RegionStore.cpp revision 28743b006bd88cd7d0ea97b4f17646f8fc429b89
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/Analysis/Analyses/LiveVariables.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Default = 0x0, Direct = 0x1 };
43private:
44  enum { Symbolic = 0x2 };
45
46  llvm::PointerIntPair<const MemRegion *, 2> P;
47  uint64_t Data;
48
49  /// Create a key for a binding to region \p r, which has a symbolic offset
50  /// from region \p Base.
51  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
52    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
53    assert(r && Base && "Must have known regions.");
54    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
55  }
56
57  /// Create a key for a binding at \p offset from base region \p r.
58  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
59    : P(r, k), Data(offset) {
60    assert(r && "Must have known regions.");
61    assert(getOffset() == offset && "Failed to store offset");
62    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
63  }
64public:
65
66  bool isDirect() const { return P.getInt() & Direct; }
67  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
68
69  const MemRegion *getRegion() const { return P.getPointer(); }
70  uint64_t getOffset() const {
71    assert(!hasSymbolicOffset());
72    return Data;
73  }
74
75  const SubRegion *getConcreteOffsetRegion() const {
76    assert(hasSymbolicOffset());
77    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
78  }
79
80  const MemRegion *getBaseRegion() const {
81    if (hasSymbolicOffset())
82      return getConcreteOffsetRegion()->getBaseRegion();
83    return getRegion()->getBaseRegion();
84  }
85
86  void Profile(llvm::FoldingSetNodeID& ID) const {
87    ID.AddPointer(P.getOpaqueValue());
88    ID.AddInteger(Data);
89  }
90
91  static BindingKey Make(const MemRegion *R, Kind k);
92
93  bool operator<(const BindingKey &X) const {
94    if (P.getOpaqueValue() < X.P.getOpaqueValue())
95      return true;
96    if (P.getOpaqueValue() > X.P.getOpaqueValue())
97      return false;
98    return Data < X.Data;
99  }
100
101  bool operator==(const BindingKey &X) const {
102    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
103           Data == X.Data;
104  }
105
106  LLVM_ATTRIBUTE_USED void dump() const;
107};
108} // end anonymous namespace
109
110BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
111  const RegionOffset &RO = R->getAsOffset();
112  if (RO.hasSymbolicOffset())
113    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
114
115  return BindingKey(RO.getRegion(), RO.getOffset(), k);
116}
117
118namespace llvm {
119  static inline
120  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
121    os << '(' << K.getRegion();
122    if (!K.hasSymbolicOffset())
123      os << ',' << K.getOffset();
124    os << ',' << (K.isDirect() ? "direct" : "default")
125       << ')';
126    return os;
127  }
128} // end llvm namespace
129
130void BindingKey::dump() const {
131  llvm::errs() << *this;
132}
133
134//===----------------------------------------------------------------------===//
135// Actual Store type.
136//===----------------------------------------------------------------------===//
137
138typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
139typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
140
141typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
142        RegionBindings;
143
144namespace {
145class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
146                                 ClusterBindings> {
147 ClusterBindings::Factory &CBFactory;
148public:
149  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
150          ParentTy;
151
152  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
153                    const RegionBindings::TreeTy *T,
154                    RegionBindings::TreeTy::Factory *F)
155    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
156      CBFactory(CBFactory) {}
157
158  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
159    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
160      CBFactory(CBFactory) {}
161
162  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
163    return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
164                             CBFactory);
165  }
166
167  RegionBindingsRef remove(key_type_ref K) const {
168    return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
169                             CBFactory);
170  }
171
172  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
173
174  RegionBindingsRef addBinding(const MemRegion *R,
175                               BindingKey::Kind k, SVal V) const;
176
177  RegionBindingsRef &operator=(const RegionBindingsRef &X) {
178    *static_cast<ParentTy*>(this) = X;
179    return *this;
180  }
181
182  const SVal *lookup(BindingKey K) const;
183  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
184  const ClusterBindings *lookup(const MemRegion *R) const {
185    return static_cast<const ParentTy*>(this)->lookup(R);
186  }
187
188  RegionBindingsRef removeBinding(BindingKey K);
189
190  RegionBindingsRef removeBinding(const MemRegion *R,
191                                  BindingKey::Kind k);
192
193  RegionBindingsRef removeBinding(const MemRegion *R) {
194    return removeBinding(R, BindingKey::Direct).
195           removeBinding(R, BindingKey::Default);
196  }
197
198  Optional<SVal> getDirectBinding(const MemRegion *R) const;
199
200  /// getDefaultBinding - Returns an SVal* representing an optional default
201  ///  binding associated with a region and its subregions.
202  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
203
204  /// Return the internal tree as a Store.
205  Store asStore() const {
206    return asImmutableMap().getRootWithoutRetain();
207  }
208
209  void dump(raw_ostream &OS, const char *nl) const {
210   for (iterator I = begin(), E = end(); I != E; ++I) {
211     const ClusterBindings &Cluster = I.getData();
212     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
213          CI != CE; ++CI) {
214       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
215     }
216     OS << nl;
217   }
218  }
219
220  LLVM_ATTRIBUTE_USED void dump() const {
221    dump(llvm::errs(), "\n");
222  }
223};
224} // end anonymous namespace
225
226typedef const RegionBindingsRef& RegionBindingsConstRef;
227
228Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
229  if (const SVal *V = lookup(R, BindingKey::Direct))
230    return *V;
231  return Optional<SVal>();
232}
233
234Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
235  if (R->isBoundable())
236    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
237      if (TR->getValueType()->isUnionType())
238        return UnknownVal();
239  if (const SVal *V = lookup(R, BindingKey::Default))
240    return *V;
241  return Optional<SVal>();
242}
243
244RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
245  const MemRegion *Base = K.getBaseRegion();
246
247  const ClusterBindings *ExistingCluster = lookup(Base);
248  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
249                             : CBFactory.getEmptyMap());
250
251  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
252  return add(Base, NewCluster);
253}
254
255
256RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
257                                                BindingKey::Kind k,
258                                                SVal V) const {
259  return addBinding(BindingKey::Make(R, k), V);
260}
261
262const SVal *RegionBindingsRef::lookup(BindingKey K) const {
263  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
264  if (!Cluster)
265    return 0;
266  return Cluster->lookup(K);
267}
268
269const SVal *RegionBindingsRef::lookup(const MemRegion *R,
270                                      BindingKey::Kind k) const {
271  return lookup(BindingKey::Make(R, k));
272}
273
274RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
275  const MemRegion *Base = K.getBaseRegion();
276  const ClusterBindings *Cluster = lookup(Base);
277  if (!Cluster)
278    return *this;
279
280  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
281  if (NewCluster.isEmpty())
282    return remove(Base);
283  return add(Base, NewCluster);
284}
285
286RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
287                                                BindingKey::Kind k){
288  return removeBinding(BindingKey::Make(R, k));
289}
290
291//===----------------------------------------------------------------------===//
292// Fine-grained control of RegionStoreManager.
293//===----------------------------------------------------------------------===//
294
295namespace {
296struct minimal_features_tag {};
297struct maximal_features_tag {};
298
299class RegionStoreFeatures {
300  bool SupportsFields;
301public:
302  RegionStoreFeatures(minimal_features_tag) :
303    SupportsFields(false) {}
304
305  RegionStoreFeatures(maximal_features_tag) :
306    SupportsFields(true) {}
307
308  void enableFields(bool t) { SupportsFields = t; }
309
310  bool supportsFields() const { return SupportsFields; }
311};
312}
313
314//===----------------------------------------------------------------------===//
315// Main RegionStore logic.
316//===----------------------------------------------------------------------===//
317
318namespace {
319
320class RegionStoreManager : public StoreManager {
321public:
322  const RegionStoreFeatures Features;
323  RegionBindings::Factory RBFactory;
324  mutable ClusterBindings::Factory CBFactory;
325
326  typedef std::vector<SVal> SValListTy;
327private:
328  typedef llvm::DenseMap<const LazyCompoundValData *,
329                         SValListTy> LazyBindingsMapTy;
330  LazyBindingsMapTy LazyBindingsMap;
331
332public:
333  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
334    : StoreManager(mgr), Features(f),
335      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
336
337
338  /// setImplicitDefaultValue - Set the default binding for the provided
339  ///  MemRegion to the value implicitly defined for compound literals when
340  ///  the value is not specified.
341  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
342                                            const MemRegion *R, QualType T);
343
344  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
345  ///  type.  'Array' represents the lvalue of the array being decayed
346  ///  to a pointer, and the returned SVal represents the decayed
347  ///  version of that lvalue (i.e., a pointer to the first element of
348  ///  the array).  This is called by ExprEngine when evaluating
349  ///  casts from arrays to pointers.
350  SVal ArrayToPointer(Loc Array);
351
352  StoreRef getInitialStore(const LocationContext *InitLoc) {
353    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
354  }
355
356  //===-------------------------------------------------------------------===//
357  // Binding values to regions.
358  //===-------------------------------------------------------------------===//
359  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
360                                           const Expr *Ex,
361                                           unsigned Count,
362                                           const LocationContext *LCtx,
363                                           RegionBindingsRef B,
364                                           InvalidatedRegions *Invalidated);
365
366  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
367                             const Expr *E, unsigned Count,
368                             const LocationContext *LCtx,
369                             InvalidatedSymbols &IS,
370                             const CallEvent *Call,
371                             InvalidatedRegions *Invalidated);
372
373  bool scanReachableSymbols(Store S, const MemRegion *R,
374                            ScanReachableSymbols &Callbacks);
375
376  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
377                                            const SubRegion *R);
378
379public: // Part of public interface to class.
380
381  virtual StoreRef Bind(Store store, Loc LV, SVal V) {
382    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
383  }
384
385  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
386
387  // BindDefault is only used to initialize a region with a default value.
388  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
389    RegionBindingsRef B = getRegionBindings(store);
390    assert(!B.lookup(R, BindingKey::Default));
391    assert(!B.lookup(R, BindingKey::Direct));
392    return StoreRef(B.addBinding(R, BindingKey::Default, V)
393                     .asImmutableMap()
394                     .getRootWithoutRetain(), *this);
395  }
396
397  /// \brief Create a new store that binds a value to a compound literal.
398  ///
399  /// \param ST The original store whose bindings are the basis for the new
400  ///        store.
401  ///
402  /// \param CL The compound literal to bind (the binding key).
403  ///
404  /// \param LC The LocationContext for the binding.
405  ///
406  /// \param V The value to bind to the compound literal.
407  StoreRef bindCompoundLiteral(Store ST,
408                               const CompoundLiteralExpr *CL,
409                               const LocationContext *LC, SVal V);
410
411  /// BindStruct - Bind a compound value to a structure.
412  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
413                               const TypedValueRegion* R, SVal V);
414
415  /// BindVector - Bind a compound value to a vector.
416  RegionBindingsRef bindVector(RegionBindingsConstRef B,
417                               const TypedValueRegion* R, SVal V);
418
419  RegionBindingsRef bindArray(RegionBindingsConstRef B,
420                              const TypedValueRegion* R,
421                              SVal V);
422
423  /// Clears out all bindings in the given region and assigns a new value
424  /// as a Default binding.
425  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
426                                  const TypedRegion *R,
427                                  SVal DefaultVal);
428
429  /// \brief Create a new store with the specified binding removed.
430  /// \param ST the original store, that is the basis for the new store.
431  /// \param L the location whose binding should be removed.
432  virtual StoreRef killBinding(Store ST, Loc L);
433
434  void incrementReferenceCount(Store store) {
435    getRegionBindings(store).manualRetain();
436  }
437
438  /// If the StoreManager supports it, decrement the reference count of
439  /// the specified Store object.  If the reference count hits 0, the memory
440  /// associated with the object is recycled.
441  void decrementReferenceCount(Store store) {
442    getRegionBindings(store).manualRelease();
443  }
444
445  bool includedInBindings(Store store, const MemRegion *region) const;
446
447  /// \brief Return the value bound to specified location in a given state.
448  ///
449  /// The high level logic for this method is this:
450  /// getBinding (L)
451  ///   if L has binding
452  ///     return L's binding
453  ///   else if L is in killset
454  ///     return unknown
455  ///   else
456  ///     if L is on stack or heap
457  ///       return undefined
458  ///     else
459  ///       return symbolic
460  virtual SVal getBinding(Store S, Loc L, QualType T) {
461    return getBinding(getRegionBindings(S), L, T);
462  }
463
464  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
465
466  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
467
468  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
469
470  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
471
472  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
473
474  SVal getBindingForLazySymbol(const TypedValueRegion *R);
475
476  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
477                                         const TypedValueRegion *R,
478                                         QualType Ty,
479                                         const MemRegion *superR);
480
481  SVal getLazyBinding(const MemRegion *LazyBindingRegion,
482                      RegionBindingsRef LazyBinding);
483
484  /// Get bindings for the values in a struct and return a CompoundVal, used
485  /// when doing struct copy:
486  /// struct s x, y;
487  /// x = y;
488  /// y's value is retrieved by this method.
489  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
490  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
491  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
492
493  /// Used to lazily generate derived symbols for bindings that are defined
494  ///  implicitly by default bindings in a super region.
495  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
496                                                  const MemRegion *superR,
497                                                  const TypedValueRegion *R,
498                                                  QualType Ty);
499
500  /// Get the state and region whose binding this region R corresponds to.
501  std::pair<Store, const MemRegion*>
502  getLazyBinding(RegionBindingsConstRef B, const MemRegion *R,
503                 const MemRegion *originalRegion);
504
505  /// Returns the cached set of interesting SVals contained within a lazy
506  /// binding.
507  ///
508  /// The precise value of "interesting" is determined for the purposes of
509  /// RegionStore's internal analysis. It must always contain all regions and
510  /// symbols, but may omit constants and other kinds of SVal.
511  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
512
513  //===------------------------------------------------------------------===//
514  // State pruning.
515  //===------------------------------------------------------------------===//
516
517  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
518  ///  It returns a new Store with these values removed.
519  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
520                              SymbolReaper& SymReaper);
521
522  //===------------------------------------------------------------------===//
523  // Region "extents".
524  //===------------------------------------------------------------------===//
525
526  // FIXME: This method will soon be eliminated; see the note in Store.h.
527  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
528                                         const MemRegion* R, QualType EleTy);
529
530  //===------------------------------------------------------------------===//
531  // Utility methods.
532  //===------------------------------------------------------------------===//
533
534  RegionBindingsRef getRegionBindings(Store store) const {
535    return RegionBindingsRef(CBFactory,
536                             static_cast<const RegionBindings::TreeTy*>(store),
537                             RBFactory.getTreeFactory());
538  }
539
540  void print(Store store, raw_ostream &Out, const char* nl,
541             const char *sep);
542
543  void iterBindings(Store store, BindingsHandler& f) {
544    RegionBindingsRef B = getRegionBindings(store);
545    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
546      const ClusterBindings &Cluster = I.getData();
547      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
548           CI != CE; ++CI) {
549        const BindingKey &K = CI.getKey();
550        if (!K.isDirect())
551          continue;
552        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
553          // FIXME: Possibly incorporate the offset?
554          if (!f.HandleBinding(*this, store, R, CI.getData()))
555            return;
556        }
557      }
558    }
559  }
560};
561
562} // end anonymous namespace
563
564//===----------------------------------------------------------------------===//
565// RegionStore creation.
566//===----------------------------------------------------------------------===//
567
568StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
569  RegionStoreFeatures F = maximal_features_tag();
570  return new RegionStoreManager(StMgr, F);
571}
572
573StoreManager *
574ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
575  RegionStoreFeatures F = minimal_features_tag();
576  F.enableFields(true);
577  return new RegionStoreManager(StMgr, F);
578}
579
580
581//===----------------------------------------------------------------------===//
582// Region Cluster analysis.
583//===----------------------------------------------------------------------===//
584
585namespace {
586template <typename DERIVED>
587class ClusterAnalysis  {
588protected:
589  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
590  typedef SmallVector<const MemRegion *, 10> WorkList;
591
592  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
593
594  WorkList WL;
595
596  RegionStoreManager &RM;
597  ASTContext &Ctx;
598  SValBuilder &svalBuilder;
599
600  RegionBindingsRef B;
601
602  const bool includeGlobals;
603
604  const ClusterBindings *getCluster(const MemRegion *R) {
605    return B.lookup(R);
606  }
607
608public:
609  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
610                  RegionBindingsRef b, const bool includeGlobals)
611    : RM(rm), Ctx(StateMgr.getContext()),
612      svalBuilder(StateMgr.getSValBuilder()),
613      B(b), includeGlobals(includeGlobals) {}
614
615  RegionBindingsRef getRegionBindings() const { return B; }
616
617  bool isVisited(const MemRegion *R) {
618    return Visited.count(getCluster(R));
619  }
620
621  void GenerateClusters() {
622    // Scan the entire set of bindings and record the region clusters.
623    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
624         RI != RE; ++RI){
625      const MemRegion *Base = RI.getKey();
626
627      const ClusterBindings &Cluster = RI.getData();
628      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
629      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
630
631      if (includeGlobals)
632        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
633          AddToWorkList(Base, &Cluster);
634    }
635  }
636
637  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
638    if (C && !Visited.insert(C))
639      return false;
640    WL.push_back(R);
641    return true;
642  }
643
644  bool AddToWorkList(const MemRegion *R) {
645    const MemRegion *baseR = R->getBaseRegion();
646    return AddToWorkList(baseR, getCluster(baseR));
647  }
648
649  void RunWorkList() {
650    while (!WL.empty()) {
651      const MemRegion *baseR = WL.pop_back_val();
652
653      // First visit the cluster.
654      if (const ClusterBindings *Cluster = getCluster(baseR))
655        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
656
657      // Next, visit the base region.
658      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
659    }
660  }
661
662public:
663  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
664  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
665  void VisitBaseRegion(const MemRegion *baseR) {}
666};
667}
668
669//===----------------------------------------------------------------------===//
670// Binding invalidation.
671//===----------------------------------------------------------------------===//
672
673bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
674                                              ScanReachableSymbols &Callbacks) {
675  assert(R == R->getBaseRegion() && "Should only be called for base regions");
676  RegionBindingsRef B = getRegionBindings(S);
677  const ClusterBindings *Cluster = B.lookup(R);
678
679  if (!Cluster)
680    return true;
681
682  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
683       RI != RE; ++RI) {
684    if (!Callbacks.scan(RI.getData()))
685      return false;
686  }
687
688  return true;
689}
690
691static inline bool isUnionField(const FieldRegion *FR) {
692  return FR->getDecl()->getParent()->isUnion();
693}
694
695typedef SmallVector<const FieldDecl *, 8> FieldVector;
696
697void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
698  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
699
700  const MemRegion *Base = K.getConcreteOffsetRegion();
701  const MemRegion *R = K.getRegion();
702
703  while (R != Base) {
704    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
705      if (!isUnionField(FR))
706        Fields.push_back(FR->getDecl());
707
708    R = cast<SubRegion>(R)->getSuperRegion();
709  }
710}
711
712static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
713  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
714
715  if (Fields.empty())
716    return true;
717
718  FieldVector FieldsInBindingKey;
719  getSymbolicOffsetFields(K, FieldsInBindingKey);
720
721  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
722  if (Delta >= 0)
723    return std::equal(FieldsInBindingKey.begin() + Delta,
724                      FieldsInBindingKey.end(),
725                      Fields.begin());
726  else
727    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
728                      Fields.begin() - Delta);
729}
730
731/// Collects all keys in \p Cluster that may refer to bindings within \p Top.
732///
733/// The \p IncludeAllDefaultBindings parameter specifies whether to include
734/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
735/// an aggregate within a larger aggregate with a default binding.
736static void collectSubRegionKeys(SmallVectorImpl<BindingKey> &Keys,
737                                 SValBuilder &SVB,
738                                 const ClusterBindings &Cluster,
739                                 const SubRegion *Top, BindingKey TopKey,
740                                 bool IncludeAllDefaultBindings) {
741  FieldVector FieldsInSymbolicSubregions;
742  if (TopKey.hasSymbolicOffset()) {
743    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
744    Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
745    TopKey = BindingKey::Make(Top, BindingKey::Default);
746  }
747
748  // This assumes the region being invalidated is char-aligned. This isn't
749  // true for bitfields, but since bitfields have no subregions they shouldn't
750  // be using this function anyway.
751  uint64_t Length = UINT64_MAX;
752  SVal Extent = Top->getExtent(SVB);
753  if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
754    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
755    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
756    // Extents are in bytes but region offsets are in bits. Be careful!
757    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
758  }
759
760  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
761       I != E; ++I) {
762    BindingKey NextKey = I.getKey();
763    if (NextKey.getRegion() == TopKey.getRegion()) {
764      // FIXME: This doesn't catch the case where we're really invalidating a
765      // region with a symbolic offset. Example:
766      //      R: points[i].y
767      //   Next: points[0].x
768
769      if (NextKey.getOffset() > TopKey.getOffset() &&
770          NextKey.getOffset() - TopKey.getOffset() < Length) {
771        // Case 1: The next binding is inside the region we're invalidating.
772        // Remove it.
773        Keys.push_back(NextKey);
774
775      } else if (NextKey.getOffset() == TopKey.getOffset()) {
776        // Case 2: The next binding is at the same offset as the region we're
777        // invalidating. In this case, we need to leave default bindings alone,
778        // since they may be providing a default value for a regions beyond what
779        // we're invalidating.
780        // FIXME: This is probably incorrect; consider invalidating an outer
781        // struct whose first field is bound to a LazyCompoundVal.
782        if (IncludeAllDefaultBindings || NextKey.isDirect())
783          Keys.push_back(NextKey);
784      }
785
786    } else if (NextKey.hasSymbolicOffset()) {
787      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
788      if (Top->isSubRegionOf(Base)) {
789        // Case 3: The next key is symbolic and we just changed something within
790        // its concrete region. We don't know if the binding is still valid, so
791        // we'll be conservative and remove it.
792        if (IncludeAllDefaultBindings || NextKey.isDirect())
793          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
794            Keys.push_back(NextKey);
795      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
796        // Case 4: The next key is symbolic, but we changed a known
797        // super-region. In this case the binding is certainly no longer valid.
798        if (Top == Base || BaseSR->isSubRegionOf(Top))
799          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
800            Keys.push_back(NextKey);
801      }
802    }
803  }
804}
805
806static void collectSubRegionKeys(SmallVectorImpl<BindingKey> &Keys,
807                                 SValBuilder &SVB,
808                                 const ClusterBindings &Cluster,
809                                 const SubRegion *Top,
810                                 bool IncludeAllDefaultBindings) {
811  collectSubRegionKeys(Keys, SVB, Cluster, Top,
812                       BindingKey::Make(Top, BindingKey::Default),
813                       IncludeAllDefaultBindings);
814}
815
816RegionBindingsRef
817RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
818                                            const SubRegion *Top) {
819  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
820  const MemRegion *ClusterHead = TopKey.getBaseRegion();
821  if (Top == ClusterHead) {
822    // We can remove an entire cluster's bindings all in one go.
823    return B.remove(Top);
824  }
825
826  const ClusterBindings *Cluster = B.lookup(ClusterHead);
827  if (!Cluster)
828    return B;
829
830  SmallVector<BindingKey, 32> Keys;
831  collectSubRegionKeys(Keys, svalBuilder, *Cluster, Top, TopKey,
832                       /*IncludeAllDefaultBindings=*/false);
833
834  ClusterBindingsRef Result(*Cluster, CBFactory);
835  for (SmallVectorImpl<BindingKey>::const_iterator I = Keys.begin(),
836                                                   E = Keys.end();
837       I != E; ++I)
838    Result = Result.remove(*I);
839
840  // If we're invalidating a region with a symbolic offset, we need to make sure
841  // we don't treat the base region as uninitialized anymore.
842  // FIXME: This isn't very precise; see the example in the loop.
843  if (TopKey.hasSymbolicOffset()) {
844    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
845    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
846                        UnknownVal());
847  }
848
849  if (Result.isEmpty())
850    return B.remove(ClusterHead);
851  return B.add(ClusterHead, Result.asImmutableMap());
852}
853
854namespace {
855class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
856{
857  const Expr *Ex;
858  unsigned Count;
859  const LocationContext *LCtx;
860  InvalidatedSymbols &IS;
861  StoreManager::InvalidatedRegions *Regions;
862public:
863  invalidateRegionsWorker(RegionStoreManager &rm,
864                          ProgramStateManager &stateMgr,
865                          RegionBindingsRef b,
866                          const Expr *ex, unsigned count,
867                          const LocationContext *lctx,
868                          InvalidatedSymbols &is,
869                          StoreManager::InvalidatedRegions *r,
870                          bool includeGlobals)
871    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
872      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
873
874  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
875  void VisitBaseRegion(const MemRegion *baseR);
876
877private:
878  void VisitBinding(SVal V);
879};
880}
881
882void invalidateRegionsWorker::VisitBinding(SVal V) {
883  // A symbol?  Mark it touched by the invalidation.
884  if (SymbolRef Sym = V.getAsSymbol())
885    IS.insert(Sym);
886
887  if (const MemRegion *R = V.getAsRegion()) {
888    AddToWorkList(R);
889    return;
890  }
891
892  // Is it a LazyCompoundVal?  All references get invalidated as well.
893  if (const nonloc::LazyCompoundVal *LCS =
894        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
895
896    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
897
898    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
899                                                        E = Vals.end();
900         I != E; ++I)
901      VisitBinding(*I);
902
903    return;
904  }
905}
906
907void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
908                                           const ClusterBindings &C) {
909  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
910    VisitBinding(I.getData());
911
912  B = B.remove(BaseR);
913}
914
915void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
916  // Symbolic region?  Mark that symbol touched by the invalidation.
917  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
918    IS.insert(SR->getSymbol());
919
920  // BlockDataRegion?  If so, invalidate captured variables that are passed
921  // by reference.
922  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
923    for (BlockDataRegion::referenced_vars_iterator
924         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
925         BI != BE; ++BI) {
926      const VarRegion *VR = BI.getCapturedRegion();
927      const VarDecl *VD = VR->getDecl();
928      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
929        AddToWorkList(VR);
930      }
931      else if (Loc::isLocType(VR->getValueType())) {
932        // Map the current bindings to a Store to retrieve the value
933        // of the binding.  If that binding itself is a region, we should
934        // invalidate that region.  This is because a block may capture
935        // a pointer value, but the thing pointed by that pointer may
936        // get invalidated.
937        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
938        if (const Loc *L = dyn_cast<Loc>(&V)) {
939          if (const MemRegion *LR = L->getAsRegion())
940            AddToWorkList(LR);
941        }
942      }
943    }
944    return;
945  }
946
947  // Otherwise, we have a normal data region. Record that we touched the region.
948  if (Regions)
949    Regions->push_back(baseR);
950
951  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
952    // Invalidate the region by setting its default value to
953    // conjured symbol. The type of the symbol is irrelavant.
954    DefinedOrUnknownSVal V =
955      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
956    B = B.addBinding(baseR, BindingKey::Default, V);
957    return;
958  }
959
960  if (!baseR->isBoundable())
961    return;
962
963  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
964  QualType T = TR->getValueType();
965
966    // Invalidate the binding.
967  if (T->isStructureOrClassType()) {
968    // Invalidate the region by setting its default value to
969    // conjured symbol. The type of the symbol is irrelavant.
970    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
971                                                          Ctx.IntTy, Count);
972    B = B.addBinding(baseR, BindingKey::Default, V);
973    return;
974  }
975
976  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
977      // Set the default value of the array to conjured symbol.
978    DefinedOrUnknownSVal V =
979    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
980                                     AT->getElementType(), Count);
981    B = B.addBinding(baseR, BindingKey::Default, V);
982    return;
983  }
984
985  if (includeGlobals &&
986      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
987    // If the region is a global and we are invalidating all globals,
988    // just erase the entry.  This causes all globals to be lazily
989    // symbolicated from the same base symbol.
990    B = B.removeBinding(baseR);
991    return;
992  }
993
994
995  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
996                                                        T,Count);
997  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
998  B = B.addBinding(baseR, BindingKey::Direct, V);
999}
1000
1001RegionBindingsRef
1002RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1003                                           const Expr *Ex,
1004                                           unsigned Count,
1005                                           const LocationContext *LCtx,
1006                                           RegionBindingsRef B,
1007                                           InvalidatedRegions *Invalidated) {
1008  // Bind the globals memory space to a new symbol that we will use to derive
1009  // the bindings for all globals.
1010  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1011  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1012                                        /* type does not matter */ Ctx.IntTy,
1013                                        Count);
1014
1015  B = B.removeBinding(GS)
1016       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1017
1018  // Even if there are no bindings in the global scope, we still need to
1019  // record that we touched it.
1020  if (Invalidated)
1021    Invalidated->push_back(GS);
1022
1023  return B;
1024}
1025
1026StoreRef
1027RegionStoreManager::invalidateRegions(Store store,
1028                                      ArrayRef<const MemRegion *> Regions,
1029                                      const Expr *Ex, unsigned Count,
1030                                      const LocationContext *LCtx,
1031                                      InvalidatedSymbols &IS,
1032                                      const CallEvent *Call,
1033                                      InvalidatedRegions *Invalidated) {
1034  invalidateRegionsWorker W(*this, StateMgr,
1035                            RegionStoreManager::getRegionBindings(store),
1036                            Ex, Count, LCtx, IS, Invalidated, false);
1037
1038  // Scan the bindings and generate the clusters.
1039  W.GenerateClusters();
1040
1041  // Add the regions to the worklist.
1042  for (ArrayRef<const MemRegion *>::iterator
1043       I = Regions.begin(), E = Regions.end(); I != E; ++I)
1044    W.AddToWorkList(*I);
1045
1046  W.RunWorkList();
1047
1048  // Return the new bindings.
1049  RegionBindingsRef B = W.getRegionBindings();
1050
1051  // For all globals which are not static nor immutable: determine which global
1052  // regions should be invalidated and invalidate them.
1053  // TODO: This could possibly be more precise with modules.
1054  //
1055  // System calls invalidate only system globals.
1056  if (Call && Call->isInSystemHeader()) {
1057    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1058                               Ex, Count, LCtx, B, Invalidated);
1059  // Internal calls might invalidate both system and internal globals.
1060  } else {
1061    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1062                               Ex, Count, LCtx, B, Invalidated);
1063    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1064                               Ex, Count, LCtx, B, Invalidated);
1065  }
1066
1067  return StoreRef(B.asStore(), *this);
1068}
1069
1070//===----------------------------------------------------------------------===//
1071// Extents for regions.
1072//===----------------------------------------------------------------------===//
1073
1074DefinedOrUnknownSVal
1075RegionStoreManager::getSizeInElements(ProgramStateRef state,
1076                                      const MemRegion *R,
1077                                      QualType EleTy) {
1078  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1079  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1080  if (!SizeInt)
1081    return UnknownVal();
1082
1083  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1084
1085  if (Ctx.getAsVariableArrayType(EleTy)) {
1086    // FIXME: We need to track extra state to properly record the size
1087    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1088    // we don't have a divide-by-zero below.
1089    return UnknownVal();
1090  }
1091
1092  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1093
1094  // If a variable is reinterpreted as a type that doesn't fit into a larger
1095  // type evenly, round it down.
1096  // This is a signed value, since it's used in arithmetic with signed indices.
1097  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1098}
1099
1100//===----------------------------------------------------------------------===//
1101// Location and region casting.
1102//===----------------------------------------------------------------------===//
1103
1104/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1105///  type.  'Array' represents the lvalue of the array being decayed
1106///  to a pointer, and the returned SVal represents the decayed
1107///  version of that lvalue (i.e., a pointer to the first element of
1108///  the array).  This is called by ExprEngine when evaluating casts
1109///  from arrays to pointers.
1110SVal RegionStoreManager::ArrayToPointer(Loc Array) {
1111  if (!isa<loc::MemRegionVal>(Array))
1112    return UnknownVal();
1113
1114  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
1115  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
1116
1117  if (!ArrayR)
1118    return UnknownVal();
1119
1120  // Strip off typedefs from the ArrayRegion's ValueType.
1121  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
1122  const ArrayType *AT = cast<ArrayType>(T);
1123  T = AT->getElementType();
1124
1125  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1126  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
1127}
1128
1129//===----------------------------------------------------------------------===//
1130// Loading values from regions.
1131//===----------------------------------------------------------------------===//
1132
1133SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1134  assert(!isa<UnknownVal>(L) && "location unknown");
1135  assert(!isa<UndefinedVal>(L) && "location undefined");
1136
1137  // For access to concrete addresses, return UnknownVal.  Checks
1138  // for null dereferences (and similar errors) are done by checkers, not
1139  // the Store.
1140  // FIXME: We can consider lazily symbolicating such memory, but we really
1141  // should defer this when we can reason easily about symbolicating arrays
1142  // of bytes.
1143  if (isa<loc::ConcreteInt>(L)) {
1144    return UnknownVal();
1145  }
1146  if (!isa<loc::MemRegionVal>(L)) {
1147    return UnknownVal();
1148  }
1149
1150  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1151
1152  if (isa<AllocaRegion>(MR) ||
1153      isa<SymbolicRegion>(MR) ||
1154      isa<CodeTextRegion>(MR)) {
1155    if (T.isNull()) {
1156      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1157        T = TR->getLocationType();
1158      else {
1159        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1160        T = SR->getSymbol()->getType();
1161      }
1162    }
1163    MR = GetElementZeroRegion(MR, T);
1164  }
1165
1166  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1167  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1168  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1169  QualType RTy = R->getValueType();
1170
1171  // FIXME: we do not yet model the parts of a complex type, so treat the
1172  // whole thing as "unknown".
1173  if (RTy->isAnyComplexType())
1174    return UnknownVal();
1175
1176  // FIXME: We should eventually handle funny addressing.  e.g.:
1177  //
1178  //   int x = ...;
1179  //   int *p = &x;
1180  //   char *q = (char*) p;
1181  //   char c = *q;  // returns the first byte of 'x'.
1182  //
1183  // Such funny addressing will occur due to layering of regions.
1184  if (RTy->isStructureOrClassType())
1185    return getBindingForStruct(B, R);
1186
1187  // FIXME: Handle unions.
1188  if (RTy->isUnionType())
1189    return UnknownVal();
1190
1191  if (RTy->isArrayType()) {
1192    if (RTy->isConstantArrayType())
1193      return getBindingForArray(B, R);
1194    else
1195      return UnknownVal();
1196  }
1197
1198  // FIXME: handle Vector types.
1199  if (RTy->isVectorType())
1200    return UnknownVal();
1201
1202  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1203    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1204
1205  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1206    // FIXME: Here we actually perform an implicit conversion from the loaded
1207    // value to the element type.  Eventually we want to compose these values
1208    // more intelligently.  For example, an 'element' can encompass multiple
1209    // bound regions (e.g., several bound bytes), or could be a subset of
1210    // a larger value.
1211    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1212  }
1213
1214  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1215    // FIXME: Here we actually perform an implicit conversion from the loaded
1216    // value to the ivar type.  What we should model is stores to ivars
1217    // that blow past the extent of the ivar.  If the address of the ivar is
1218    // reinterpretted, it is possible we stored a different value that could
1219    // fit within the ivar.  Either we need to cast these when storing them
1220    // or reinterpret them lazily (as we do here).
1221    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1222  }
1223
1224  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1225    // FIXME: Here we actually perform an implicit conversion from the loaded
1226    // value to the variable type.  What we should model is stores to variables
1227    // that blow past the extent of the variable.  If the address of the
1228    // variable is reinterpretted, it is possible we stored a different value
1229    // that could fit within the variable.  Either we need to cast these when
1230    // storing them or reinterpret them lazily (as we do here).
1231    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1232  }
1233
1234  const SVal *V = B.lookup(R, BindingKey::Direct);
1235
1236  // Check if the region has a binding.
1237  if (V)
1238    return *V;
1239
1240  // The location does not have a bound value.  This means that it has
1241  // the value it had upon its creation and/or entry to the analyzed
1242  // function/method.  These are either symbolic values or 'undefined'.
1243  if (R->hasStackNonParametersStorage()) {
1244    // All stack variables are considered to have undefined values
1245    // upon creation.  All heap allocated blocks are considered to
1246    // have undefined values as well unless they are explicitly bound
1247    // to specific values.
1248    return UndefinedVal();
1249  }
1250
1251  // All other values are symbolic.
1252  return svalBuilder.getRegionValueSymbolVal(R);
1253}
1254
1255std::pair<Store, const MemRegion *>
1256RegionStoreManager::getLazyBinding(RegionBindingsConstRef B,
1257                                   const MemRegion *R,
1258                                   const MemRegion *originalRegion) {
1259  if (originalRegion != R) {
1260    if (Optional<SVal> OV = B.getDefaultBinding(R)) {
1261      if (const nonloc::LazyCompoundVal *V =
1262          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1263        return std::make_pair(V->getStore(), V->getRegion());
1264    }
1265  }
1266
1267  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1268    const std::pair<Store, const MemRegion *> &X =
1269      getLazyBinding(B, ER->getSuperRegion(), originalRegion);
1270
1271    if (X.second)
1272      return std::make_pair(X.first,
1273                            MRMgr.getElementRegionWithSuper(ER, X.second));
1274  }
1275  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1276    const std::pair<Store, const MemRegion *> &X =
1277      getLazyBinding(B, FR->getSuperRegion(), originalRegion);
1278
1279    if (X.second) {
1280      return std::make_pair(X.first,
1281                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1282    }
1283
1284  }
1285  // C++ base object region is another kind of region that we should blast
1286  // through to look for lazy compound value. It is like a field region.
1287  else if (const CXXBaseObjectRegion *baseReg =
1288            dyn_cast<CXXBaseObjectRegion>(R)) {
1289    const std::pair<Store, const MemRegion *> &X =
1290      getLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1291
1292    if (X.second) {
1293      return std::make_pair(X.first,
1294                            MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1295                                                                  X.second));
1296    }
1297  }
1298
1299  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1300  // possible for a valid lazy binding.
1301  return std::make_pair((Store) 0, (const MemRegion *) 0);
1302}
1303
1304SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1305                                              const ElementRegion* R) {
1306  // We do not currently model bindings of the CompoundLiteralregion.
1307  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1308    return UnknownVal();
1309
1310  // Check if the region has a binding.
1311  if (const Optional<SVal> &V = B.getDirectBinding(R))
1312    return *V;
1313
1314  const MemRegion* superR = R->getSuperRegion();
1315
1316  // Check if the region is an element region of a string literal.
1317  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1318    // FIXME: Handle loads from strings where the literal is treated as
1319    // an integer, e.g., *((unsigned int*)"hello")
1320    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1321    if (T != Ctx.getCanonicalType(R->getElementType()))
1322      return UnknownVal();
1323
1324    const StringLiteral *Str = StrR->getStringLiteral();
1325    SVal Idx = R->getIndex();
1326    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1327      int64_t i = CI->getValue().getSExtValue();
1328      // Abort on string underrun.  This can be possible by arbitrary
1329      // clients of getBindingForElement().
1330      if (i < 0)
1331        return UndefinedVal();
1332      int64_t length = Str->getLength();
1333      // Technically, only i == length is guaranteed to be null.
1334      // However, such overflows should be caught before reaching this point;
1335      // the only time such an access would be made is if a string literal was
1336      // used to initialize a larger array.
1337      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1338      return svalBuilder.makeIntVal(c, T);
1339    }
1340  }
1341
1342  // Check for loads from a code text region.  For such loads, just give up.
1343  if (isa<CodeTextRegion>(superR))
1344    return UnknownVal();
1345
1346  // Handle the case where we are indexing into a larger scalar object.
1347  // For example, this handles:
1348  //   int x = ...
1349  //   char *y = &x;
1350  //   return *y;
1351  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1352  const RegionRawOffset &O = R->getAsArrayOffset();
1353
1354  // If we cannot reason about the offset, return an unknown value.
1355  if (!O.getRegion())
1356    return UnknownVal();
1357
1358  if (const TypedValueRegion *baseR =
1359        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1360    QualType baseT = baseR->getValueType();
1361    if (baseT->isScalarType()) {
1362      QualType elemT = R->getElementType();
1363      if (elemT->isScalarType()) {
1364        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1365          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1366            if (SymbolRef parentSym = V->getAsSymbol())
1367              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1368
1369            if (V->isUnknownOrUndef())
1370              return *V;
1371            // Other cases: give up.  We are indexing into a larger object
1372            // that has some value, but we don't know how to handle that yet.
1373            return UnknownVal();
1374          }
1375        }
1376      }
1377    }
1378  }
1379  return getBindingForFieldOrElementCommon(B, R, R->getElementType(),
1380                                           superR);
1381}
1382
1383SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1384                                            const FieldRegion* R) {
1385
1386  // Check if the region has a binding.
1387  if (const Optional<SVal> &V = B.getDirectBinding(R))
1388    return *V;
1389
1390  QualType Ty = R->getValueType();
1391  return getBindingForFieldOrElementCommon(B, R, Ty, R->getSuperRegion());
1392}
1393
1394Optional<SVal>
1395RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1396                                                     const MemRegion *superR,
1397                                                     const TypedValueRegion *R,
1398                                                     QualType Ty) {
1399
1400  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1401    const SVal &val = D.getValue();
1402    if (SymbolRef parentSym = val.getAsSymbol())
1403      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1404
1405    if (val.isZeroConstant())
1406      return svalBuilder.makeZeroVal(Ty);
1407
1408    if (val.isUnknownOrUndef())
1409      return val;
1410
1411    // Lazy bindings are handled later.
1412    if (isa<nonloc::LazyCompoundVal>(val))
1413      return Optional<SVal>();
1414
1415    llvm_unreachable("Unknown default value");
1416  }
1417
1418  return Optional<SVal>();
1419}
1420
1421SVal RegionStoreManager::getLazyBinding(const MemRegion *LazyBindingRegion,
1422                                        RegionBindingsRef LazyBinding) {
1423  SVal Result;
1424  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1425    Result = getBindingForElement(LazyBinding, ER);
1426  else
1427    Result = getBindingForField(LazyBinding,
1428                                cast<FieldRegion>(LazyBindingRegion));
1429
1430  // This is a hack to deal with RegionStore's inability to distinguish a
1431  // default value for /part/ of an aggregate from a default value for the
1432  // /entire/ aggregate. The most common case of this is when struct Outer
1433  // has as its first member a struct Inner, which is copied in from a stack
1434  // variable. In this case, even if the Outer's default value is symbolic, 0,
1435  // or unknown, it gets overridden by the Inner's default value of undefined.
1436  //
1437  // This is a general problem -- if the Inner is zero-initialized, the Outer
1438  // will now look zero-initialized. The proper way to solve this is with a
1439  // new version of RegionStore that tracks the extent of a binding as well
1440  // as the offset.
1441  //
1442  // This hack only takes care of the undefined case because that can very
1443  // quickly result in a warning.
1444  if (Result.isUndef())
1445    Result = UnknownVal();
1446
1447  return Result;
1448}
1449
1450SVal
1451RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1452                                                      const TypedValueRegion *R,
1453                                                      QualType Ty,
1454                                                      const MemRegion *superR) {
1455
1456  // At this point we have already checked in either getBindingForElement or
1457  // getBindingForField if 'R' has a direct binding.
1458
1459  // Lazy binding?
1460  Store lazyBindingStore = NULL;
1461  const MemRegion *lazyBindingRegion = NULL;
1462  llvm::tie(lazyBindingStore, lazyBindingRegion) = getLazyBinding(B, R, R);
1463  if (lazyBindingRegion)
1464    return getLazyBinding(lazyBindingRegion,
1465                          getRegionBindings(lazyBindingStore));
1466
1467  // Record whether or not we see a symbolic index.  That can completely
1468  // be out of scope of our lookup.
1469  bool hasSymbolicIndex = false;
1470
1471  while (superR) {
1472    if (const Optional<SVal> &D =
1473        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1474      return *D;
1475
1476    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1477      NonLoc index = ER->getIndex();
1478      if (!index.isConstant())
1479        hasSymbolicIndex = true;
1480    }
1481
1482    // If our super region is a field or element itself, walk up the region
1483    // hierarchy to see if there is a default value installed in an ancestor.
1484    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1485      superR = SR->getSuperRegion();
1486      continue;
1487    }
1488    break;
1489  }
1490
1491  if (R->hasStackNonParametersStorage()) {
1492    if (isa<ElementRegion>(R)) {
1493      // Currently we don't reason specially about Clang-style vectors.  Check
1494      // if superR is a vector and if so return Unknown.
1495      if (const TypedValueRegion *typedSuperR =
1496            dyn_cast<TypedValueRegion>(superR)) {
1497        if (typedSuperR->getValueType()->isVectorType())
1498          return UnknownVal();
1499      }
1500    }
1501
1502    // FIXME: We also need to take ElementRegions with symbolic indexes into
1503    // account.  This case handles both directly accessing an ElementRegion
1504    // with a symbolic offset, but also fields within an element with
1505    // a symbolic offset.
1506    if (hasSymbolicIndex)
1507      return UnknownVal();
1508
1509    return UndefinedVal();
1510  }
1511
1512  // All other values are symbolic.
1513  return svalBuilder.getRegionValueSymbolVal(R);
1514}
1515
1516SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1517                                               const ObjCIvarRegion* R) {
1518  // Check if the region has a binding.
1519  if (const Optional<SVal> &V = B.getDirectBinding(R))
1520    return *V;
1521
1522  const MemRegion *superR = R->getSuperRegion();
1523
1524  // Check if the super region has a default binding.
1525  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1526    if (SymbolRef parentSym = V->getAsSymbol())
1527      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1528
1529    // Other cases: give up.
1530    return UnknownVal();
1531  }
1532
1533  return getBindingForLazySymbol(R);
1534}
1535
1536static Optional<SVal> getConstValue(SValBuilder &SVB, const VarDecl *VD) {
1537  ASTContext &Ctx = SVB.getContext();
1538  if (!VD->getType().isConstQualified())
1539    return Optional<SVal>();
1540
1541  const Expr *Init = VD->getInit();
1542  if (!Init)
1543    return Optional<SVal>();
1544
1545  llvm::APSInt Result;
1546  if (Init->EvaluateAsInt(Result, Ctx))
1547    return SVB.makeIntVal(Result);
1548
1549  if (Init->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
1550    return SVB.makeNull();
1551
1552  // FIXME: Handle other possible constant expressions.
1553  return Optional<SVal>();
1554}
1555
1556SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1557                                          const VarRegion *R) {
1558
1559  // Check if the region has a binding.
1560  if (const Optional<SVal> &V = B.getDirectBinding(R))
1561    return *V;
1562
1563  // Lazily derive a value for the VarRegion.
1564  const VarDecl *VD = R->getDecl();
1565  const MemSpaceRegion *MS = R->getMemorySpace();
1566
1567  // Arguments are always symbolic.
1568  if (isa<StackArgumentsSpaceRegion>(MS))
1569    return svalBuilder.getRegionValueSymbolVal(R);
1570
1571  // Is 'VD' declared constant?  If so, retrieve the constant value.
1572  if (Optional<SVal> V = getConstValue(svalBuilder, VD))
1573    return *V;
1574
1575  // This must come after the check for constants because closure-captured
1576  // constant variables may appear in UnknownSpaceRegion.
1577  if (isa<UnknownSpaceRegion>(MS))
1578    return svalBuilder.getRegionValueSymbolVal(R);
1579
1580  if (isa<GlobalsSpaceRegion>(MS)) {
1581    QualType T = VD->getType();
1582
1583    // Function-scoped static variables are default-initialized to 0; if they
1584    // have an initializer, it would have been processed by now.
1585    if (isa<StaticGlobalSpaceRegion>(MS))
1586      return svalBuilder.makeZeroVal(T);
1587
1588    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T))
1589      return V.getValue();
1590
1591    return svalBuilder.getRegionValueSymbolVal(R);
1592  }
1593
1594  return UndefinedVal();
1595}
1596
1597SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1598  // All other values are symbolic.
1599  return svalBuilder.getRegionValueSymbolVal(R);
1600}
1601
1602const RegionStoreManager::SValListTy &
1603RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1604  // First, check the cache.
1605  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1606  if (I != LazyBindingsMap.end())
1607    return I->second;
1608
1609  // If we don't have a list of values cached, start constructing it.
1610  SValListTy &List = LazyBindingsMap[LCV.getCVData()];
1611
1612  const SubRegion *LazyR = LCV.getRegion();
1613  RegionBindingsRef B = getRegionBindings(LCV.getStore());
1614
1615  // If this region had /no/ bindings at the time, there are no interesting
1616  // values to return.
1617  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1618  if (!Cluster)
1619    return List;
1620
1621  SmallVector<BindingKey, 32> Keys;
1622  collectSubRegionKeys(Keys, svalBuilder, *Cluster, LazyR,
1623                       /*IncludeAllDefaultBindings=*/true);
1624  for (SmallVectorImpl<BindingKey>::const_iterator I = Keys.begin(),
1625                                                   E = Keys.end();
1626       I != E; ++I) {
1627    SVal V = *Cluster->lookup(*I);
1628    if (V.isUnknownOrUndef() || V.isConstant())
1629      continue;
1630
1631    const nonloc::LazyCompoundVal *InnerLCV =
1632      dyn_cast<nonloc::LazyCompoundVal>(&V);
1633    if (InnerLCV) {
1634      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1635      List.insert(List.end(), InnerList.begin(), InnerList.end());
1636      continue;
1637    }
1638
1639    List.push_back(V);
1640  }
1641
1642  return List;
1643}
1644
1645NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1646                                             const TypedValueRegion *R) {
1647  // If we already have a lazy binding, and it's for the whole structure,
1648  // don't create a new lazy binding.
1649  if (Optional<SVal> V = B.getDefaultBinding(R)) {
1650    const nonloc::LazyCompoundVal *LCV =
1651      dyn_cast<nonloc::LazyCompoundVal>(V.getPointer());
1652    if (LCV) {
1653      QualType RegionTy = R->getValueType();
1654      QualType SourceRegionTy = LCV->getRegion()->getValueType();
1655      if (Ctx.hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1656        return *LCV;
1657    }
1658  }
1659
1660  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1661}
1662
1663SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1664                                             const TypedValueRegion *R) {
1665  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1666  if (RD->field_empty())
1667    return UnknownVal();
1668
1669  return createLazyBinding(B, R);
1670}
1671
1672SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1673                                            const TypedValueRegion *R) {
1674  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1675         "Only constant array types can have compound bindings.");
1676
1677  return createLazyBinding(B, R);
1678}
1679
1680bool RegionStoreManager::includedInBindings(Store store,
1681                                            const MemRegion *region) const {
1682  RegionBindingsRef B = getRegionBindings(store);
1683  region = region->getBaseRegion();
1684
1685  // Quick path: if the base is the head of a cluster, the region is live.
1686  if (B.lookup(region))
1687    return true;
1688
1689  // Slow path: if the region is the VALUE of any binding, it is live.
1690  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1691    const ClusterBindings &Cluster = RI.getData();
1692    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1693         CI != CE; ++CI) {
1694      const SVal &D = CI.getData();
1695      if (const MemRegion *R = D.getAsRegion())
1696        if (R->getBaseRegion() == region)
1697          return true;
1698    }
1699  }
1700
1701  return false;
1702}
1703
1704//===----------------------------------------------------------------------===//
1705// Binding values to regions.
1706//===----------------------------------------------------------------------===//
1707
1708StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1709  if (isa<loc::MemRegionVal>(L))
1710    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1711      return StoreRef(getRegionBindings(ST).removeBinding(R)
1712                                           .asImmutableMap()
1713                                           .getRootWithoutRetain(),
1714                      *this);
1715
1716  return StoreRef(ST, *this);
1717}
1718
1719RegionBindingsRef
1720RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1721  if (isa<loc::ConcreteInt>(L))
1722    return B;
1723
1724  // If we get here, the location should be a region.
1725  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1726
1727  // Check if the region is a struct region.
1728  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1729    QualType Ty = TR->getValueType();
1730    if (Ty->isArrayType())
1731      return bindArray(B, TR, V);
1732    if (Ty->isStructureOrClassType())
1733      return bindStruct(B, TR, V);
1734    if (Ty->isVectorType())
1735      return bindVector(B, TR, V);
1736  }
1737
1738  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1739    // Binding directly to a symbolic region should be treated as binding
1740    // to element 0.
1741    QualType T = SR->getSymbol()->getType();
1742    if (T->isAnyPointerType() || T->isReferenceType())
1743      T = T->getPointeeType();
1744
1745    R = GetElementZeroRegion(SR, T);
1746  }
1747
1748  // Clear out bindings that may overlap with this binding.
1749  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1750  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1751}
1752
1753// FIXME: this method should be merged into Bind().
1754StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
1755                                                 const CompoundLiteralExpr *CL,
1756                                                 const LocationContext *LC,
1757                                                 SVal V) {
1758  return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
1759}
1760
1761RegionBindingsRef
1762RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1763                                            const MemRegion *R,
1764                                            QualType T) {
1765  SVal V;
1766
1767  if (Loc::isLocType(T))
1768    V = svalBuilder.makeNull();
1769  else if (T->isIntegerType())
1770    V = svalBuilder.makeZeroVal(T);
1771  else if (T->isStructureOrClassType() || T->isArrayType()) {
1772    // Set the default value to a zero constant when it is a structure
1773    // or array.  The type doesn't really matter.
1774    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1775  }
1776  else {
1777    // We can't represent values of this type, but we still need to set a value
1778    // to record that the region has been initialized.
1779    // If this assertion ever fires, a new case should be added above -- we
1780    // should know how to default-initialize any value we can symbolicate.
1781    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1782    V = UnknownVal();
1783  }
1784
1785  return B.addBinding(R, BindingKey::Default, V);
1786}
1787
1788RegionBindingsRef
1789RegionStoreManager::bindArray(RegionBindingsConstRef B,
1790                              const TypedValueRegion* R,
1791                              SVal Init) {
1792
1793  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1794  QualType ElementTy = AT->getElementType();
1795  Optional<uint64_t> Size;
1796
1797  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1798    Size = CAT->getSize().getZExtValue();
1799
1800  // Check if the init expr is a string literal.
1801  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1802    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1803
1804    // Treat the string as a lazy compound value.
1805    StoreRef store(B.asStore(), *this);
1806    nonloc::LazyCompoundVal LCV =
1807      cast<nonloc::LazyCompoundVal>(svalBuilder.makeLazyCompoundVal(store, S));
1808    return bindAggregate(B, R, LCV);
1809  }
1810
1811  // Handle lazy compound values.
1812  if (isa<nonloc::LazyCompoundVal>(Init))
1813    return bindAggregate(B, R, Init);
1814
1815  // Remaining case: explicit compound values.
1816
1817  if (Init.isUnknown())
1818    return setImplicitDefaultValue(B, R, ElementTy);
1819
1820  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1821  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1822  uint64_t i = 0;
1823
1824  RegionBindingsRef NewB(B);
1825
1826  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1827    // The init list might be shorter than the array length.
1828    if (VI == VE)
1829      break;
1830
1831    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1832    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1833
1834    if (ElementTy->isStructureOrClassType())
1835      NewB = bindStruct(NewB, ER, *VI);
1836    else if (ElementTy->isArrayType())
1837      NewB = bindArray(NewB, ER, *VI);
1838    else
1839      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1840  }
1841
1842  // If the init list is shorter than the array length, set the
1843  // array default value.
1844  if (Size.hasValue() && i < Size.getValue())
1845    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
1846
1847  return NewB;
1848}
1849
1850RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
1851                                                 const TypedValueRegion* R,
1852                                                 SVal V) {
1853  QualType T = R->getValueType();
1854  assert(T->isVectorType());
1855  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1856
1857  // Handle lazy compound values and symbolic values.
1858  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1859    return bindAggregate(B, R, V);
1860
1861  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1862  // that we are binding symbolic struct value. Kill the field values, and if
1863  // the value is symbolic go and bind it as a "default" binding.
1864  if (!isa<nonloc::CompoundVal>(V)) {
1865    return bindAggregate(B, R, UnknownVal());
1866  }
1867
1868  QualType ElemType = VT->getElementType();
1869  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1870  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1871  unsigned index = 0, numElements = VT->getNumElements();
1872  RegionBindingsRef NewB(B);
1873
1874  for ( ; index != numElements ; ++index) {
1875    if (VI == VE)
1876      break;
1877
1878    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1879    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1880
1881    if (ElemType->isArrayType())
1882      NewB = bindArray(NewB, ER, *VI);
1883    else if (ElemType->isStructureOrClassType())
1884      NewB = bindStruct(NewB, ER, *VI);
1885    else
1886      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1887  }
1888  return NewB;
1889}
1890
1891RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
1892                                                 const TypedValueRegion* R,
1893                                                 SVal V) {
1894  if (!Features.supportsFields())
1895    return B;
1896
1897  QualType T = R->getValueType();
1898  assert(T->isStructureOrClassType());
1899
1900  const RecordType* RT = T->getAs<RecordType>();
1901  RecordDecl *RD = RT->getDecl();
1902
1903  if (!RD->isCompleteDefinition())
1904    return B;
1905
1906  // Handle lazy compound values and symbolic values.
1907  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1908    return bindAggregate(B, R, V);
1909
1910  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1911  // that we are binding symbolic struct value. Kill the field values, and if
1912  // the value is symbolic go and bind it as a "default" binding.
1913  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
1914    return bindAggregate(B, R, UnknownVal());
1915
1916  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1917  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1918
1919  RecordDecl::field_iterator FI, FE;
1920  RegionBindingsRef NewB(B);
1921
1922  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1923
1924    if (VI == VE)
1925      break;
1926
1927    // Skip any unnamed bitfields to stay in sync with the initializers.
1928    if (FI->isUnnamedBitfield())
1929      continue;
1930
1931    QualType FTy = FI->getType();
1932    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1933
1934    if (FTy->isArrayType())
1935      NewB = bindArray(NewB, FR, *VI);
1936    else if (FTy->isStructureOrClassType())
1937      NewB = bindStruct(NewB, FR, *VI);
1938    else
1939      NewB = bind(NewB, svalBuilder.makeLoc(FR), *VI);
1940    ++VI;
1941  }
1942
1943  // There may be fewer values in the initialize list than the fields of struct.
1944  if (FI != FE) {
1945    NewB = NewB.addBinding(R, BindingKey::Default,
1946                           svalBuilder.makeIntVal(0, false));
1947  }
1948
1949  return NewB;
1950}
1951
1952RegionBindingsRef
1953RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
1954                                  const TypedRegion *R,
1955                                  SVal Val) {
1956  // Remove the old bindings, using 'R' as the root of all regions
1957  // we will invalidate. Then add the new binding.
1958  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
1959}
1960
1961//===----------------------------------------------------------------------===//
1962// State pruning.
1963//===----------------------------------------------------------------------===//
1964
1965namespace {
1966class removeDeadBindingsWorker :
1967  public ClusterAnalysis<removeDeadBindingsWorker> {
1968  SmallVector<const SymbolicRegion*, 12> Postponed;
1969  SymbolReaper &SymReaper;
1970  const StackFrameContext *CurrentLCtx;
1971
1972public:
1973  removeDeadBindingsWorker(RegionStoreManager &rm,
1974                           ProgramStateManager &stateMgr,
1975                           RegionBindingsRef b, SymbolReaper &symReaper,
1976                           const StackFrameContext *LCtx)
1977    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1978                                                /* includeGlobals = */ false),
1979      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1980
1981  // Called by ClusterAnalysis.
1982  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
1983  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
1984
1985  bool UpdatePostponed();
1986  void VisitBinding(SVal V);
1987};
1988}
1989
1990void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1991                                                   const ClusterBindings &C) {
1992
1993  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1994    if (SymReaper.isLive(VR))
1995      AddToWorkList(baseR, &C);
1996
1997    return;
1998  }
1999
2000  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2001    if (SymReaper.isLive(SR->getSymbol()))
2002      AddToWorkList(SR, &C);
2003    else
2004      Postponed.push_back(SR);
2005
2006    return;
2007  }
2008
2009  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2010    AddToWorkList(baseR, &C);
2011    return;
2012  }
2013
2014  // CXXThisRegion in the current or parent location context is live.
2015  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2016    const StackArgumentsSpaceRegion *StackReg =
2017      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2018    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2019    if (CurrentLCtx &&
2020        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2021      AddToWorkList(TR, &C);
2022  }
2023}
2024
2025void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2026                                            const ClusterBindings &C) {
2027  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2028  // This means we should continue to track that symbol.
2029  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2030    SymReaper.markLive(SymR->getSymbol());
2031
2032  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
2033    VisitBinding(I.getData());
2034}
2035
2036void removeDeadBindingsWorker::VisitBinding(SVal V) {
2037  // Is it a LazyCompoundVal?  All referenced regions are live as well.
2038  if (const nonloc::LazyCompoundVal *LCS =
2039        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
2040
2041    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2042
2043    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2044                                                        E = Vals.end();
2045         I != E; ++I)
2046      VisitBinding(*I);
2047
2048    return;
2049  }
2050
2051  // If V is a region, then add it to the worklist.
2052  if (const MemRegion *R = V.getAsRegion()) {
2053    AddToWorkList(R);
2054
2055    // All regions captured by a block are also live.
2056    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2057      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2058                                                E = BR->referenced_vars_end();
2059      for ( ; I != E; ++I)
2060        AddToWorkList(I.getCapturedRegion());
2061    }
2062  }
2063
2064
2065  // Update the set of live symbols.
2066  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2067       SI!=SE; ++SI)
2068    SymReaper.markLive(*SI);
2069}
2070
2071bool removeDeadBindingsWorker::UpdatePostponed() {
2072  // See if any postponed SymbolicRegions are actually live now, after
2073  // having done a scan.
2074  bool changed = false;
2075
2076  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2077        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2078    if (const SymbolicRegion *SR = *I) {
2079      if (SymReaper.isLive(SR->getSymbol())) {
2080        changed |= AddToWorkList(SR);
2081        *I = NULL;
2082      }
2083    }
2084  }
2085
2086  return changed;
2087}
2088
2089StoreRef RegionStoreManager::removeDeadBindings(Store store,
2090                                                const StackFrameContext *LCtx,
2091                                                SymbolReaper& SymReaper) {
2092  RegionBindingsRef B = getRegionBindings(store);
2093  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2094  W.GenerateClusters();
2095
2096  // Enqueue the region roots onto the worklist.
2097  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2098       E = SymReaper.region_end(); I != E; ++I) {
2099    W.AddToWorkList(*I);
2100  }
2101
2102  do W.RunWorkList(); while (W.UpdatePostponed());
2103
2104  // We have now scanned the store, marking reachable regions and symbols
2105  // as live.  We now remove all the regions that are dead from the store
2106  // as well as update DSymbols with the set symbols that are now dead.
2107  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2108    const MemRegion *Base = I.getKey();
2109
2110    // If the cluster has been visited, we know the region has been marked.
2111    if (W.isVisited(Base))
2112      continue;
2113
2114    // Remove the dead entry.
2115    B = B.remove(Base);
2116
2117    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2118      SymReaper.maybeDead(SymR->getSymbol());
2119
2120    // Mark all non-live symbols that this binding references as dead.
2121    const ClusterBindings &Cluster = I.getData();
2122    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2123         CI != CE; ++CI) {
2124      SVal X = CI.getData();
2125      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2126      for (; SI != SE; ++SI)
2127        SymReaper.maybeDead(*SI);
2128    }
2129  }
2130
2131  return StoreRef(B.asStore(), *this);
2132}
2133
2134//===----------------------------------------------------------------------===//
2135// Utility methods.
2136//===----------------------------------------------------------------------===//
2137
2138void RegionStoreManager::print(Store store, raw_ostream &OS,
2139                               const char* nl, const char *sep) {
2140  RegionBindingsRef B = getRegionBindings(store);
2141  OS << "Store (direct and default bindings), "
2142     << B.asStore()
2143     << " :" << nl;
2144  B.dump(OS, nl);
2145}
2146