TSR);
919
920    // If the region type is a subclass of the derived type.
921    if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
922      // This occurs in two cases.
923      // 1) We are processing an upcast.
924      // 2) We are processing a downcast but we jumped directly from the
925      // ancestor to a child of the cast value, so conjure the
926      // appropriate region to represent value (the intermediate node).
927      return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
928                                                            BaseRegion));
929    }
930
931    // If super region is not a parent of derived class, the cast definitely
932    // fails.
933    if (!derivedType->isVoidType() &&
934        DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
935      Failed = true;
936      return UnknownVal();
937    }
938
939    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
940      // Drill down the chain to get the derived classes.
941      SR = R->getSuperRegion();
942    else {
943      // We reached the bottom of the hierarchy.
944
945      // If this is a cast to void*, return the region.
946      if (derivedType->isVoidType())
947        return loc::MemRegionVal(TSR);
948
949      // We did not find the derived class. We we must be casting the base to
950      // derived, so the cast should fail.
951      Failed = true;
952      return UnknownVal();
953    }
954  }
955
956  return UnknownVal();
957}
958
959//===----------------------------------------------------------------------===//
960// Loading values from regions.
961//===----------------------------------------------------------------------===//
962
963Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
964                                                    const MemRegion *R) {
965
966  if (const SVal *V = lookup(B, R, BindingKey::Direct))
967    return *V;
968
969  return Optional<SVal>();
970}
971
972Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
973                                                     const MemRegion *R) {
974  if (R->isBoundable())
975    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
976      if (TR->getValueType()->isUnionType())
977        return UnknownVal();
978
979  if (const SVal *V = lookup(B, R, BindingKey::Default))
980    return *V;
981
982  return Optional<SVal>();
983}
984
985SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
986  assert(!isa<UnknownVal>(L) && "location unknown");
987  assert(!isa<UndefinedVal>(L) && "location undefined");
988
989  // For access to concrete addresses, return UnknownVal.  Checks
990  // for null dereferences (and similar errors) are done by checkers, not
991  // the Store.
992  // FIXME: We can consider lazily symbolicating such memory, but we really
993  // should defer this when we can reason easily about symbolicating arrays
994  // of bytes.
995  if (isa<loc::ConcreteInt>(L)) {
996    return UnknownVal();
997  }
998  if (!isa<loc::MemRegionVal>(L)) {
999    return UnknownVal();
1000  }
1001
1002  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1003
1004  if (isa<AllocaRegion>(MR) ||
1005      isa<SymbolicRegion>(MR) ||
1006      isa<CodeTextRegion>(MR)) {
1007    if (T.isNull()) {
1008      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1009        T = TR->getLocationType();
1010      else {
1011        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1012        T = SR->getSymbol()->getType(Ctx);
1013      }
1014    }
1015    MR = GetElementZeroRegion(MR, T);
1016  }
1017
1018  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1019  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1020  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1021  QualType RTy = R->getValueType();
1022
1023  // FIXME: We should eventually handle funny addressing.  e.g.:
1024  //
1025  //   int x = ...;
1026  //   int *p = &x;
1027  //   char *q = (char*) p;
1028  //   char c = *q;  // returns the first byte of 'x'.
1029  //
1030  // Such funny addressing will occur due to layering of regions.
1031
1032  if (RTy->isStructureOrClassType())
1033    return getBindingForStruct(store, R);
1034
1035  // FIXME: Handle unions.
1036  if (RTy->isUnionType())
1037    return UnknownVal();
1038
1039  if (RTy->isArrayType())
1040    return getBindingForArray(store, R);
1041
1042  // FIXME: handle Vector types.
1043  if (RTy->isVectorType())
1044    return UnknownVal();
1045
1046  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1047    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
1048
1049  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1050    // FIXME: Here we actually perform an implicit conversion from the loaded
1051    // value to the element type.  Eventually we want to compose these values
1052    // more intelligently.  For example, an 'element' can encompass multiple
1053    // bound regions (e.g., several bound bytes), or could be a subset of
1054    // a larger value.
1055    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
1056  }
1057
1058  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1059    // FIXME: Here we actually perform an implicit conversion from the loaded
1060    // value to the ivar type.  What we should model is stores to ivars
1061    // that blow past the extent of the ivar.  If the address of the ivar is
1062    // reinterpretted, it is possible we stored a different value that could
1063    // fit within the ivar.  Either we need to cast these when storing them
1064    // or reinterpret them lazily (as we do here).
1065    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
1066  }
1067
1068  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1069    // FIXME: Here we actually perform an implicit conversion from the loaded
1070    // value to the variable type.  What we should model is stores to variables
1071    // that blow past the extent of the variable.  If the address of the
1072    // variable is reinterpretted, it is possible we stored a different value
1073    // that could fit within the variable.  Either we need to cast these when
1074    // storing them or reinterpret them lazily (as we do here).
1075    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1076  }
1077
1078  RegionBindings B = GetRegionBindings(store);
1079  const SVal *V = lookup(B, R, BindingKey::Direct);
1080
1081  // Check if the region has a binding.
1082  if (V)
1083    return *V;
1084
1085  // The location does not have a bound value.  This means that it has
1086  // the value it had upon its creation and/or entry to the analyzed
1087  // function/method.  These are either symbolic values or 'undefined'.
1088  if (R->hasStackNonParametersStorage()) {
1089    // All stack variables are considered to have undefined values
1090    // upon creation.  All heap allocated blocks are considered to
1091    // have undefined values as well unless they are explicitly bound
1092    // to specific values.
1093    return UndefinedVal();
1094  }
1095
1096  // All other values are symbolic.
1097  return svalBuilder.getRegionValueSymbolVal(R);
1098}
1099
1100std::pair<Store, const MemRegion *>
1101RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1102                                   const MemRegion *originalRegion) {
1103
1104  if (originalRegion != R) {
1105    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1106      if (const nonloc::LazyCompoundVal *V =
1107          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1108        return std::make_pair(V->getStore(), V->getRegion());
1109    }
1110  }
1111
1112  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1113    const std::pair<Store, const MemRegion *> &X =
1114      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1115
1116    if (X.second)
1117      return std::make_pair(X.first,
1118                            MRMgr.getElementRegionWithSuper(ER, X.second));
1119  }
1120  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1121    const std::pair<Store, const MemRegion *> &X =
1122      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1123
1124    if (X.second)
1125      return std::make_pair(X.first,
1126                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1127  }
1128  // C++ base object region is another kind of region that we should blast
1129  // through to look for lazy compound value. It is like a field region.
1130  else if (const CXXBaseObjectRegion *baseReg =
1131                            dyn_cast<CXXBaseObjectRegion>(R)) {
1132    const std::pair<Store, const MemRegion *> &X =
1133      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1134
1135    if (X.second)
1136      return std::make_pair(X.first,
1137                     MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1138  }
1139
1140  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1141  // possible for a valid lazy binding.
1142  return std::make_pair((Store) 0, (const MemRegion *) 0);
1143}
1144
1145SVal RegionStoreManager::getBindingForElement(Store store,
1146                                         const ElementRegion* R) {
1147  // Check if the region has a binding.
1148  RegionBindings B = GetRegionBindings(store);
1149  if (const Optional<SVal> &V = getDirectBinding(B, R))
1150    return *V;
1151
1152  const MemRegion* superR = R->getSuperRegion();
1153
1154  // Check if the region is an element region of a string literal.
1155  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1156    // FIXME: Handle loads from strings where the literal is treated as
1157    // an integer, e.g., *((unsigned int*)"hello")
1158    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1159    if (T != Ctx.getCanonicalType(R->getElementType()))
1160      return UnknownVal();
1161
1162    const StringLiteral *Str = StrR->getStringLiteral();
1163    SVal Idx = R->getIndex();
1164    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1165      int64_t i = CI->getValue().getSExtValue();
1166      // Abort on string underrun.  This can be possible by arbitrary
1167      // clients of getBindingForElement().
1168      if (i < 0)
1169        return UndefinedVal();
1170      int64_t length = Str->getLength();
1171      // Technically, only i == length is guaranteed to be null.
1172      // However, such overflows should be caught before reaching this point;
1173      // the only time such an access would be made is if a string literal was
1174      // used to initialize a larger array.
1175      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1176      return svalBuilder.makeIntVal(c, T);
1177    }
1178  }
1179
1180  // Check for loads from a code text region.  For such loads, just give up.
1181  if (isa<CodeTextRegion>(superR))
1182    return UnknownVal();
1183
1184  // Handle the case where we are indexing into a larger scalar object.
1185  // For example, this handles:
1186  //   int x = ...
1187  //   char *y = &x;
1188  //   return *y;
1189  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1190  const RegionRawOffset &O = R->getAsArrayOffset();
1191
1192  // If we cannot reason about the offset, return an unknown value.
1193  if (!O.getRegion())
1194    return UnknownVal();
1195
1196  if (const TypedValueRegion *baseR =
1197        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1198    QualType baseT = baseR->getValueType();
1199    if (baseT->isScalarType()) {
1200      QualType elemT = R->getElementType();
1201      if (elemT->isScalarType()) {
1202        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1203          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1204            if (SymbolRef parentSym = V->getAsSymbol())
1205              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1206
1207            if (V->isUnknownOrUndef())
1208              return *V;
1209            // Other cases: give up.  We are indexing into a larger object
1210            // that has some value, but we don't know how to handle that yet.
1211            return UnknownVal();
1212          }
1213        }
1214      }
1215    }
1216  }
1217  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1218                                           superR);
1219}
1220
1221SVal RegionStoreManager::getBindingForField(Store store,
1222                                       const FieldRegion* R) {
1223
1224  // Check if the region has a binding.
1225  RegionBindings B = GetRegionBindings(store);
1226  if (const Optional<SVal> &V = getDirectBinding(B, R))
1227    return *V;
1228
1229  QualType Ty = R->getValueType();
1230  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1231}
1232
1233Optional<SVal>
1234RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1235                                                     const MemRegion *superR,
1236                                                     const TypedValueRegion *R,
1237                                                     QualType Ty) {
1238
1239  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1240    const SVal &val = D.getValue();
1241    if (SymbolRef parentSym = val.getAsSymbol())
1242      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1243
1244    if (val.isZeroConstant())
1245      return svalBuilder.makeZeroVal(Ty);
1246
1247    if (val.isUnknownOrUndef())
1248      return val;
1249
1250    // Lazy bindings are handled later.
1251    if (isa<nonloc::LazyCompoundVal>(val))
1252      return Optional<SVal>();
1253
1254    llvm_unreachable("Unknown default value");
1255  }
1256
1257  return Optional<SVal>();
1258}
1259
1260SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1261                                             Store lazyBindingStore) {
1262  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1263    return getBindingForElement(lazyBindingStore, ER);
1264
1265  return getBindingForField(lazyBindingStore,
1266                            cast<FieldRegion>(lazyBindingRegion));
1267}
1268
1269SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1270                                                      const TypedValueRegion *R,
1271                                                      QualType Ty,
1272                                                      const MemRegion *superR) {
1273
1274  // At this point we have already checked in either getBindingForElement or
1275  // getBindingForField if 'R' has a direct binding.
1276  RegionBindings B = GetRegionBindings(store);
1277
1278  // Lazy binding?
1279  Store lazyBindingStore = NULL;
1280  const MemRegion *lazyBindingRegion = NULL;
1281  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1282
1283  if (lazyBindingRegion)
1284    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1285
1286  // Record whether or not we see a symbolic index.  That can completely
1287  // be out of scope of our lookup.
1288  bool hasSymbolicIndex = false;
1289
1290  while (superR) {
1291    if (const Optional<SVal> &D =
1292        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1293      return *D;
1294
1295    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1296      NonLoc index = ER->getIndex();
1297      if (!index.isConstant())
1298        hasSymbolicIndex = true;
1299    }
1300
1301    // If our super region is a field or element itself, walk up the region
1302    // hierarchy to see if there is a default value installed in an ancestor.
1303    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1304      superR = SR->getSuperRegion();
1305      continue;
1306    }
1307    break;
1308  }
1309
1310  if (R->hasStackNonParametersStorage()) {
1311    if (isa<ElementRegion>(R)) {
1312      // Currently we don't reason specially about Clang-style vectors.  Check
1313      // if superR is a vector and if so return Unknown.
1314      if (const TypedValueRegion *typedSuperR =
1315            dyn_cast<TypedValueRegion>(superR)) {
1316        if (typedSuperR->getValueType()->isVectorType())
1317          return UnknownVal();
1318      }
1319    }
1320
1321    // FIXME: We also need to take ElementRegions with symbolic indexes into
1322    // account.  This case handles both directly accessing an ElementRegion
1323    // with a symbolic offset, but also fields within an element with
1324    // a symbolic offset.
1325    if (hasSymbolicIndex)
1326      return UnknownVal();
1327
1328    return UndefinedVal();
1329  }
1330
1331  // All other values are symbolic.
1332  return svalBuilder.getRegionValueSymbolVal(R);
1333}
1334
1335SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1336                                               const ObjCIvarRegion* R) {
1337
1338    // Check if the region has a binding.
1339  RegionBindings B = GetRegionBindings(store);
1340
1341  if (const Optional<SVal> &V = getDirectBinding(B, R))
1342    return *V;
1343
1344  const MemRegion *superR = R->getSuperRegion();
1345
1346  // Check if the super region has a default binding.
1347  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1348    if (SymbolRef parentSym = V->getAsSymbol())
1349      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1350
1351    // Other cases: give up.
1352    return UnknownVal();
1353  }
1354
1355  return getBindingForLazySymbol(R);
1356}
1357
1358SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1359
1360  // Check if the region has a binding.
1361  RegionBindings B = GetRegionBindings(store);
1362
1363  if (const Optional<SVal> &V = getDirectBinding(B, R))
1364    return *V;
1365
1366  // Lazily derive a value for the VarRegion.
1367  const VarDecl *VD = R->getDecl();
1368  QualType T = VD->getType();
1369  const MemSpaceRegion *MS = R->getMemorySpace();
1370
1371  if (isa<UnknownSpaceRegion>(MS) ||
1372      isa<StackArgumentsSpaceRegion>(MS))
1373    return svalBuilder.getRegionValueSymbolVal(R);
1374
1375  if (isa<GlobalsSpaceRegion>(MS)) {
1376    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1377      // Is 'VD' declared constant?  If so, retrieve the constant value.
1378      QualType CT = Ctx.getCanonicalType(T);
1379      if (CT.isConstQualified()) {
1380        const Expr *Init = VD->getInit();
1381        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1382        if (Init)
1383          if (const IntegerLiteral *IL =
1384              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1385            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1386            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1387          }
1388      }
1389
1390      if (const Optional<SVal> &V
1391            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1392        return V.getValue();
1393
1394      return svalBuilder.getRegionValueSymbolVal(R);
1395    }
1396
1397    if (T->isIntegerType())
1398      return svalBuilder.makeIntVal(0, T);
1399    if (T->isPointerType())
1400      return svalBuilder.makeNull();
1401
1402    return UnknownVal();
1403  }
1404
1405  return UndefinedVal();
1406}
1407
1408SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1409  // All other values are symbolic.
1410  return svalBuilder.getRegionValueSymbolVal(R);
1411}
1412
1413SVal RegionStoreManager::getBindingForStruct(Store store,
1414                                        const TypedValueRegion* R) {
1415  assert(R->getValueType()->isStructureOrClassType());
1416  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1417}
1418
1419SVal RegionStoreManager::getBindingForArray(Store store,
1420                                       const TypedValueRegion * R) {
1421  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1422  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1423}
1424
1425bool RegionStoreManager::includedInBindings(Store store,
1426                                            const MemRegion *region) const {
1427  RegionBindings B = GetRegionBindings(store);
1428  region = region->getBaseRegion();
1429
1430  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1431    const BindingKey &K = it.getKey();
1432    if (region == K.getRegion())
1433      return true;
1434    const SVal &D = it.getData();
1435    if (const MemRegion *r = D.getAsRegion())
1436      if (r == region)
1437        return true;
1438  }
1439  return false;
1440}
1441
1442//===----------------------------------------------------------------------===//
1443// Binding values to regions.
1444//===----------------------------------------------------------------------===//
1445
1446StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1447  if (isa<loc::MemRegionVal>(L))
1448    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1449      return StoreRef(removeBinding(GetRegionBindings(store),
1450                                    R).getRootWithoutRetain(),
1451                      *this);
1452
1453  return StoreRef(store, *this);
1454}
1455
1456StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1457  if (isa<loc::ConcreteInt>(L))
1458    return StoreRef(store, *this);
1459
1460  // If we get here, the location should be a region.
1461  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1462
1463  // Check if the region is a struct region.
1464  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
1465    if (TR->getValueType()->isStructureOrClassType())
1466      return BindStruct(store, TR, V);
1467
1468  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1469    if (ER->getIndex().isZeroConstant()) {
1470      if (const TypedValueRegion *superR =
1471            dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1472        QualType superTy = superR->getValueType();
1473        // For now, just invalidate the fields of the struct/union/class.
1474        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1475        // FIXME: Precisely handle the fields of the record.
1476        if (superTy->isStructureOrClassType())
1477          return KillStruct(store, superR, UnknownVal());
1478      }
1479    }
1480  }
1481  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1482    // Binding directly to a symbolic region should be treated as binding
1483    // to element 0.
1484    QualType T = SR->getSymbol()->getType(Ctx);
1485
1486    // FIXME: Is this the right way to handle symbols that are references?
1487    if (const PointerType *PT = T->getAs<PointerType>())
1488      T = PT->getPointeeType();
1489    else
1490      T = T->getAs<ReferenceType>()->getPointeeType();
1491
1492    R = GetElementZeroRegion(SR, T);
1493  }
1494
1495  // Perform the binding.
1496  RegionBindings B = GetRegionBindings(store);
1497  return StoreRef(addBinding(B, R, BindingKey::Direct,
1498                             V).getRootWithoutRetain(), *this);
1499}
1500
1501StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1502                                      SVal InitVal) {
1503
1504  QualType T = VR->getDecl()->getType();
1505
1506  if (T->isArrayType())
1507    return BindArray(store, VR, InitVal);
1508  if (T->isStructureOrClassType())
1509    return BindStruct(store, VR, InitVal);
1510
1511  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1512}
1513
1514// FIXME: this method should be merged into Bind().
1515StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1516                                                 const CompoundLiteralExpr *CL,
1517                                                 const LocationContext *LC,
1518                                                 SVal V) {
1519  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1520              V);
1521}
1522
1523StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1524                                                     const MemRegion *R,
1525                                                     QualType T) {
1526  RegionBindings B = GetRegionBindings(store);
1527  SVal V;
1528
1529  if (Loc::isLocType(T))
1530    V = svalBuilder.makeNull();
1531  else if (T->isIntegerType())
1532    V = svalBuilder.makeZeroVal(T);
1533  else if (T->isStructureOrClassType() || T->isArrayType()) {
1534    // Set the default value to a zero constant when it is a structure
1535    // or array.  The type doesn't really matter.
1536    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1537  }
1538  else {
1539    // We can't represent values of this type, but we still need to set a value
1540    // to record that the region has been initialized.
1541    // If this assertion ever fires, a new case should be added above -- we
1542    // should know how to default-initialize any value we can symbolicate.
1543    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1544    V = UnknownVal();
1545  }
1546
1547  return StoreRef(addBinding(B, R, BindingKey::Default,
1548                             V).getRootWithoutRetain(), *this);
1549}
1550
1551StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1552                                       SVal Init) {
1553
1554  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1555  QualType ElementTy = AT->getElementType();
1556  Optional<uint64_t> Size;
1557
1558  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1559    Size = CAT->getSize().getZExtValue();
1560
1561  // Check if the init expr is a string literal.
1562  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1563    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1564
1565    // Treat the string as a lazy compound value.
1566    nonloc::LazyCompoundVal LCV =
1567      cast<nonloc::LazyCompoundVal>(svalBuilder.
1568                                makeLazyCompoundVal(StoreRef(store, *this), S));
1569    return CopyLazyBindings(LCV, store, R);
1570  }
1571
1572  // Handle lazy compound values.
1573  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1574    return CopyLazyBindings(*LCV, store, R);
1575
1576  // Remaining case: explicit compound values.
1577
1578  if (Init.isUnknown())
1579    return setImplicitDefaultValue(store, R, ElementTy);
1580
1581  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1582  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1583  uint64_t i = 0;
1584
1585  StoreRef newStore(store, *this);
1586  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1587    // The init list might be shorter than the array length.
1588    if (VI == VE)
1589      break;
1590
1591    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1592    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1593
1594    if (ElementTy->isStructureOrClassType())
1595      newStore = BindStruct(newStore.getStore(), ER, *VI);
1596    else if (ElementTy->isArrayType())
1597      newStore = BindArray(newStore.getStore(), ER, *VI);
1598    else
1599      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1600  }
1601
1602  // If the init list is shorter than the array length, set the
1603  // array default value.
1604  if (Size.hasValue() && i < Size.getValue())
1605    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1606
1607  return newStore;
1608}
1609
1610StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1611                                        SVal V) {
1612
1613  if (!Features.supportsFields())
1614    return StoreRef(store, *this);
1615
1616  QualType T = R->getValueType();
1617  assert(T->isStructureOrClassType());
1618
1619  const RecordType* RT = T->getAs<RecordType>();
1620  RecordDecl *RD = RT->getDecl();
1621
1622  if (!RD->isCompleteDefinition())
1623    return StoreRef(store, *this);
1624
1625  // Handle lazy compound values.
1626  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1627    return CopyLazyBindings(*LCV, store, R);
1628
1629  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1630  // that we are binding symbolic struct value. Kill the field values, and if
1631  // the value is symbolic go and bind it as a "default" binding.
1632  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1633    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1634    return KillStruct(store, R, SV);
1635  }
1636
1637  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1638  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1639
1640  RecordDecl::field_iterator FI, FE;
1641  StoreRef newStore(store, *this);
1642
1643  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1644
1645    if (VI == VE)
1646      break;
1647
1648    // Skip any unnamed bitfields to stay in sync with the initializers.
1649    if (FI->isUnnamedBitfield())
1650      continue;
1651
1652    QualType FTy = FI->getType();
1653    const FieldRegion* FR = MRMgr.getFieldRegion(&*FI, R);
1654
1655    if (FTy->isArrayType())
1656      newStore = BindArray(newStore.getStore(), FR, *VI);
1657    else if (FTy->isStructureOrClassType())
1658      newStore = BindStruct(newStore.getStore(), FR, *VI);
1659    else
1660      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1661    ++VI;
1662  }
1663
1664  // There may be fewer values in the initialize list than the fields of struct.
1665  if (FI != FE) {
1666    RegionBindings B = GetRegionBindings(newStore.getStore());
1667    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1668    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1669  }
1670
1671  return newStore;
1672}
1673
1674StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1675                                     SVal DefaultVal) {
1676  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1677
1678  // The BindingKey may be "invalid" if we cannot handle the region binding
1679  // explicitly.  One example is something like array[index], where index
1680  // is a symbolic value.  In such cases, we want to invalidate the entire
1681  // array, as the index assignment could have been to any element.  In
1682  // the case of nested symbolic indices, we need to march up the region
1683  // hierarchy untile we reach a region whose binding we can reason about.
1684  const SubRegion *subReg = R;
1685
1686  while (!key.isValid()) {
1687    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1688      subReg = tmp;
1689      key = BindingKey::Make(tmp, BindingKey::Default);
1690    }
1691    else
1692      break;
1693  }
1694
1695  // Remove the old bindings, using 'subReg' as the root of all regions
1696  // we will invalidate.
1697  RegionBindings B = GetRegionBindings(store);
1698  OwningPtr<RegionStoreSubRegionMap>
1699    SubRegions(getRegionStoreSubRegionMap(store));
1700  RemoveSubRegionBindings(B, subReg, *SubRegions);
1701
1702  // Set the default value of the struct region to "unknown".
1703  if (!key.isValid())
1704    return StoreRef(B.getRootWithoutRetain(), *this);
1705
1706  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1707}
1708
1709StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1710                                              Store store,
1711                                              const TypedRegion *R) {
1712
1713  // Nuke the old bindings stemming from R.
1714  RegionBindings B = GetRegionBindings(store);
1715
1716  OwningPtr<RegionStoreSubRegionMap>
1717    SubRegions(getRegionStoreSubRegionMap(store));
1718
1719  // B and DVM are updated after the call to RemoveSubRegionBindings.
1720  RemoveSubRegionBindings(B, R, *SubRegions.get());
1721
1722  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1723  // results in a zero-copy algorithm.
1724  return StoreRef(addBinding(B, R, BindingKey::Default,
1725                             V).getRootWithoutRetain(), *this);
1726}
1727
1728//===----------------------------------------------------------------------===//
1729// "Raw" retrievals and bindings.
1730//===----------------------------------------------------------------------===//
1731
1732
1733RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1734                                              SVal V) {
1735  if (!K.isValid())
1736    return B;
1737  return RBFactory.add(B, K, V);
1738}
1739
1740RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1741                                              const MemRegion *R,
1742                                              BindingKey::Kind k, SVal V) {
1743  return addBinding(B, BindingKey::Make(R, k), V);
1744}
1745
1746const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1747  if (!K.isValid())
1748    return NULL;
1749  return B.lookup(K);
1750}
1751
1752const SVal *RegionStoreManager::lookup(RegionBindings B,
1753                                       const MemRegion *R,
1754                                       BindingKey::Kind k) {
1755  return lookup(B, BindingKey::Make(R, k));
1756}
1757
1758RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1759                                                 BindingKey K) {
1760  if (!K.isValid())
1761    return B;
1762  return RBFactory.remove(B, K);
1763}
1764
1765RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1766                                                 const MemRegion *R,
1767                                                BindingKey::Kind k){
1768  return removeBinding(B, BindingKey::Make(R, k));
1769}
1770
1771//===----------------------------------------------------------------------===//
1772// State pruning.
1773//===----------------------------------------------------------------------===//
1774
1775namespace {
1776class removeDeadBindingsWorker :
1777  public ClusterAnalysis<removeDeadBindingsWorker> {
1778  SmallVector<const SymbolicRegion*, 12> Postponed;
1779  SymbolReaper &SymReaper;
1780  const StackFrameContext *CurrentLCtx;
1781
1782public:
1783  removeDeadBindingsWorker(RegionStoreManager &rm,
1784                           ProgramStateManager &stateMgr,
1785                           RegionBindings b, SymbolReaper &symReaper,
1786                           const StackFrameContext *LCtx)
1787    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1788                                                /* includeGlobals = */ false),
1789      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1790
1791  // Called by ClusterAnalysis.
1792  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1793  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1794
1795  void VisitBindingKey(BindingKey K);
1796  bool UpdatePostponed();
1797  void VisitBinding(SVal V);
1798};
1799}
1800
1801void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1802                                                   RegionCluster &C) {
1803
1804  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1805    if (SymReaper.isLive(VR))
1806      AddToWorkList(baseR, C);
1807
1808    return;
1809  }
1810
1811  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1812    if (SymReaper.isLive(SR->getSymbol()))
1813      AddToWorkList(SR, C);
1814    else
1815      Postponed.push_back(SR);
1816
1817    return;
1818  }
1819
1820  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1821    AddToWorkList(baseR, C);
1822    return;
1823  }
1824
1825  // CXXThisRegion in the current or parent location context is live.
1826  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1827    const StackArgumentsSpaceRegion *StackReg =
1828      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1829    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1830    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1831      AddToWorkList(TR, C);
1832  }
1833}
1834
1835void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1836                                            BindingKey *I, BindingKey *E) {
1837  for ( ; I != E; ++I)
1838    VisitBindingKey(*I);
1839}
1840
1841void removeDeadBindingsWorker::VisitBinding(SVal V) {
1842  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1843  if (const nonloc::LazyCompoundVal *LCS =
1844      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1845
1846    const MemRegion *LazyR = LCS->getRegion();
1847    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1848    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1849      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1850      if (baseR && baseR->isSubRegionOf(LazyR))
1851        VisitBinding(RI.getData());
1852    }
1853    return;
1854  }
1855
1856  // If V is a region, then add it to the worklist.
1857  if (const MemRegion *R = V.getAsRegion())
1858    AddToWorkList(R);
1859
1860  // Update the set of live symbols.
1861  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1862       SI!=SE; ++SI)
1863    SymReaper.markLive(*SI);
1864}
1865
1866void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1867  const MemRegion *R = K.getRegion();
1868
1869  // Mark this region "live" by adding it to the worklist.  This will cause
1870  // use to visit all regions in the cluster (if we haven't visited them
1871  // already).
1872  if (AddToWorkList(R)) {
1873    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1874    // should continue to track that symbol.
1875    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1876      SymReaper.markLive(SymR->getSymbol());
1877
1878    // For BlockDataRegions, enqueue the VarRegions for variables marked
1879    // with __block (passed-by-reference).
1880    // via BlockDeclRefExprs.
1881    if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1882      for (BlockDataRegion::referenced_vars_iterator
1883           RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1884           RI != RE; ++RI) {
1885        if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1886          AddToWorkList(*RI);
1887      }
1888
1889      // No possible data bindings on a BlockDataRegion.
1890      return;
1891    }
1892  }
1893
1894  // Visit the data binding for K.
1895  if (const SVal *V = RM.lookup(B, K))
1896    VisitBinding(*V);
1897}
1898
1899bool removeDeadBindingsWorker::UpdatePostponed() {
1900  // See if any postponed SymbolicRegions are actually live now, after
1901  // having done a scan.
1902  bool changed = false;
1903
1904  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1905        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1906    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1907      if (SymReaper.isLive(SR->getSymbol())) {
1908        changed |= AddToWorkList(SR);
1909        *I = NULL;
1910      }
1911    }
1912  }
1913
1914  return changed;
1915}
1916
1917StoreRef RegionStoreManager::removeDeadBindings(Store store,
1918                                                const StackFrameContext *LCtx,
1919                                                SymbolReaper& SymReaper) {
1920  RegionBindings B = GetRegionBindings(store);
1921  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1922  W.GenerateClusters();
1923
1924  // Enqueue the region roots onto the worklist.
1925  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1926       E = SymReaper.region_end(); I != E; ++I) {
1927    W.AddToWorkList(*I);
1928  }
1929
1930  do W.RunWorkList(); while (W.UpdatePostponed());
1931
1932  // We have now scanned the store, marking reachable regions and symbols
1933  // as live.  We now remove all the regions that are dead from the store
1934  // as well as update DSymbols with the set symbols that are now dead.
1935  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1936    const BindingKey &K = I.getKey();
1937
1938    // If the cluster has been visited, we know the region has been marked.
1939    if (W.isVisited(K.getRegion()))
1940      continue;
1941
1942    // Remove the dead entry.
1943    B = removeBinding(B, K);
1944
1945    // Mark all non-live symbols that this binding references as dead.
1946    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1947      SymReaper.maybeDead(SymR->getSymbol());
1948
1949    SVal X = I.getData();
1950    SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1951    for (; SI != SE; ++SI)
1952      SymReaper.maybeDead(*SI);
1953  }
1954
1955  return StoreRef(B.getRootWithoutRetain(), *this);
1956}
1957
1958
1959StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
1960                                             const LocationContext *callerCtx,
1961                                             const StackFrameContext *calleeCtx)
1962{
1963  FunctionDecl const *FD = cast<FunctionDecl>(calleeCtx->getDecl());
1964  FunctionDecl::param_const_iterator PI = FD->param_begin(),
1965                                     PE = FD->param_end();
1966  StoreRef store = StoreRef(state->getStore(), *this);
1967
1968  if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
1969    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1970
1971    // Copy the arg expression value to the arg variables.  We check that
1972    // PI != PE because the actual number of arguments may be different than
1973    // the function declaration.
1974    for (; AI != AE && PI != PE; ++AI, ++PI) {
1975      SVal ArgVal = state->getSVal(*AI, callerCtx);
1976      store = Bind(store.getStore(),
1977                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
1978                   ArgVal);
1979    }
1980  } else if (const CXXConstructExpr *CE =
1981               dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
1982    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1983      AE = CE->arg_end();
1984
1985    // Copy the arg expression value to the arg variables.
1986    for (; AI != AE; ++AI, ++PI) {
1987      SVal ArgVal = state->getSVal(*AI, callerCtx);
1988      store = Bind(store.getStore(),
1989                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
1990                   ArgVal);
1991    }
1992  } else
1993    assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
1994
1995  return store;
1996}
1997
1998//===----------------------------------------------------------------------===//
1999// Utility methods.
2000//===----------------------------------------------------------------------===//
2001
2002void RegionStoreManager::print(Store store, raw_ostream &OS,
2003                               const char* nl, const char *sep) {
2004  RegionBindings B = GetRegionBindings(store);
2005  OS << "Store (direct and default bindings):" << nl;
2006
2007  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
2008    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
2009}
2010