RegionStore.cpp revision 581deb3da481053c4993c7600f97acf7768caac5
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27#include "llvm/ADT/ImmutableList.h"
28#include "llvm/ADT/ImmutableMap.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33using namespace ento;
34using llvm::Optional;
35
36//===----------------------------------------------------------------------===//
37// Representation of binding keys.
38//===----------------------------------------------------------------------===//
39
40namespace {
41class BindingKey {
42public:
43  enum Kind { Direct = 0x0, Default = 0x1 };
44private:
45  llvm ::PointerIntPair<const MemRegion*, 1> P;
46  uint64_t Offset;
47
48  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49    : P(r, (unsigned) k), Offset(offset) {}
50public:
51
52  bool isDirect() const { return P.getInt() == Direct; }
53
54  const MemRegion *getRegion() const { return P.getPointer(); }
55  uint64_t getOffset() const { return Offset; }
56
57  void Profile(llvm::FoldingSetNodeID& ID) const {
58    ID.AddPointer(P.getOpaqueValue());
59    ID.AddInteger(Offset);
60  }
61
62  static BindingKey Make(const MemRegion *R, Kind k);
63
64  bool operator<(const BindingKey &X) const {
65    if (P.getOpaqueValue() < X.P.getOpaqueValue())
66      return true;
67    if (P.getOpaqueValue() > X.P.getOpaqueValue())
68      return false;
69    return Offset < X.Offset;
70  }
71
72  bool operator==(const BindingKey &X) const {
73    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74           Offset == X.Offset;
75  }
76
77  bool isValid() const {
78    return getRegion() != NULL;
79  }
80};
81} // end anonymous namespace
82
83BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84  const RegionOffset &RO = R->getAsOffset();
85  if (RO.getRegion())
86    return BindingKey(RO.getRegion(), RO.getOffset(), k);
87
88  return BindingKey(R, 0, k);
89}
90
91namespace llvm {
92  static inline
93  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
94    os << '(' << K.getRegion() << ',' << K.getOffset()
95       << ',' << (K.isDirect() ? "direct" : "default")
96       << ')';
97    return os;
98  }
99} // end llvm namespace
100
101//===----------------------------------------------------------------------===//
102// Actual Store type.
103//===----------------------------------------------------------------------===//
104
105typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
106
107//===----------------------------------------------------------------------===//
108// Fine-grained control of RegionStoreManager.
109//===----------------------------------------------------------------------===//
110
111namespace {
112struct minimal_features_tag {};
113struct maximal_features_tag {};
114
115class RegionStoreFeatures {
116  bool SupportsFields;
117public:
118  RegionStoreFeatures(minimal_features_tag) :
119    SupportsFields(false) {}
120
121  RegionStoreFeatures(maximal_features_tag) :
122    SupportsFields(true) {}
123
124  void enableFields(bool t) { SupportsFields = t; }
125
126  bool supportsFields() const { return SupportsFields; }
127};
128}
129
130//===----------------------------------------------------------------------===//
131// Main RegionStore logic.
132//===----------------------------------------------------------------------===//
133
134namespace {
135
136class RegionStoreSubRegionMap : public SubRegionMap {
137public:
138  typedef llvm::ImmutableSet<const MemRegion*> Set;
139  typedef llvm::DenseMap<const MemRegion*, Set> Map;
140private:
141  Set::Factory F;
142  Map M;
143public:
144  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
145    Map::iterator I = M.find(Parent);
146
147    if (I == M.end()) {
148      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
149      return true;
150    }
151
152    I->second = F.add(I->second, SubRegion);
153    return false;
154  }
155
156  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
157
158  ~RegionStoreSubRegionMap() {}
159
160  const Set *getSubRegions(const MemRegion *Parent) const {
161    Map::const_iterator I = M.find(Parent);
162    return I == M.end() ? NULL : &I->second;
163  }
164
165  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
166    Map::const_iterator I = M.find(Parent);
167
168    if (I == M.end())
169      return true;
170
171    Set S = I->second;
172    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
173      if (!V.Visit(Parent, *SI))
174        return false;
175    }
176
177    return true;
178  }
179};
180
181void
182RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
183                                 const SubRegion *R) {
184  const MemRegion *superR = R->getSuperRegion();
185  if (add(superR, R))
186    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
187      WL.push_back(sr);
188}
189
190class RegionStoreManager : public StoreManager {
191  const RegionStoreFeatures Features;
192  RegionBindings::Factory RBFactory;
193
194public:
195  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
196    : StoreManager(mgr),
197      Features(f),
198      RBFactory(mgr.getAllocator()) {}
199
200  SubRegionMap *getSubRegionMap(Store store) {
201    return getRegionStoreSubRegionMap(store);
202  }
203
204  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
205
206  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
207  /// getDefaultBinding - Returns an SVal* representing an optional default
208  ///  binding associated with a region and its subregions.
209  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
210
211  /// setImplicitDefaultValue - Set the default binding for the provided
212  ///  MemRegion to the value implicitly defined for compound literals when
213  ///  the value is not specified.
214  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
215
216  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
217  ///  type.  'Array' represents the lvalue of the array being decayed
218  ///  to a pointer, and the returned SVal represents the decayed
219  ///  version of that lvalue (i.e., a pointer to the first element of
220  ///  the array).  This is called by ExprEngine when evaluating
221  ///  casts from arrays to pointers.
222  SVal ArrayToPointer(Loc Array);
223
224  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
225  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
226
227  /// \brief Evaluates C++ dynamic_cast cast.
228  /// The callback may result in the following 3 scenarios:
229  ///  - Successful cast (ex: derived is subclass of base).
230  ///  - Failed cast (ex: derived is definitely not a subclass of base).
231  ///  - We don't know (base is a symbolic region and we don't have
232  ///    enough info to determine if the cast will succeed at run time).
233  /// The function returns an SVal representing the derived class; it's
234  /// valid only if Failed flag is set to false.
235  virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
236
237  StoreRef getInitialStore(const LocationContext *InitLoc) {
238    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
239  }
240
241  //===-------------------------------------------------------------------===//
242  // Binding values to regions.
243  //===-------------------------------------------------------------------===//
244  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
245                                        const Expr *Ex,
246                                        unsigned Count,
247                                        const LocationContext *LCtx,
248                                        RegionBindings B,
249                                        InvalidatedRegions *Invalidated);
250
251  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
252                             const Expr *E, unsigned Count,
253                             const LocationContext *LCtx,
254                             InvalidatedSymbols &IS,
255                             const CallOrObjCMessage *Call,
256                             InvalidatedRegions *Invalidated);
257
258public:   // Made public for helper classes.
259
260  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
261                               RegionStoreSubRegionMap &M);
262
263  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
264
265  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
266                     BindingKey::Kind k, SVal V);
267
268  const SVal *lookup(RegionBindings B, BindingKey K);
269  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
270
271  RegionBindings removeBinding(RegionBindings B, BindingKey K);
272  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
273                        BindingKey::Kind k);
274
275  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
276    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
277                        BindingKey::Default);
278  }
279
280public: // Part of public interface to class.
281
282  StoreRef Bind(Store store, Loc LV, SVal V);
283
284  // BindDefault is only used to initialize a region with a default value.
285  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
286    RegionBindings B = GetRegionBindings(store);
287    assert(!lookup(B, R, BindingKey::Default));
288    assert(!lookup(B, R, BindingKey::Direct));
289    return StoreRef(addBinding(B, R, BindingKey::Default, V)
290                      .getRootWithoutRetain(), *this);
291  }
292
293  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
294                               const LocationContext *LC, SVal V);
295
296  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
297
298  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
299    return StoreRef(store, *this);
300  }
301
302  /// BindStruct - Bind a compound value to a structure.
303  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
304
305  /// BindVector - Bind a compound value to a vector.
306  StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
307
308  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
309
310  /// KillStruct - Set the entire struct to unknown.
311  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
312
313  StoreRef Remove(Store store, Loc LV);
314
315  void incrementReferenceCount(Store store) {
316    GetRegionBindings(store).manualRetain();
317  }
318
319  /// If the StoreManager supports it, decrement the reference count of
320  /// the specified Store object.  If the reference count hits 0, the memory
321  /// associated with the object is recycled.
322  void decrementReferenceCount(Store store) {
323    GetRegionBindings(store).manualRelease();
324  }
325
326  bool includedInBindings(Store store, const MemRegion *region) const;
327
328  /// \brief Return the value bound to specified location in a given state.
329  ///
330  /// The high level logic for this method is this:
331  /// getBinding (L)
332  ///   if L has binding
333  ///     return L's binding
334  ///   else if L is in killset
335  ///     return unknown
336  ///   else
337  ///     if L is on stack or heap
338  ///       return undefined
339  ///     else
340  ///       return symbolic
341  SVal getBinding(Store store, Loc L, QualType T = QualType());
342
343  SVal getBindingForElement(Store store, const ElementRegion *R);
344
345  SVal getBindingForField(Store store, const FieldRegion *R);
346
347  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
348
349  SVal getBindingForVar(Store store, const VarRegion *R);
350
351  SVal getBindingForLazySymbol(const TypedValueRegion *R);
352
353  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
354                                         QualType Ty, const MemRegion *superR);
355
356  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
357                      Store lazyBindingStore);
358
359  /// Get bindings for the values in a struct and return a CompoundVal, used
360  /// when doing struct copy:
361  /// struct s x, y;
362  /// x = y;
363  /// y's value is retrieved by this method.
364  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
365
366  SVal getBindingForArray(Store store, const TypedValueRegion* R);
367
368  /// Used to lazily generate derived symbols for bindings that are defined
369  ///  implicitly by default bindings in a super region.
370  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
371                                                  const MemRegion *superR,
372                                                  const TypedValueRegion *R,
373                                                  QualType Ty);
374
375  /// Get the state and region whose binding this region R corresponds to.
376  std::pair<Store, const MemRegion*>
377  GetLazyBinding(RegionBindings B, const MemRegion *R,
378                 const MemRegion *originalRegion,
379                 bool includeSuffix = false);
380
381  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
382                            const TypedRegion *R);
383
384  //===------------------------------------------------------------------===//
385  // State pruning.
386  //===------------------------------------------------------------------===//
387
388  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
389  ///  It returns a new Store with these values removed.
390  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
391                              SymbolReaper& SymReaper);
392
393  StoreRef enterStackFrame(ProgramStateRef state,
394                           const LocationContext *callerCtx,
395                           const StackFrameContext *calleeCtx);
396
397  StoreRef enterStackFrame(ProgramStateRef state,
398                           const FunctionDecl *FD,
399                           const LocationContext *callerCtx,
400                           const StackFrameContext *calleeCtx);
401
402
403  //===------------------------------------------------------------------===//
404  // Region "extents".
405  //===------------------------------------------------------------------===//
406
407  // FIXME: This method will soon be eliminated; see the note in Store.h.
408  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
409                                         const MemRegion* R, QualType EleTy);
410
411  //===------------------------------------------------------------------===//
412  // Utility methods.
413  //===------------------------------------------------------------------===//
414
415  static inline RegionBindings GetRegionBindings(Store store) {
416    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
417  }
418
419  void print(Store store, raw_ostream &Out, const char* nl,
420             const char *sep);
421
422  void iterBindings(Store store, BindingsHandler& f) {
423    RegionBindings B = GetRegionBindings(store);
424    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
425      const BindingKey &K = I.getKey();
426      if (!K.isDirect())
427        continue;
428      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
429        // FIXME: Possibly incorporate the offset?
430        if (!f.HandleBinding(*this, store, R, I.getData()))
431          return;
432      }
433    }
434  }
435};
436
437} // end anonymous namespace
438
439//===----------------------------------------------------------------------===//
440// RegionStore creation.
441//===----------------------------------------------------------------------===//
442
443StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
444  RegionStoreFeatures F = maximal_features_tag();
445  return new RegionStoreManager(StMgr, F);
446}
447
448StoreManager *
449ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
450  RegionStoreFeatures F = minimal_features_tag();
451  F.enableFields(true);
452  return new RegionStoreManager(StMgr, F);
453}
454
455
456RegionStoreSubRegionMap*
457RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
458  RegionBindings B = GetRegionBindings(store);
459  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
460
461  SmallVector<const SubRegion*, 10> WL;
462
463  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
464    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
465      M->process(WL, R);
466
467  // We also need to record in the subregion map "intermediate" regions that
468  // don't have direct bindings but are super regions of those that do.
469  while (!WL.empty()) {
470    const SubRegion *R = WL.back();
471    WL.pop_back();
472    M->process(WL, R);
473  }
474
475  return M;
476}
477
478//===----------------------------------------------------------------------===//
479// Region Cluster analysis.
480//===----------------------------------------------------------------------===//
481
482namespace {
483template <typename DERIVED>
484class ClusterAnalysis  {
485protected:
486  typedef BumpVector<BindingKey> RegionCluster;
487  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
488  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
489  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
490    WorkList;
491
492  BumpVectorContext BVC;
493  ClusterMap ClusterM;
494  WorkList WL;
495
496  RegionStoreManager &RM;
497  ASTContext &Ctx;
498  SValBuilder &svalBuilder;
499
500  RegionBindings B;
501
502  const bool includeGlobals;
503
504public:
505  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
506                  RegionBindings b, const bool includeGlobals)
507    : RM(rm), Ctx(StateMgr.getContext()),
508      svalBuilder(StateMgr.getSValBuilder()),
509      B(b), includeGlobals(includeGlobals) {}
510
511  RegionBindings getRegionBindings() const { return B; }
512
513  RegionCluster &AddToCluster(BindingKey K) {
514    const MemRegion *R = K.getRegion();
515    const MemRegion *baseR = R->getBaseRegion();
516    RegionCluster &C = getCluster(baseR);
517    C.push_back(K, BVC);
518    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
519    return C;
520  }
521
522  bool isVisited(const MemRegion *R) {
523    return (bool) Visited[&getCluster(R->getBaseRegion())];
524  }
525
526  RegionCluster& getCluster(const MemRegion *R) {
527    RegionCluster *&CRef = ClusterM[R];
528    if (!CRef) {
529      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
530      CRef = new (Mem) RegionCluster(BVC, 10);
531    }
532    return *CRef;
533  }
534
535  void GenerateClusters() {
536      // Scan the entire set of bindings and make the region clusters.
537    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
538      RegionCluster &C = AddToCluster(RI.getKey());
539      if (const MemRegion *R = RI.getData().getAsRegion()) {
540        // Generate a cluster, but don't add the region to the cluster
541        // if there aren't any bindings.
542        getCluster(R->getBaseRegion());
543      }
544      if (includeGlobals) {
545        const MemRegion *R = RI.getKey().getRegion();
546        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
547          AddToWorkList(R, C);
548      }
549    }
550  }
551
552  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
553    if (unsigned &visited = Visited[&C])
554      return false;
555    else
556      visited = 1;
557
558    WL.push_back(std::make_pair(R, &C));
559    return true;
560  }
561
562  bool AddToWorkList(BindingKey K) {
563    return AddToWorkList(K.getRegion());
564  }
565
566  bool AddToWorkList(const MemRegion *R) {
567    const MemRegion *baseR = R->getBaseRegion();
568    return AddToWorkList(baseR, getCluster(baseR));
569  }
570
571  void RunWorkList() {
572    while (!WL.empty()) {
573      const MemRegion *baseR;
574      RegionCluster *C;
575      llvm::tie(baseR, C) = WL.back();
576      WL.pop_back();
577
578        // First visit the cluster.
579      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
580
581        // Next, visit the base region.
582      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
583    }
584  }
585
586public:
587  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
588  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
589  void VisitBaseRegion(const MemRegion *baseR) {}
590};
591}
592
593//===----------------------------------------------------------------------===//
594// Binding invalidation.
595//===----------------------------------------------------------------------===//
596
597void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
598                                                 const MemRegion *R,
599                                                 RegionStoreSubRegionMap &M) {
600
601  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
602    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
603         I != E; ++I)
604      RemoveSubRegionBindings(B, *I, M);
605
606  B = removeBinding(B, R);
607}
608
609namespace {
610class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
611{
612  const Expr *Ex;
613  unsigned Count;
614  const LocationContext *LCtx;
615  StoreManager::InvalidatedSymbols &IS;
616  StoreManager::InvalidatedRegions *Regions;
617public:
618  invalidateRegionsWorker(RegionStoreManager &rm,
619                          ProgramStateManager &stateMgr,
620                          RegionBindings b,
621                          const Expr *ex, unsigned count,
622                          const LocationContext *lctx,
623                          StoreManager::InvalidatedSymbols &is,
624                          StoreManager::InvalidatedRegions *r,
625                          bool includeGlobals)
626    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
627      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
628
629  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
630  void VisitBaseRegion(const MemRegion *baseR);
631
632private:
633  void VisitBinding(SVal V);
634};
635}
636
637void invalidateRegionsWorker::VisitBinding(SVal V) {
638  // A symbol?  Mark it touched by the invalidation.
639  if (SymbolRef Sym = V.getAsSymbol())
640    IS.insert(Sym);
641
642  if (const MemRegion *R = V.getAsRegion()) {
643    AddToWorkList(R);
644    return;
645  }
646
647  // Is it a LazyCompoundVal?  All references get invalidated as well.
648  if (const nonloc::LazyCompoundVal *LCS =
649        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
650
651    const MemRegion *LazyR = LCS->getRegion();
652    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
653
654    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
655      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
656      if (baseR && (baseR == LazyR || baseR->isSubRegionOf(LazyR)))
657        VisitBinding(RI.getData());
658    }
659
660    return;
661  }
662}
663
664void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
665                                           BindingKey *I, BindingKey *E) {
666  for ( ; I != E; ++I) {
667    // Get the old binding.  Is it a region?  If so, add it to the worklist.
668    const BindingKey &K = *I;
669    if (const SVal *V = RM.lookup(B, K))
670      VisitBinding(*V);
671
672    B = RM.removeBinding(B, K);
673  }
674}
675
676void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
677  // Symbolic region?  Mark that symbol touched by the invalidation.
678  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
679    IS.insert(SR->getSymbol());
680
681  // BlockDataRegion?  If so, invalidate captured variables that are passed
682  // by reference.
683  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
684    for (BlockDataRegion::referenced_vars_iterator
685         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
686         BI != BE; ++BI) {
687      const VarRegion *VR = *BI;
688      const VarDecl *VD = VR->getDecl();
689      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
690        AddToWorkList(VR);
691      }
692      else if (Loc::isLocType(VR->getValueType())) {
693        // Map the current bindings to a Store to retrieve the value
694        // of the binding.  If that binding itself is a region, we should
695        // invalidate that region.  This is because a block may capture
696        // a pointer value, but the thing pointed by that pointer may
697        // get invalidated.
698        Store store = B.getRootWithoutRetain();
699        SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
700        if (const Loc *L = dyn_cast<Loc>(&V)) {
701          if (const MemRegion *LR = L->getAsRegion())
702            AddToWorkList(LR);
703        }
704      }
705    }
706    return;
707  }
708
709  // Otherwise, we have a normal data region. Record that we touched the region.
710  if (Regions)
711    Regions->push_back(baseR);
712
713  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
714    // Invalidate the region by setting its default value to
715    // conjured symbol. The type of the symbol is irrelavant.
716    DefinedOrUnknownSVal V =
717      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
718    B = RM.addBinding(B, baseR, BindingKey::Default, V);
719    return;
720  }
721
722  if (!baseR->isBoundable())
723    return;
724
725  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
726  QualType T = TR->getValueType();
727
728    // Invalidate the binding.
729  if (T->isStructureOrClassType()) {
730    // Invalidate the region by setting its default value to
731    // conjured symbol. The type of the symbol is irrelavant.
732    DefinedOrUnknownSVal V =
733      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
734    B = RM.addBinding(B, baseR, BindingKey::Default, V);
735    return;
736  }
737
738  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
739      // Set the default value of the array to conjured symbol.
740    DefinedOrUnknownSVal V =
741    svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
742                                     AT->getElementType(), Count);
743    B = RM.addBinding(B, baseR, BindingKey::Default, V);
744    return;
745  }
746
747  if (includeGlobals &&
748      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
749    // If the region is a global and we are invalidating all globals,
750    // just erase the entry.  This causes all globals to be lazily
751    // symbolicated from the same base symbol.
752    B = RM.removeBinding(B, baseR);
753    return;
754  }
755
756
757  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
758                                                            T,Count);
759  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
760  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
761}
762
763RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
764                                                          const Expr *Ex,
765                                                          unsigned Count,
766                                                    const LocationContext *LCtx,
767                                                          RegionBindings B,
768                                            InvalidatedRegions *Invalidated) {
769  // Bind the globals memory space to a new symbol that we will use to derive
770  // the bindings for all globals.
771  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
772  SVal V =
773      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
774          /* symbol type, doesn't matter */ Ctx.IntTy,
775          Count);
776
777  B = removeBinding(B, GS);
778  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
779
780  // Even if there are no bindings in the global scope, we still need to
781  // record that we touched it.
782  if (Invalidated)
783    Invalidated->push_back(GS);
784
785  return B;
786}
787
788StoreRef RegionStoreManager::invalidateRegions(Store store,
789                                            ArrayRef<const MemRegion *> Regions,
790                                               const Expr *Ex, unsigned Count,
791                                               const LocationContext *LCtx,
792                                               InvalidatedSymbols &IS,
793                                               const CallOrObjCMessage *Call,
794                                              InvalidatedRegions *Invalidated) {
795  invalidateRegionsWorker W(*this, StateMgr,
796                            RegionStoreManager::GetRegionBindings(store),
797                            Ex, Count, LCtx, IS, Invalidated, false);
798
799  // Scan the bindings and generate the clusters.
800  W.GenerateClusters();
801
802  // Add the regions to the worklist.
803  for (ArrayRef<const MemRegion *>::iterator
804       I = Regions.begin(), E = Regions.end(); I != E; ++I)
805    W.AddToWorkList(*I);
806
807  W.RunWorkList();
808
809  // Return the new bindings.
810  RegionBindings B = W.getRegionBindings();
811
812  // For all globals which are not static nor immutable: determine which global
813  // regions should be invalidated and invalidate them.
814  // TODO: This could possibly be more precise with modules.
815  //
816  // System calls invalidate only system globals.
817  if (Call && Call->isInSystemHeader()) {
818    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
819                               Ex, Count, LCtx, B, Invalidated);
820  // Internal calls might invalidate both system and internal globals.
821  } else {
822    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
823                               Ex, Count, LCtx, B, Invalidated);
824    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
825                               Ex, Count, LCtx, B, Invalidated);
826  }
827
828  return StoreRef(B.getRootWithoutRetain(), *this);
829}
830
831//===----------------------------------------------------------------------===//
832// Extents for regions.
833//===----------------------------------------------------------------------===//
834
835DefinedOrUnknownSVal
836RegionStoreManager::getSizeInElements(ProgramStateRef state,
837                                      const MemRegion *R,
838                                      QualType EleTy) {
839  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
840  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
841  if (!SizeInt)
842    return UnknownVal();
843
844  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
845
846  if (Ctx.getAsVariableArrayType(EleTy)) {
847    // FIXME: We need to track extra state to properly record the size
848    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
849    // we don't have a divide-by-zero below.
850    return UnknownVal();
851  }
852
853  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
854
855  // If a variable is reinterpreted as a type that doesn't fit into a larger
856  // type evenly, round it down.
857  // This is a signed value, since it's used in arithmetic with signed indices.
858  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
859}
860
861//===----------------------------------------------------------------------===//
862// Location and region casting.
863//===----------------------------------------------------------------------===//
864
865/// ArrayToPointer - Emulates the "decay" of an array to a pointer
866///  type.  'Array' represents the lvalue of the array being decayed
867///  to a pointer, and the returned SVal represents the decayed
868///  version of that lvalue (i.e., a pointer to the first element of
869///  the array).  This is called by ExprEngine when evaluating casts
870///  from arrays to pointers.
871SVal RegionStoreManager::ArrayToPointer(Loc Array) {
872  if (!isa<loc::MemRegionVal>(Array))
873    return UnknownVal();
874
875  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
876  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
877
878  if (!ArrayR)
879    return UnknownVal();
880
881  // Strip off typedefs from the ArrayRegion's ValueType.
882  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
883  const ArrayType *AT = cast<ArrayType>(T);
884  T = AT->getElementType();
885
886  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
887  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
888}
889
890SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
891  const CXXRecordDecl *baseDecl;
892  if (baseType->isPointerType())
893    baseDecl = baseType->getCXXRecordDeclForPointerType();
894  else
895    baseDecl = baseType->getAsCXXRecordDecl();
896
897  assert(baseDecl && "not a CXXRecordDecl?");
898
899  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
900  if (!derivedRegVal)
901    return derived;
902
903  const MemRegion *baseReg =
904    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
905
906  return loc::MemRegionVal(baseReg);
907}
908
909SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
910                                         bool &Failed) {
911  Failed = false;
912
913  loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
914  if (!baseRegVal)
915    return UnknownVal();
916  const MemRegion *BaseRegion = baseRegVal->stripCasts();
917
918  // Assume the derived class is a pointer or a reference to a CXX record.
919  derivedType = derivedType->getPointeeType();
920  assert(!derivedType.isNull());
921  const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
922  if (!DerivedDecl && !derivedType->isVoidType())
923    return UnknownVal();
924
925  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
926  // derived to base).
927  const MemRegion *SR = BaseRegion;
928  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
929    QualType BaseType = TSR->getLocationType()->getPointeeType();
930    assert(!BaseType.isNull());
931    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
932    if (!SRDecl)
933      return UnknownVal();
934
935    // If found the derived class, the cast succeeds.
936    if (SRDecl == DerivedDecl)
937      return loc::MemRegionVal(TSR);
938
939    // If the region type is a subclass of the derived type.
940    if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
941      // This occurs in two cases.
942      // 1) We are processing an upcast.
943      // 2) We are processing a downcast but we jumped directly from the
944      // ancestor to a child of the cast value, so conjure the
945      // appropriate region to represent value (the intermediate node).
946      return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
947                                                            BaseRegion));
948    }
949
950    // If super region is not a parent of derived class, the cast definitely
951    // fails.
952    if (!derivedType->isVoidType() &&
953        DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
954      Failed = true;
955      return UnknownVal();
956    }
957
958    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
959      // Drill down the chain to get the derived classes.
960      SR = R->getSuperRegion();
961    else {
962      // We reached the bottom of the hierarchy.
963
964      // If this is a cast to void*, return the region.
965      if (derivedType->isVoidType())
966        return loc::MemRegionVal(TSR);
967
968      // We did not find the derived class. We we must be casting the base to
969      // derived, so the cast should fail.
970      Failed = true;
971      return UnknownVal();
972    }
973  }
974
975  return UnknownVal();
976}
977
978//===----------------------------------------------------------------------===//
979// Loading values from regions.
980//===----------------------------------------------------------------------===//
981
982Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
983                                                    const MemRegion *R) {
984
985  if (const SVal *V = lookup(B, R, BindingKey::Direct))
986    return *V;
987
988  return Optional<SVal>();
989}
990
991Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
992                                                     const MemRegion *R) {
993  if (R->isBoundable())
994    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
995      if (TR->getValueType()->isUnionType())
996        return UnknownVal();
997
998  if (const SVal *V = lookup(B, R, BindingKey::Default))
999    return *V;
1000
1001  return Optional<SVal>();
1002}
1003
1004SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
1005  assert(!isa<UnknownVal>(L) && "location unknown");
1006  assert(!isa<UndefinedVal>(L) && "location undefined");
1007
1008  // For access to concrete addresses, return UnknownVal.  Checks
1009  // for null dereferences (and similar errors) are done by checkers, not
1010  // the Store.
1011  // FIXME: We can consider lazily symbolicating such memory, but we really
1012  // should defer this when we can reason easily about symbolicating arrays
1013  // of bytes.
1014  if (isa<loc::ConcreteInt>(L)) {
1015    return UnknownVal();
1016  }
1017  if (!isa<loc::MemRegionVal>(L)) {
1018    return UnknownVal();
1019  }
1020
1021  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1022
1023  if (isa<AllocaRegion>(MR) ||
1024      isa<SymbolicRegion>(MR) ||
1025      isa<CodeTextRegion>(MR)) {
1026    if (T.isNull()) {
1027      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1028        T = TR->getLocationType();
1029      else {
1030        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1031        T = SR->getSymbol()->getType(Ctx);
1032      }
1033    }
1034    MR = GetElementZeroRegion(MR, T);
1035  }
1036
1037  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1038  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1039  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1040  QualType RTy = R->getValueType();
1041
1042  // FIXME: We should eventually handle funny addressing.  e.g.:
1043  //
1044  //   int x = ...;
1045  //   int *p = &x;
1046  //   char *q = (char*) p;
1047  //   char c = *q;  // returns the first byte of 'x'.
1048  //
1049  // Such funny addressing will occur due to layering of regions.
1050
1051  if (RTy->isStructureOrClassType())
1052    return getBindingForStruct(store, R);
1053
1054  // FIXME: Handle unions.
1055  if (RTy->isUnionType())
1056    return UnknownVal();
1057
1058  if (RTy->isArrayType())
1059    return getBindingForArray(store, R);
1060
1061  // FIXME: handle Vector types.
1062  if (RTy->isVectorType())
1063    return UnknownVal();
1064
1065  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1066    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
1067
1068  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1069    // FIXME: Here we actually perform an implicit conversion from the loaded
1070    // value to the element type.  Eventually we want to compose these values
1071    // more intelligently.  For example, an 'element' can encompass multiple
1072    // bound regions (e.g., several bound bytes), or could be a subset of
1073    // a larger value.
1074    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
1075  }
1076
1077  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1078    // FIXME: Here we actually perform an implicit conversion from the loaded
1079    // value to the ivar type.  What we should model is stores to ivars
1080    // that blow past the extent of the ivar.  If the address of the ivar is
1081    // reinterpretted, it is possible we stored a different value that could
1082    // fit within the ivar.  Either we need to cast these when storing them
1083    // or reinterpret them lazily (as we do here).
1084    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
1085  }
1086
1087  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1088    // FIXME: Here we actually perform an implicit conversion from the loaded
1089    // value to the variable type.  What we should model is stores to variables
1090    // that blow past the extent of the variable.  If the address of the
1091    // variable is reinterpretted, it is possible we stored a different value
1092    // that could fit within the variable.  Either we need to cast these when
1093    // storing them or reinterpret them lazily (as we do here).
1094    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1095  }
1096
1097  RegionBindings B = GetRegionBindings(store);
1098  const SVal *V = lookup(B, R, BindingKey::Direct);
1099
1100  // Check if the region has a binding.
1101  if (V)
1102    return *V;
1103
1104  // The location does not have a bound value.  This means that it has
1105  // the value it had upon its creation and/or entry to the analyzed
1106  // function/method.  These are either symbolic values or 'undefined'.
1107  if (R->hasStackNonParametersStorage()) {
1108    // All stack variables are considered to have undefined values
1109    // upon creation.  All heap allocated blocks are considered to
1110    // have undefined values as well unless they are explicitly bound
1111    // to specific values.
1112    return UndefinedVal();
1113  }
1114
1115  // All other values are symbolic.
1116  return svalBuilder.getRegionValueSymbolVal(R);
1117}
1118
1119std::pair<Store, const MemRegion *>
1120RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1121                                   const MemRegion *originalRegion,
1122                                   bool includeSuffix) {
1123
1124  if (originalRegion != R) {
1125    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1126      if (const nonloc::LazyCompoundVal *V =
1127          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1128        return std::make_pair(V->getStore(), V->getRegion());
1129    }
1130  }
1131
1132  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1133    const std::pair<Store, const MemRegion *> &X =
1134      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1135
1136    if (X.second)
1137      return std::make_pair(X.first,
1138                            MRMgr.getElementRegionWithSuper(ER, X.second));
1139  }
1140  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1141    const std::pair<Store, const MemRegion *> &X =
1142      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1143
1144    if (X.second) {
1145      if (includeSuffix)
1146        return std::make_pair(X.first,
1147                              MRMgr.getFieldRegionWithSuper(FR, X.second));
1148      return X;
1149    }
1150
1151  }
1152  // C++ base object region is another kind of region that we should blast
1153  // through to look for lazy compound value. It is like a field region.
1154  else if (const CXXBaseObjectRegion *baseReg =
1155                            dyn_cast<CXXBaseObjectRegion>(R)) {
1156    const std::pair<Store, const MemRegion *> &X =
1157      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1158
1159    if (X.second) {
1160      if (includeSuffix)
1161        return std::make_pair(X.first,
1162                              MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1163                                                                    X.second));
1164      return X;
1165    }
1166  }
1167
1168  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1169  // possible for a valid lazy binding.
1170  return std::make_pair((Store) 0, (const MemRegion *) 0);
1171}
1172
1173SVal RegionStoreManager::getBindingForElement(Store store,
1174                                              const ElementRegion* R) {
1175  // We do not currently model bindings of the CompoundLiteralregion.
1176  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1177    return UnknownVal();
1178
1179  // Check if the region has a binding.
1180  RegionBindings B = GetRegionBindings(store);
1181  if (const Optional<SVal> &V = getDirectBinding(B, R))
1182    return *V;
1183
1184  const MemRegion* superR = R->getSuperRegion();
1185
1186  // Check if the region is an element region of a string literal.
1187  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1188    // FIXME: Handle loads from strings where the literal is treated as
1189    // an integer, e.g., *((unsigned int*)"hello")
1190    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1191    if (T != Ctx.getCanonicalType(R->getElementType()))
1192      return UnknownVal();
1193
1194    const StringLiteral *Str = StrR->getStringLiteral();
1195    SVal Idx = R->getIndex();
1196    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1197      int64_t i = CI->getValue().getSExtValue();
1198      // Abort on string underrun.  This can be possible by arbitrary
1199      // clients of getBindingForElement().
1200      if (i < 0)
1201        return UndefinedVal();
1202      int64_t length = Str->getLength();
1203      // Technically, only i == length is guaranteed to be null.
1204      // However, such overflows should be caught before reaching this point;
1205      // the only time such an access would be made is if a string literal was
1206      // used to initialize a larger array.
1207      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1208      return svalBuilder.makeIntVal(c, T);
1209    }
1210  }
1211
1212  // Check for loads from a code text region.  For such loads, just give up.
1213  if (isa<CodeTextRegion>(superR))
1214    return UnknownVal();
1215
1216  // Handle the case where we are indexing into a larger scalar object.
1217  // For example, this handles:
1218  //   int x = ...
1219  //   char *y = &x;
1220  //   return *y;
1221  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1222  const RegionRawOffset &O = R->getAsArrayOffset();
1223
1224  // If we cannot reason about the offset, return an unknown value.
1225  if (!O.getRegion())
1226    return UnknownVal();
1227
1228  if (const TypedValueRegion *baseR =
1229        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1230    QualType baseT = baseR->getValueType();
1231    if (baseT->isScalarType()) {
1232      QualType elemT = R->getElementType();
1233      if (elemT->isScalarType()) {
1234        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1235          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1236            if (SymbolRef parentSym = V->getAsSymbol())
1237              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1238
1239            if (V->isUnknownOrUndef())
1240              return *V;
1241            // Other cases: give up.  We are indexing into a larger object
1242            // that has some value, but we don't know how to handle that yet.
1243            return UnknownVal();
1244          }
1245        }
1246      }
1247    }
1248  }
1249  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1250                                           superR);
1251}
1252
1253SVal RegionStoreManager::getBindingForField(Store store,
1254                                       const FieldRegion* R) {
1255
1256  // Check if the region has a binding.
1257  RegionBindings B = GetRegionBindings(store);
1258  if (const Optional<SVal> &V = getDirectBinding(B, R))
1259    return *V;
1260
1261  QualType Ty = R->getValueType();
1262  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1263}
1264
1265Optional<SVal>
1266RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1267                                                     const MemRegion *superR,
1268                                                     const TypedValueRegion *R,
1269                                                     QualType Ty) {
1270
1271  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1272    const SVal &val = D.getValue();
1273    if (SymbolRef parentSym = val.getAsSymbol())
1274      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1275
1276    if (val.isZeroConstant())
1277      return svalBuilder.makeZeroVal(Ty);
1278
1279    if (val.isUnknownOrUndef())
1280      return val;
1281
1282    // Lazy bindings are handled later.
1283    if (isa<nonloc::LazyCompoundVal>(val))
1284      return Optional<SVal>();
1285
1286    llvm_unreachable("Unknown default value");
1287  }
1288
1289  return Optional<SVal>();
1290}
1291
1292SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1293                                             Store lazyBindingStore) {
1294  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1295    return getBindingForElement(lazyBindingStore, ER);
1296
1297  return getBindingForField(lazyBindingStore,
1298                            cast<FieldRegion>(lazyBindingRegion));
1299}
1300
1301SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1302                                                      const TypedValueRegion *R,
1303                                                      QualType Ty,
1304                                                      const MemRegion *superR) {
1305
1306  // At this point we have already checked in either getBindingForElement or
1307  // getBindingForField if 'R' has a direct binding.
1308  RegionBindings B = GetRegionBindings(store);
1309
1310  // Lazy binding?
1311  Store lazyBindingStore = NULL;
1312  const MemRegion *lazyBindingRegion = NULL;
1313  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
1314                                                                  true);
1315
1316  if (lazyBindingRegion)
1317    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1318
1319  // Record whether or not we see a symbolic index.  That can completely
1320  // be out of scope of our lookup.
1321  bool hasSymbolicIndex = false;
1322
1323  while (superR) {
1324    if (const Optional<SVal> &D =
1325        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1326      return *D;
1327
1328    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1329      NonLoc index = ER->getIndex();
1330      if (!index.isConstant())
1331        hasSymbolicIndex = true;
1332    }
1333
1334    // If our super region is a field or element itself, walk up the region
1335    // hierarchy to see if there is a default value installed in an ancestor.
1336    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1337      superR = SR->getSuperRegion();
1338      continue;
1339    }
1340    break;
1341  }
1342
1343  if (R->hasStackNonParametersStorage()) {
1344    if (isa<ElementRegion>(R)) {
1345      // Currently we don't reason specially about Clang-style vectors.  Check
1346      // if superR is a vector and if so return Unknown.
1347      if (const TypedValueRegion *typedSuperR =
1348            dyn_cast<TypedValueRegion>(superR)) {
1349        if (typedSuperR->getValueType()->isVectorType())
1350          return UnknownVal();
1351      }
1352    }
1353
1354    // FIXME: We also need to take ElementRegions with symbolic indexes into
1355    // account.  This case handles both directly accessing an ElementRegion
1356    // with a symbolic offset, but also fields within an element with
1357    // a symbolic offset.
1358    if (hasSymbolicIndex)
1359      return UnknownVal();
1360
1361    return UndefinedVal();
1362  }
1363
1364  // All other values are symbolic.
1365  return svalBuilder.getRegionValueSymbolVal(R);
1366}
1367
1368SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1369                                               const ObjCIvarRegion* R) {
1370
1371    // Check if the region has a binding.
1372  RegionBindings B = GetRegionBindings(store);
1373
1374  if (const Optional<SVal> &V = getDirectBinding(B, R))
1375    return *V;
1376
1377  const MemRegion *superR = R->getSuperRegion();
1378
1379  // Check if the super region has a default binding.
1380  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1381    if (SymbolRef parentSym = V->getAsSymbol())
1382      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1383
1384    // Other cases: give up.
1385    return UnknownVal();
1386  }
1387
1388  return getBindingForLazySymbol(R);
1389}
1390
1391SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1392
1393  // Check if the region has a binding.
1394  RegionBindings B = GetRegionBindings(store);
1395
1396  if (const Optional<SVal> &V = getDirectBinding(B, R))
1397    return *V;
1398
1399  // Lazily derive a value for the VarRegion.
1400  const VarDecl *VD = R->getDecl();
1401  QualType T = VD->getType();
1402  const MemSpaceRegion *MS = R->getMemorySpace();
1403
1404  if (isa<UnknownSpaceRegion>(MS) ||
1405      isa<StackArgumentsSpaceRegion>(MS))
1406    return svalBuilder.getRegionValueSymbolVal(R);
1407
1408  if (isa<GlobalsSpaceRegion>(MS)) {
1409    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1410      // Is 'VD' declared constant?  If so, retrieve the constant value.
1411      QualType CT = Ctx.getCanonicalType(T);
1412      if (CT.isConstQualified()) {
1413        const Expr *Init = VD->getInit();
1414        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1415        if (Init)
1416          if (const IntegerLiteral *IL =
1417              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1418            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1419            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1420          }
1421      }
1422
1423      if (const Optional<SVal> &V
1424            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1425        return V.getValue();
1426
1427      return svalBuilder.getRegionValueSymbolVal(R);
1428    }
1429
1430    if (T->isIntegerType())
1431      return svalBuilder.makeIntVal(0, T);
1432    if (T->isPointerType())
1433      return svalBuilder.makeNull();
1434
1435    return UnknownVal();
1436  }
1437
1438  return UndefinedVal();
1439}
1440
1441SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1442  // All other values are symbolic.
1443  return svalBuilder.getRegionValueSymbolVal(R);
1444}
1445
1446SVal RegionStoreManager::getBindingForStruct(Store store,
1447                                        const TypedValueRegion* R) {
1448  assert(R->getValueType()->isStructureOrClassType());
1449
1450  // If we already have a lazy binding, don't create a new one.
1451  RegionBindings B = GetRegionBindings(store);
1452  BindingKey K = BindingKey::Make(R, BindingKey::Default);
1453  if (const nonloc::LazyCompoundVal *V =
1454      dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1455    return *V;
1456  }
1457
1458  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1459}
1460
1461SVal RegionStoreManager::getBindingForArray(Store store,
1462                                       const TypedValueRegion * R) {
1463  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1464
1465  // If we already have a lazy binding, don't create a new one.
1466  RegionBindings B = GetRegionBindings(store);
1467  BindingKey K = BindingKey::Make(R, BindingKey::Default);
1468  if (const nonloc::LazyCompoundVal *V =
1469      dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1470    return *V;
1471  }
1472
1473  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1474}
1475
1476bool RegionStoreManager::includedInBindings(Store store,
1477                                            const MemRegion *region) const {
1478  RegionBindings B = GetRegionBindings(store);
1479  region = region->getBaseRegion();
1480
1481  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1482    const BindingKey &K = it.getKey();
1483    if (region == K.getRegion())
1484      return true;
1485    const SVal &D = it.getData();
1486    if (const MemRegion *r = D.getAsRegion())
1487      if (r == region)
1488        return true;
1489  }
1490  return false;
1491}
1492
1493//===----------------------------------------------------------------------===//
1494// Binding values to regions.
1495//===----------------------------------------------------------------------===//
1496
1497StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1498  if (isa<loc::MemRegionVal>(L))
1499    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1500      return StoreRef(removeBinding(GetRegionBindings(store),
1501                                    R).getRootWithoutRetain(),
1502                      *this);
1503
1504  return StoreRef(store, *this);
1505}
1506
1507StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1508  if (isa<loc::ConcreteInt>(L))
1509    return StoreRef(store, *this);
1510
1511  // If we get here, the location should be a region.
1512  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1513
1514  // Check if the region is a struct region.
1515  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1516    QualType Ty = TR->getValueType();
1517    if (Ty->isStructureOrClassType())
1518      return BindStruct(store, TR, V);
1519    if (Ty->isVectorType())
1520      return BindVector(store, TR, V);
1521  }
1522
1523  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1524    if (ER->getIndex().isZeroConstant()) {
1525      if (const TypedValueRegion *superR =
1526            dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1527        QualType superTy = superR->getValueType();
1528        // For now, just invalidate the fields of the struct/union/class.
1529        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1530        // FIXME: Precisely handle the fields of the record.
1531        if (superTy->isStructureOrClassType())
1532          return KillStruct(store, superR, UnknownVal());
1533      }
1534    }
1535  }
1536  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1537    // Binding directly to a symbolic region should be treated as binding
1538    // to element 0.
1539    QualType T = SR->getSymbol()->getType(Ctx);
1540
1541    // FIXME: Is this the right way to handle symbols that are references?
1542    if (const PointerType *PT = T->getAs<PointerType>())
1543      T = PT->getPointeeType();
1544    else
1545      T = T->getAs<ReferenceType>()->getPointeeType();
1546
1547    R = GetElementZeroRegion(SR, T);
1548  }
1549
1550  // Perform the binding.
1551  RegionBindings B = GetRegionBindings(store);
1552  return StoreRef(addBinding(B, R, BindingKey::Direct,
1553                             V).getRootWithoutRetain(), *this);
1554}
1555
1556StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1557                                      SVal InitVal) {
1558
1559  QualType T = VR->getDecl()->getType();
1560
1561  if (T->isArrayType())
1562    return BindArray(store, VR, InitVal);
1563  if (T->isStructureOrClassType())
1564    return BindStruct(store, VR, InitVal);
1565
1566  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1567}
1568
1569// FIXME: this method should be merged into Bind().
1570StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1571                                                 const CompoundLiteralExpr *CL,
1572                                                 const LocationContext *LC,
1573                                                 SVal V) {
1574  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1575              V);
1576}
1577
1578StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1579                                                     const MemRegion *R,
1580                                                     QualType T) {
1581  RegionBindings B = GetRegionBindings(store);
1582  SVal V;
1583
1584  if (Loc::isLocType(T))
1585    V = svalBuilder.makeNull();
1586  else if (T->isIntegerType())
1587    V = svalBuilder.makeZeroVal(T);
1588  else if (T->isStructureOrClassType() || T->isArrayType()) {
1589    // Set the default value to a zero constant when it is a structure
1590    // or array.  The type doesn't really matter.
1591    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1592  }
1593  else {
1594    // We can't represent values of this type, but we still need to set a value
1595    // to record that the region has been initialized.
1596    // If this assertion ever fires, a new case should be added above -- we
1597    // should know how to default-initialize any value we can symbolicate.
1598    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1599    V = UnknownVal();
1600  }
1601
1602  return StoreRef(addBinding(B, R, BindingKey::Default,
1603                             V).getRootWithoutRetain(), *this);
1604}
1605
1606StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1607                                       SVal Init) {
1608
1609  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1610  QualType ElementTy = AT->getElementType();
1611  Optional<uint64_t> Size;
1612
1613  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1614    Size = CAT->getSize().getZExtValue();
1615
1616  // Check if the init expr is a string literal.
1617  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1618    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1619
1620    // Treat the string as a lazy compound value.
1621    nonloc::LazyCompoundVal LCV =
1622      cast<nonloc::LazyCompoundVal>(svalBuilder.
1623                                makeLazyCompoundVal(StoreRef(store, *this), S));
1624    return CopyLazyBindings(LCV, store, R);
1625  }
1626
1627  // Handle lazy compound values.
1628  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1629    return CopyLazyBindings(*LCV, store, R);
1630
1631  // Remaining case: explicit compound values.
1632
1633  if (Init.isUnknown())
1634    return setImplicitDefaultValue(store, R, ElementTy);
1635
1636  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1637  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1638  uint64_t i = 0;
1639
1640  StoreRef newStore(store, *this);
1641  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1642    // The init list might be shorter than the array length.
1643    if (VI == VE)
1644      break;
1645
1646    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1647    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1648
1649    if (ElementTy->isStructureOrClassType())
1650      newStore = BindStruct(newStore.getStore(), ER, *VI);
1651    else if (ElementTy->isArrayType())
1652      newStore = BindArray(newStore.getStore(), ER, *VI);
1653    else
1654      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1655  }
1656
1657  // If the init list is shorter than the array length, set the
1658  // array default value.
1659  if (Size.hasValue() && i < Size.getValue())
1660    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1661
1662  return newStore;
1663}
1664
1665StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
1666                                        SVal V) {
1667  QualType T = R->getValueType();
1668  assert(T->isVectorType());
1669  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1670
1671  // Handle lazy compound values.
1672  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&V))
1673    return CopyLazyBindings(*LCV, store, R);
1674
1675  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1676  // that we are binding symbolic struct value. Kill the field values, and if
1677  // the value is symbolic go and bind it as a "default" binding.
1678  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1679    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1680    return KillStruct(store, R, SV);
1681  }
1682
1683  QualType ElemType = VT->getElementType();
1684  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1685  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1686  unsigned index = 0, numElements = VT->getNumElements();
1687  StoreRef newStore(store, *this);
1688
1689  for ( ; index != numElements ; ++index) {
1690    if (VI == VE)
1691      break;
1692
1693    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1694    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1695
1696    if (ElemType->isArrayType())
1697      newStore = BindArray(newStore.getStore(), ER, *VI);
1698    else if (ElemType->isStructureOrClassType())
1699      newStore = BindStruct(newStore.getStore(), ER, *VI);
1700    else
1701      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1702  }
1703  return newStore;
1704}
1705
1706StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1707                                        SVal V) {
1708
1709  if (!Features.supportsFields())
1710    return StoreRef(store, *this);
1711
1712  QualType T = R->getValueType();
1713  assert(T->isStructureOrClassType());
1714
1715  const RecordType* RT = T->getAs<RecordType>();
1716  RecordDecl *RD = RT->getDecl();
1717
1718  if (!RD->isCompleteDefinition())
1719    return StoreRef(store, *this);
1720
1721  // Handle lazy compound values.
1722  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1723    return CopyLazyBindings(*LCV, store, R);
1724
1725  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1726  // that we are binding symbolic struct value. Kill the field values, and if
1727  // the value is symbolic go and bind it as a "default" binding.
1728  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1729    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1730    return KillStruct(store, R, SV);
1731  }
1732
1733  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1734  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1735
1736  RecordDecl::field_iterator FI, FE;
1737  StoreRef newStore(store, *this);
1738
1739  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1740
1741    if (VI == VE)
1742      break;
1743
1744    // Skip any unnamed bitfields to stay in sync with the initializers.
1745    if (FI->isUnnamedBitfield())
1746      continue;
1747
1748    QualType FTy = FI->getType();
1749    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1750
1751    if (FTy->isArrayType())
1752      newStore = BindArray(newStore.getStore(), FR, *VI);
1753    else if (FTy->isStructureOrClassType())
1754      newStore = BindStruct(newStore.getStore(), FR, *VI);
1755    else
1756      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1757    ++VI;
1758  }
1759
1760  // There may be fewer values in the initialize list than the fields of struct.
1761  if (FI != FE) {
1762    RegionBindings B = GetRegionBindings(newStore.getStore());
1763    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1764    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1765  }
1766
1767  return newStore;
1768}
1769
1770StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1771                                     SVal DefaultVal) {
1772  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1773
1774  // The BindingKey may be "invalid" if we cannot handle the region binding
1775  // explicitly.  One example is something like array[index], where index
1776  // is a symbolic value.  In such cases, we want to invalidate the entire
1777  // array, as the index assignment could have been to any element.  In
1778  // the case of nested symbolic indices, we need to march up the region
1779  // hierarchy untile we reach a region whose binding we can reason about.
1780  const SubRegion *subReg = R;
1781
1782  while (!key.isValid()) {
1783    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1784      subReg = tmp;
1785      key = BindingKey::Make(tmp, BindingKey::Default);
1786    }
1787    else
1788      break;
1789  }
1790
1791  // Remove the old bindings, using 'subReg' as the root of all regions
1792  // we will invalidate.
1793  RegionBindings B = GetRegionBindings(store);
1794  OwningPtr<RegionStoreSubRegionMap>
1795    SubRegions(getRegionStoreSubRegionMap(store));
1796  RemoveSubRegionBindings(B, subReg, *SubRegions);
1797
1798  // Set the default value of the struct region to "unknown".
1799  if (!key.isValid())
1800    return StoreRef(B.getRootWithoutRetain(), *this);
1801
1802  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1803}
1804
1805StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1806                                              Store store,
1807                                              const TypedRegion *R) {
1808
1809  // Nuke the old bindings stemming from R.
1810  RegionBindings B = GetRegionBindings(store);
1811
1812  OwningPtr<RegionStoreSubRegionMap>
1813    SubRegions(getRegionStoreSubRegionMap(store));
1814
1815  // B and DVM are updated after the call to RemoveSubRegionBindings.
1816  RemoveSubRegionBindings(B, R, *SubRegions.get());
1817
1818  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1819  // results in a zero-copy algorithm.
1820  return StoreRef(addBinding(B, R, BindingKey::Default,
1821                             V).getRootWithoutRetain(), *this);
1822}
1823
1824//===----------------------------------------------------------------------===//
1825// "Raw" retrievals and bindings.
1826//===----------------------------------------------------------------------===//
1827
1828
1829RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1830                                              SVal V) {
1831  if (!K.isValid())
1832    return B;
1833  return RBFactory.add(B, K, V);
1834}
1835
1836RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1837                                              const MemRegion *R,
1838                                              BindingKey::Kind k, SVal V) {
1839  return addBinding(B, BindingKey::Make(R, k), V);
1840}
1841
1842const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1843  if (!K.isValid())
1844    return NULL;
1845  return B.lookup(K);
1846}
1847
1848const SVal *RegionStoreManager::lookup(RegionBindings B,
1849                                       const MemRegion *R,
1850                                       BindingKey::Kind k) {
1851  return lookup(B, BindingKey::Make(R, k));
1852}
1853
1854RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1855                                                 BindingKey K) {
1856  if (!K.isValid())
1857    return B;
1858  return RBFactory.remove(B, K);
1859}
1860
1861RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1862                                                 const MemRegion *R,
1863                                                BindingKey::Kind k){
1864  return removeBinding(B, BindingKey::Make(R, k));
1865}
1866
1867//===----------------------------------------------------------------------===//
1868// State pruning.
1869//===----------------------------------------------------------------------===//
1870
1871namespace {
1872class removeDeadBindingsWorker :
1873  public ClusterAnalysis<removeDeadBindingsWorker> {
1874  SmallVector<const SymbolicRegion*, 12> Postponed;
1875  SymbolReaper &SymReaper;
1876  const StackFrameContext *CurrentLCtx;
1877
1878public:
1879  removeDeadBindingsWorker(RegionStoreManager &rm,
1880                           ProgramStateManager &stateMgr,
1881                           RegionBindings b, SymbolReaper &symReaper,
1882                           const StackFrameContext *LCtx)
1883    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1884                                                /* includeGlobals = */ false),
1885      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1886
1887  // Called by ClusterAnalysis.
1888  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1889  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1890
1891  void VisitBindingKey(BindingKey K);
1892  bool UpdatePostponed();
1893  void VisitBinding(SVal V);
1894};
1895}
1896
1897void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1898                                                   RegionCluster &C) {
1899
1900  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1901    if (SymReaper.isLive(VR))
1902      AddToWorkList(baseR, C);
1903
1904    return;
1905  }
1906
1907  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1908    if (SymReaper.isLive(SR->getSymbol()))
1909      AddToWorkList(SR, C);
1910    else
1911      Postponed.push_back(SR);
1912
1913    return;
1914  }
1915
1916  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1917    AddToWorkList(baseR, C);
1918    return;
1919  }
1920
1921  // CXXThisRegion in the current or parent location context is live.
1922  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1923    const StackArgumentsSpaceRegion *StackReg =
1924      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1925    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1926    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1927      AddToWorkList(TR, C);
1928  }
1929}
1930
1931void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1932                                            BindingKey *I, BindingKey *E) {
1933  for ( ; I != E; ++I)
1934    VisitBindingKey(*I);
1935}
1936
1937void removeDeadBindingsWorker::VisitBinding(SVal V) {
1938  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1939  if (const nonloc::LazyCompoundVal *LCS =
1940      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1941
1942    const MemRegion *LazyR = LCS->getRegion();
1943    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1944    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1945      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1946      if (baseR && baseR->isSubRegionOf(LazyR))
1947        VisitBinding(RI.getData());
1948    }
1949    return;
1950  }
1951
1952  // If V is a region, then add it to the worklist.
1953  if (const MemRegion *R = V.getAsRegion()) {
1954    AddToWorkList(R);
1955
1956    // All regions captured by a block are also live.
1957    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1958      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1959                                                E = BR->referenced_vars_end();
1960        for ( ; I != E; ++I)
1961          AddToWorkList(I.getCapturedRegion());
1962    }
1963  }
1964
1965
1966  // Update the set of live symbols.
1967  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1968       SI!=SE; ++SI)
1969    SymReaper.markLive(*SI);
1970}
1971
1972void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1973  const MemRegion *R = K.getRegion();
1974
1975  // Mark this region "live" by adding it to the worklist.  This will cause
1976  // use to visit all regions in the cluster (if we haven't visited them
1977  // already).
1978  if (AddToWorkList(R)) {
1979    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1980    // should continue to track that symbol.
1981    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1982      SymReaper.markLive(SymR->getSymbol());
1983  }
1984
1985  // Visit the data binding for K.
1986  if (const SVal *V = RM.lookup(B, K))
1987    VisitBinding(*V);
1988}
1989
1990bool removeDeadBindingsWorker::UpdatePostponed() {
1991  // See if any postponed SymbolicRegions are actually live now, after
1992  // having done a scan.
1993  bool changed = false;
1994
1995  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1996        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1997    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1998      if (SymReaper.isLive(SR->getSymbol())) {
1999        changed |= AddToWorkList(SR);
2000        *I = NULL;
2001      }
2002    }
2003  }
2004
2005  return changed;
2006}
2007
2008StoreRef RegionStoreManager::removeDeadBindings(Store store,
2009                                                const StackFrameContext *LCtx,
2010                                                SymbolReaper& SymReaper) {
2011  RegionBindings B = GetRegionBindings(store);
2012  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2013  W.GenerateClusters();
2014
2015  // Enqueue the region roots onto the worklist.
2016  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2017       E = SymReaper.region_end(); I != E; ++I) {
2018    W.AddToWorkList(*I);
2019  }
2020
2021  do W.RunWorkList(); while (W.UpdatePostponed());
2022
2023  // We have now scanned the store, marking reachable regions and symbols
2024  // as live.  We now remove all the regions that are dead from the store
2025  // as well as update DSymbols with the set symbols that are now dead.
2026  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2027    const BindingKey &K = I.getKey();
2028
2029    // If the cluster has been visited, we know the region has been marked.
2030    if (W.isVisited(K.getRegion()))
2031      continue;
2032
2033    // Remove the dead entry.
2034    B = removeBinding(B, K);
2035
2036    // Mark all non-live symbols that this binding references as dead.
2037    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
2038      SymReaper.maybeDead(SymR->getSymbol());
2039
2040    SVal X = I.getData();
2041    SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2042    for (; SI != SE; ++SI)
2043      SymReaper.maybeDead(*SI);
2044  }
2045
2046  return StoreRef(B.getRootWithoutRetain(), *this);
2047}
2048
2049StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
2050                                             const LocationContext *callerCtx,
2051                                             const StackFrameContext *calleeCtx)
2052{
2053  const Decl *D = calleeCtx->getDecl();
2054  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2055    return enterStackFrame(state, FD, callerCtx, calleeCtx);
2056
2057  // FIXME: when we handle more cases, this will need to be expanded.
2058
2059  const BlockDecl *BD = cast<BlockDecl>(D);
2060  BlockDecl::param_const_iterator PI = BD->param_begin(),
2061                                  PE = BD->param_end();
2062  StoreRef store = StoreRef(state->getStore(), *this);
2063  const CallExpr *CE = cast<CallExpr>(calleeCtx->getCallSite());
2064  CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
2065  for (; AI != AE && PI != PE; ++AI, ++PI) {
2066    SVal ArgVal = state->getSVal(*AI, callerCtx);
2067    store = Bind(store.getStore(),
2068                 svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2069                 ArgVal);
2070  }
2071
2072  return store;
2073}
2074
2075StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
2076                                             const FunctionDecl *FD,
2077                                             const LocationContext *callerCtx,
2078                                             const StackFrameContext *calleeCtx)
2079{
2080  FunctionDecl::param_const_iterator PI = FD->param_begin(),
2081                                     PE = FD->param_end();
2082  StoreRef store = StoreRef(state->getStore(), *this);
2083
2084  if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
2085    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
2086
2087    // Copy the arg expression value to the arg variables.  We check that
2088    // PI != PE because the actual number of arguments may be different than
2089    // the function declaration.
2090    for (; AI != AE && PI != PE; ++AI, ++PI) {
2091      SVal ArgVal = state->getSVal(*AI, callerCtx);
2092      store = Bind(store.getStore(),
2093                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2094                   ArgVal);
2095    }
2096  } else if (const CXXConstructExpr *CE =
2097               dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
2098    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
2099      AE = CE->arg_end();
2100
2101    // Copy the arg expression value to the arg variables.
2102    for (; AI != AE; ++AI, ++PI) {
2103      SVal ArgVal = state->getSVal(*AI, callerCtx);
2104      store = Bind(store.getStore(),
2105                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2106                   ArgVal);
2107    }
2108  } else
2109    assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
2110
2111  return store;
2112}
2113
2114//===----------------------------------------------------------------------===//
2115// Utility methods.
2116//===----------------------------------------------------------------------===//
2117
2118void RegionStoreManager::print(Store store, raw_ostream &OS,
2119                               const char* nl, const char *sep) {
2120  RegionBindings B = GetRegionBindings(store);
2121  OS << "Store (direct and default bindings), "
2122     << (void*) B.getRootWithoutRetain()
2123     << " :" << nl;
2124
2125  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
2126    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
2127}
2128