RegionStore.cpp revision 740d490593e0de8732a697c9f77b90ddd463863b
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/Calls.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27#include "llvm/ADT/ImmutableList.h"
28#include "llvm/ADT/ImmutableMap.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33using namespace ento;
34using llvm::Optional;
35
36//===----------------------------------------------------------------------===//
37// Representation of binding keys.
38//===----------------------------------------------------------------------===//
39
40namespace {
41class BindingKey {
42public:
43  enum Kind { Direct = 0x0, Default = 0x1 };
44private:
45  llvm ::PointerIntPair<const MemRegion*, 1> P;
46  uint64_t Offset;
47
48  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49    : P(r, (unsigned) k), Offset(offset) {}
50public:
51
52  bool isDirect() const { return P.getInt() == Direct; }
53
54  const MemRegion *getRegion() const { return P.getPointer(); }
55  uint64_t getOffset() const { return Offset; }
56
57  void Profile(llvm::FoldingSetNodeID& ID) const {
58    ID.AddPointer(P.getOpaqueValue());
59    ID.AddInteger(Offset);
60  }
61
62  static BindingKey Make(const MemRegion *R, Kind k);
63
64  bool operator<(const BindingKey &X) const {
65    if (P.getOpaqueValue() < X.P.getOpaqueValue())
66      return true;
67    if (P.getOpaqueValue() > X.P.getOpaqueValue())
68      return false;
69    return Offset < X.Offset;
70  }
71
72  bool operator==(const BindingKey &X) const {
73    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74           Offset == X.Offset;
75  }
76
77  bool isValid() const {
78    return getRegion() != NULL;
79  }
80};
81} // end anonymous namespace
82
83BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84  const RegionOffset &RO = R->getAsOffset();
85  if (RO.getRegion())
86    return BindingKey(RO.getRegion(), RO.getOffset(), k);
87
88  return BindingKey(R, 0, k);
89}
90
91namespace llvm {
92  static inline
93  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
94    os << '(' << K.getRegion() << ',' << K.getOffset()
95       << ',' << (K.isDirect() ? "direct" : "default")
96       << ')';
97    return os;
98  }
99} // end llvm namespace
100
101//===----------------------------------------------------------------------===//
102// Actual Store type.
103//===----------------------------------------------------------------------===//
104
105typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
106
107//===----------------------------------------------------------------------===//
108// Fine-grained control of RegionStoreManager.
109//===----------------------------------------------------------------------===//
110
111namespace {
112struct minimal_features_tag {};
113struct maximal_features_tag {};
114
115class RegionStoreFeatures {
116  bool SupportsFields;
117public:
118  RegionStoreFeatures(minimal_features_tag) :
119    SupportsFields(false) {}
120
121  RegionStoreFeatures(maximal_features_tag) :
122    SupportsFields(true) {}
123
124  void enableFields(bool t) { SupportsFields = t; }
125
126  bool supportsFields() const { return SupportsFields; }
127};
128}
129
130//===----------------------------------------------------------------------===//
131// Main RegionStore logic.
132//===----------------------------------------------------------------------===//
133
134namespace {
135
136class RegionStoreSubRegionMap : public SubRegionMap {
137public:
138  typedef llvm::ImmutableSet<const MemRegion*> Set;
139  typedef llvm::DenseMap<const MemRegion*, Set> Map;
140private:
141  Set::Factory F;
142  Map M;
143public:
144  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
145    Map::iterator I = M.find(Parent);
146
147    if (I == M.end()) {
148      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
149      return true;
150    }
151
152    I->second = F.add(I->second, SubRegion);
153    return false;
154  }
155
156  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
157
158  ~RegionStoreSubRegionMap() {}
159
160  const Set *getSubRegions(const MemRegion *Parent) const {
161    Map::const_iterator I = M.find(Parent);
162    return I == M.end() ? NULL : &I->second;
163  }
164
165  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
166    Map::const_iterator I = M.find(Parent);
167
168    if (I == M.end())
169      return true;
170
171    Set S = I->second;
172    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
173      if (!V.Visit(Parent, *SI))
174        return false;
175    }
176
177    return true;
178  }
179};
180
181void
182RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
183                                 const SubRegion *R) {
184  const MemRegion *superR = R->getSuperRegion();
185  if (add(superR, R))
186    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
187      WL.push_back(sr);
188}
189
190class RegionStoreManager : public StoreManager {
191  const RegionStoreFeatures Features;
192  RegionBindings::Factory RBFactory;
193
194public:
195  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
196    : StoreManager(mgr),
197      Features(f),
198      RBFactory(mgr.getAllocator()) {}
199
200  SubRegionMap *getSubRegionMap(Store store) {
201    return getRegionStoreSubRegionMap(store);
202  }
203
204  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
205
206  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
207  /// getDefaultBinding - Returns an SVal* representing an optional default
208  ///  binding associated with a region and its subregions.
209  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
210
211  /// setImplicitDefaultValue - Set the default binding for the provided
212  ///  MemRegion to the value implicitly defined for compound literals when
213  ///  the value is not specified.
214  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
215
216  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
217  ///  type.  'Array' represents the lvalue of the array being decayed
218  ///  to a pointer, and the returned SVal represents the decayed
219  ///  version of that lvalue (i.e., a pointer to the first element of
220  ///  the array).  This is called by ExprEngine when evaluating
221  ///  casts from arrays to pointers.
222  SVal ArrayToPointer(Loc Array);
223
224  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
225  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
226
227  /// \brief Evaluates C++ dynamic_cast cast.
228  /// The callback may result in the following 3 scenarios:
229  ///  - Successful cast (ex: derived is subclass of base).
230  ///  - Failed cast (ex: derived is definitely not a subclass of base).
231  ///  - We don't know (base is a symbolic region and we don't have
232  ///    enough info to determine if the cast will succeed at run time).
233  /// The function returns an SVal representing the derived class; it's
234  /// valid only if Failed flag is set to false.
235  virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
236
237  StoreRef getInitialStore(const LocationContext *InitLoc) {
238    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
239  }
240
241  //===-------------------------------------------------------------------===//
242  // Binding values to regions.
243  //===-------------------------------------------------------------------===//
244  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
245                                        const Expr *Ex,
246                                        unsigned Count,
247                                        const LocationContext *LCtx,
248                                        RegionBindings B,
249                                        InvalidatedRegions *Invalidated);
250
251  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
252                             const Expr *E, unsigned Count,
253                             const LocationContext *LCtx,
254                             InvalidatedSymbols &IS,
255                             const CallEvent *Call,
256                             InvalidatedRegions *Invalidated);
257
258public:   // Made public for helper classes.
259
260  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
261                               RegionStoreSubRegionMap &M);
262
263  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
264
265  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
266                     BindingKey::Kind k, SVal V);
267
268  const SVal *lookup(RegionBindings B, BindingKey K);
269  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
270
271  RegionBindings removeBinding(RegionBindings B, BindingKey K);
272  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
273                        BindingKey::Kind k);
274
275  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
276    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
277                        BindingKey::Default);
278  }
279
280public: // Part of public interface to class.
281
282  StoreRef Bind(Store store, Loc LV, SVal V);
283
284  // BindDefault is only used to initialize a region with a default value.
285  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
286    RegionBindings B = GetRegionBindings(store);
287    assert(!lookup(B, R, BindingKey::Default));
288    assert(!lookup(B, R, BindingKey::Direct));
289    return StoreRef(addBinding(B, R, BindingKey::Default, V)
290                      .getRootWithoutRetain(), *this);
291  }
292
293  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
294                               const LocationContext *LC, SVal V);
295
296  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
297
298  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
299    return StoreRef(store, *this);
300  }
301
302  /// BindStruct - Bind a compound value to a structure.
303  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
304
305  /// BindVector - Bind a compound value to a vector.
306  StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
307
308  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
309
310  /// KillStruct - Set the entire struct to unknown.
311  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
312
313  StoreRef Remove(Store store, Loc LV);
314
315  void incrementReferenceCount(Store store) {
316    GetRegionBindings(store).manualRetain();
317  }
318
319  /// If the StoreManager supports it, decrement the reference count of
320  /// the specified Store object.  If the reference count hits 0, the memory
321  /// associated with the object is recycled.
322  void decrementReferenceCount(Store store) {
323    GetRegionBindings(store).manualRelease();
324  }
325
326  bool includedInBindings(Store store, const MemRegion *region) const;
327
328  /// \brief Return the value bound to specified location in a given state.
329  ///
330  /// The high level logic for this method is this:
331  /// getBinding (L)
332  ///   if L has binding
333  ///     return L's binding
334  ///   else if L is in killset
335  ///     return unknown
336  ///   else
337  ///     if L is on stack or heap
338  ///       return undefined
339  ///     else
340  ///       return symbolic
341  SVal getBinding(Store store, Loc L, QualType T = QualType());
342
343  SVal getBindingForElement(Store store, const ElementRegion *R);
344
345  SVal getBindingForField(Store store, const FieldRegion *R);
346
347  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
348
349  SVal getBindingForVar(Store store, const VarRegion *R);
350
351  SVal getBindingForLazySymbol(const TypedValueRegion *R);
352
353  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
354                                         QualType Ty, const MemRegion *superR);
355
356  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
357                      Store lazyBindingStore);
358
359  /// Get bindings for the values in a struct and return a CompoundVal, used
360  /// when doing struct copy:
361  /// struct s x, y;
362  /// x = y;
363  /// y's value is retrieved by this method.
364  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
365
366  SVal getBindingForArray(Store store, const TypedValueRegion* R);
367
368  /// Used to lazily generate derived symbols for bindings that are defined
369  ///  implicitly by default bindings in a super region.
370  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
371                                                  const MemRegion *superR,
372                                                  const TypedValueRegion *R,
373                                                  QualType Ty);
374
375  /// Get the state and region whose binding this region R corresponds to.
376  std::pair<Store, const MemRegion*>
377  GetLazyBinding(RegionBindings B, const MemRegion *R,
378                 const MemRegion *originalRegion,
379                 bool includeSuffix = false);
380
381  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
382                            const TypedRegion *R);
383
384  //===------------------------------------------------------------------===//
385  // State pruning.
386  //===------------------------------------------------------------------===//
387
388  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
389  ///  It returns a new Store with these values removed.
390  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
391                              SymbolReaper& SymReaper);
392
393  StoreRef enterStackFrame(ProgramStateRef state,
394                           const LocationContext *callerCtx,
395                           const StackFrameContext *calleeCtx);
396
397  StoreRef enterStackFrame(ProgramStateRef state,
398                           const FunctionDecl *FD,
399                           const LocationContext *callerCtx,
400                           const StackFrameContext *calleeCtx);
401
402
403  //===------------------------------------------------------------------===//
404  // Region "extents".
405  //===------------------------------------------------------------------===//
406
407  // FIXME: This method will soon be eliminated; see the note in Store.h.
408  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
409                                         const MemRegion* R, QualType EleTy);
410
411  //===------------------------------------------------------------------===//
412  // Utility methods.
413  //===------------------------------------------------------------------===//
414
415  static inline RegionBindings GetRegionBindings(Store store) {
416    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
417  }
418
419  void print(Store store, raw_ostream &Out, const char* nl,
420             const char *sep);
421
422  void iterBindings(Store store, BindingsHandler& f) {
423    RegionBindings B = GetRegionBindings(store);
424    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
425      const BindingKey &K = I.getKey();
426      if (!K.isDirect())
427        continue;
428      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
429        // FIXME: Possibly incorporate the offset?
430        if (!f.HandleBinding(*this, store, R, I.getData()))
431          return;
432      }
433    }
434  }
435};
436
437} // end anonymous namespace
438
439//===----------------------------------------------------------------------===//
440// RegionStore creation.
441//===----------------------------------------------------------------------===//
442
443StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
444  RegionStoreFeatures F = maximal_features_tag();
445  return new RegionStoreManager(StMgr, F);
446}
447
448StoreManager *
449ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
450  RegionStoreFeatures F = minimal_features_tag();
451  F.enableFields(true);
452  return new RegionStoreManager(StMgr, F);
453}
454
455
456RegionStoreSubRegionMap*
457RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
458  RegionBindings B = GetRegionBindings(store);
459  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
460
461  SmallVector<const SubRegion*, 10> WL;
462
463  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
464    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
465      M->process(WL, R);
466
467  // We also need to record in the subregion map "intermediate" regions that
468  // don't have direct bindings but are super regions of those that do.
469  while (!WL.empty()) {
470    const SubRegion *R = WL.back();
471    WL.pop_back();
472    M->process(WL, R);
473  }
474
475  return M;
476}
477
478//===----------------------------------------------------------------------===//
479// Region Cluster analysis.
480//===----------------------------------------------------------------------===//
481
482namespace {
483template <typename DERIVED>
484class ClusterAnalysis  {
485protected:
486  typedef BumpVector<BindingKey> RegionCluster;
487  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
488  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
489  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
490    WorkList;
491
492  BumpVectorContext BVC;
493  ClusterMap ClusterM;
494  WorkList WL;
495
496  RegionStoreManager &RM;
497  ASTContext &Ctx;
498  SValBuilder &svalBuilder;
499
500  RegionBindings B;
501
502  const bool includeGlobals;
503
504public:
505  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
506                  RegionBindings b, const bool includeGlobals)
507    : RM(rm), Ctx(StateMgr.getContext()),
508      svalBuilder(StateMgr.getSValBuilder()),
509      B(b), includeGlobals(includeGlobals) {}
510
511  RegionBindings getRegionBindings() const { return B; }
512
513  RegionCluster &AddToCluster(BindingKey K) {
514    const MemRegion *R = K.getRegion();
515    const MemRegion *baseR = R->getBaseRegion();
516    RegionCluster &C = getCluster(baseR);
517    C.push_back(K, BVC);
518    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
519    return C;
520  }
521
522  bool isVisited(const MemRegion *R) {
523    return (bool) Visited[&getCluster(R->getBaseRegion())];
524  }
525
526  RegionCluster& getCluster(const MemRegion *R) {
527    RegionCluster *&CRef = ClusterM[R];
528    if (!CRef) {
529      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
530      CRef = new (Mem) RegionCluster(BVC, 10);
531    }
532    return *CRef;
533  }
534
535  void GenerateClusters() {
536      // Scan the entire set of bindings and make the region clusters.
537    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
538      RegionCluster &C = AddToCluster(RI.getKey());
539      if (const MemRegion *R = RI.getData().getAsRegion()) {
540        // Generate a cluster, but don't add the region to the cluster
541        // if there aren't any bindings.
542        getCluster(R->getBaseRegion());
543      }
544      if (includeGlobals) {
545        const MemRegion *R = RI.getKey().getRegion();
546        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
547          AddToWorkList(R, C);
548      }
549    }
550  }
551
552  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
553    if (unsigned &visited = Visited[&C])
554      return false;
555    else
556      visited = 1;
557
558    WL.push_back(std::make_pair(R, &C));
559    return true;
560  }
561
562  bool AddToWorkList(BindingKey K) {
563    return AddToWorkList(K.getRegion());
564  }
565
566  bool AddToWorkList(const MemRegion *R) {
567    const MemRegion *baseR = R->getBaseRegion();
568    return AddToWorkList(baseR, getCluster(baseR));
569  }
570
571  void RunWorkList() {
572    while (!WL.empty()) {
573      const MemRegion *baseR;
574      RegionCluster *C;
575      llvm::tie(baseR, C) = WL.back();
576      WL.pop_back();
577
578        // First visit the cluster.
579      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
580
581        // Next, visit the base region.
582      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
583    }
584  }
585
586public:
587  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
588  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
589  void VisitBaseRegion(const MemRegion *baseR) {}
590};
591}
592
593//===----------------------------------------------------------------------===//
594// Binding invalidation.
595//===----------------------------------------------------------------------===//
596
597void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
598                                                 const MemRegion *R,
599                                                 RegionStoreSubRegionMap &M) {
600
601  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
602    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
603         I != E; ++I)
604      RemoveSubRegionBindings(B, *I, M);
605
606  B = removeBinding(B, R);
607}
608
609namespace {
610class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
611{
612  const Expr *Ex;
613  unsigned Count;
614  const LocationContext *LCtx;
615  StoreManager::InvalidatedSymbols &IS;
616  StoreManager::InvalidatedRegions *Regions;
617public:
618  invalidateRegionsWorker(RegionStoreManager &rm,
619                          ProgramStateManager &stateMgr,
620                          RegionBindings b,
621                          const Expr *ex, unsigned count,
622                          const LocationContext *lctx,
623                          StoreManager::InvalidatedSymbols &is,
624                          StoreManager::InvalidatedRegions *r,
625                          bool includeGlobals)
626    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
627      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
628
629  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
630  void VisitBaseRegion(const MemRegion *baseR);
631
632private:
633  void VisitBinding(SVal V);
634};
635}
636
637void invalidateRegionsWorker::VisitBinding(SVal V) {
638  // A symbol?  Mark it touched by the invalidation.
639  if (SymbolRef Sym = V.getAsSymbol())
640    IS.insert(Sym);
641
642  if (const MemRegion *R = V.getAsRegion()) {
643    AddToWorkList(R);
644    return;
645  }
646
647  // Is it a LazyCompoundVal?  All references get invalidated as well.
648  if (const nonloc::LazyCompoundVal *LCS =
649        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
650
651    const MemRegion *LazyR = LCS->getRegion();
652    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
653
654    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
655      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
656      if (baseR && (baseR == LazyR || baseR->isSubRegionOf(LazyR)))
657        VisitBinding(RI.getData());
658    }
659
660    return;
661  }
662}
663
664void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
665                                           BindingKey *I, BindingKey *E) {
666  for ( ; I != E; ++I) {
667    // Get the old binding.  Is it a region?  If so, add it to the worklist.
668    const BindingKey &K = *I;
669    if (const SVal *V = RM.lookup(B, K))
670      VisitBinding(*V);
671
672    B = RM.removeBinding(B, K);
673  }
674}
675
676void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
677  // Symbolic region?  Mark that symbol touched by the invalidation.
678  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
679    IS.insert(SR->getSymbol());
680
681  // BlockDataRegion?  If so, invalidate captured variables that are passed
682  // by reference.
683  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
684    for (BlockDataRegion::referenced_vars_iterator
685         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
686         BI != BE; ++BI) {
687      const VarRegion *VR = *BI;
688      const VarDecl *VD = VR->getDecl();
689      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
690        AddToWorkList(VR);
691      }
692      else if (Loc::isLocType(VR->getValueType())) {
693        // Map the current bindings to a Store to retrieve the value
694        // of the binding.  If that binding itself is a region, we should
695        // invalidate that region.  This is because a block may capture
696        // a pointer value, but the thing pointed by that pointer may
697        // get invalidated.
698        Store store = B.getRootWithoutRetain();
699        SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
700        if (const Loc *L = dyn_cast<Loc>(&V)) {
701          if (const MemRegion *LR = L->getAsRegion())
702            AddToWorkList(LR);
703        }
704      }
705    }
706    return;
707  }
708
709  // Otherwise, we have a normal data region. Record that we touched the region.
710  if (Regions)
711    Regions->push_back(baseR);
712
713  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
714    // Invalidate the region by setting its default value to
715    // conjured symbol. The type of the symbol is irrelavant.
716    DefinedOrUnknownSVal V =
717      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
718    B = RM.addBinding(B, baseR, BindingKey::Default, V);
719    return;
720  }
721
722  if (!baseR->isBoundable())
723    return;
724
725  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
726  QualType T = TR->getValueType();
727
728    // Invalidate the binding.
729  if (T->isStructureOrClassType()) {
730    // Invalidate the region by setting its default value to
731    // conjured symbol. The type of the symbol is irrelavant.
732    DefinedOrUnknownSVal V =
733      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
734    B = RM.addBinding(B, baseR, BindingKey::Default, V);
735    return;
736  }
737
738  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
739      // Set the default value of the array to conjured symbol.
740    DefinedOrUnknownSVal V =
741    svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
742                                     AT->getElementType(), Count);
743    B = RM.addBinding(B, baseR, BindingKey::Default, V);
744    return;
745  }
746
747  if (includeGlobals &&
748      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
749    // If the region is a global and we are invalidating all globals,
750    // just erase the entry.  This causes all globals to be lazily
751    // symbolicated from the same base symbol.
752    B = RM.removeBinding(B, baseR);
753    return;
754  }
755
756
757  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
758                                                            T,Count);
759  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
760  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
761}
762
763RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
764                                                          const Expr *Ex,
765                                                          unsigned Count,
766                                                    const LocationContext *LCtx,
767                                                          RegionBindings B,
768                                            InvalidatedRegions *Invalidated) {
769  // Bind the globals memory space to a new symbol that we will use to derive
770  // the bindings for all globals.
771  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
772  SVal V =
773      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
774          /* symbol type, doesn't matter */ Ctx.IntTy,
775          Count);
776
777  B = removeBinding(B, GS);
778  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
779
780  // Even if there are no bindings in the global scope, we still need to
781  // record that we touched it.
782  if (Invalidated)
783    Invalidated->push_back(GS);
784
785  return B;
786}
787
788StoreRef RegionStoreManager::invalidateRegions(Store store,
789                                            ArrayRef<const MemRegion *> Regions,
790                                               const Expr *Ex, unsigned Count,
791                                               const LocationContext *LCtx,
792                                               InvalidatedSymbols &IS,
793                                               const CallEvent *Call,
794                                              InvalidatedRegions *Invalidated) {
795  invalidateRegionsWorker W(*this, StateMgr,
796                            RegionStoreManager::GetRegionBindings(store),
797                            Ex, Count, LCtx, IS, Invalidated, false);
798
799  // Scan the bindings and generate the clusters.
800  W.GenerateClusters();
801
802  // Add the regions to the worklist.
803  for (ArrayRef<const MemRegion *>::iterator
804       I = Regions.begin(), E = Regions.end(); I != E; ++I)
805    W.AddToWorkList(*I);
806
807  W.RunWorkList();
808
809  // Return the new bindings.
810  RegionBindings B = W.getRegionBindings();
811
812  // For all globals which are not static nor immutable: determine which global
813  // regions should be invalidated and invalidate them.
814  // TODO: This could possibly be more precise with modules.
815  //
816  // System calls invalidate only system globals.
817  if (Call && Call->isInSystemHeader()) {
818    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
819                               Ex, Count, LCtx, B, Invalidated);
820  // Internal calls might invalidate both system and internal globals.
821  } else {
822    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
823                               Ex, Count, LCtx, B, Invalidated);
824    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
825                               Ex, Count, LCtx, B, Invalidated);
826  }
827
828  return StoreRef(B.getRootWithoutRetain(), *this);
829}
830
831//===----------------------------------------------------------------------===//
832// Extents for regions.
833//===----------------------------------------------------------------------===//
834
835DefinedOrUnknownSVal
836RegionStoreManager::getSizeInElements(ProgramStateRef state,
837                                      const MemRegion *R,
838                                      QualType EleTy) {
839  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
840  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
841  if (!SizeInt)
842    return UnknownVal();
843
844  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
845
846  if (Ctx.getAsVariableArrayType(EleTy)) {
847    // FIXME: We need to track extra state to properly record the size
848    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
849    // we don't have a divide-by-zero below.
850    return UnknownVal();
851  }
852
853  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
854
855  // If a variable is reinterpreted as a type that doesn't fit into a larger
856  // type evenly, round it down.
857  // This is a signed value, since it's used in arithmetic with signed indices.
858  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
859}
860
861//===----------------------------------------------------------------------===//
862// Location and region casting.
863//===----------------------------------------------------------------------===//
864
865/// ArrayToPointer - Emulates the "decay" of an array to a pointer
866///  type.  'Array' represents the lvalue of the array being decayed
867///  to a pointer, and the returned SVal represents the decayed
868///  version of that lvalue (i.e., a pointer to the first element of
869///  the array).  This is called by ExprEngine when evaluating casts
870///  from arrays to pointers.
871SVal RegionStoreManager::ArrayToPointer(Loc Array) {
872  if (!isa<loc::MemRegionVal>(Array))
873    return UnknownVal();
874
875  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
876  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
877
878  if (!ArrayR)
879    return UnknownVal();
880
881  // Strip off typedefs from the ArrayRegion's ValueType.
882  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
883  const ArrayType *AT = cast<ArrayType>(T);
884  T = AT->getElementType();
885
886  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
887  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
888}
889
890SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
891  const CXXRecordDecl *baseDecl;
892  if (baseType->isPointerType())
893    baseDecl = baseType->getCXXRecordDeclForPointerType();
894  else
895    baseDecl = baseType->getAsCXXRecordDecl();
896
897  assert(baseDecl && "not a CXXRecordDecl?");
898
899  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
900  if (!derivedRegVal)
901    return derived;
902
903  const MemRegion *baseReg =
904    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
905
906  return loc::MemRegionVal(baseReg);
907}
908
909SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
910                                         bool &Failed) {
911  Failed = false;
912
913  loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
914  if (!baseRegVal)
915    return UnknownVal();
916  const MemRegion *BaseRegion = baseRegVal->stripCasts();
917
918  // Assume the derived class is a pointer or a reference to a CXX record.
919  derivedType = derivedType->getPointeeType();
920  assert(!derivedType.isNull());
921  const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
922  if (!DerivedDecl && !derivedType->isVoidType())
923    return UnknownVal();
924
925  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
926  // derived to base).
927  const MemRegion *SR = BaseRegion;
928  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
929    QualType BaseType = TSR->getLocationType()->getPointeeType();
930    assert(!BaseType.isNull());
931    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
932    if (!SRDecl)
933      return UnknownVal();
934
935    // If found the derived class, the cast succeeds.
936    if (SRDecl == DerivedDecl)
937      return loc::MemRegionVal(TSR);
938
939    // If the region type is a subclass of the derived type.
940    if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
941      // This occurs in two cases.
942      // 1) We are processing an upcast.
943      // 2) We are processing a downcast but we jumped directly from the
944      // ancestor to a child of the cast value, so conjure the
945      // appropriate region to represent value (the intermediate node).
946      return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
947                                                            BaseRegion));
948    }
949
950    // If super region is not a parent of derived class, the cast definitely
951    // fails.
952    if (!derivedType->isVoidType() &&
953        DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
954      Failed = true;
955      return UnknownVal();
956    }
957
958    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
959      // Drill down the chain to get the derived classes.
960      SR = R->getSuperRegion();
961    else {
962      // We reached the bottom of the hierarchy.
963
964      // If this is a cast to void*, return the region.
965      if (derivedType->isVoidType())
966        return loc::MemRegionVal(TSR);
967
968      // We did not find the derived class. We we must be casting the base to
969      // derived, so the cast should fail.
970      Failed = true;
971      return UnknownVal();
972    }
973  }
974
975  return UnknownVal();
976}
977
978//===----------------------------------------------------------------------===//
979// Loading values from regions.
980//===----------------------------------------------------------------------===//
981
982Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
983                                                    const MemRegion *R) {
984
985  if (const SVal *V = lookup(B, R, BindingKey::Direct))
986    return *V;
987
988  return Optional<SVal>();
989}
990
991Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
992                                                     const MemRegion *R) {
993  if (R->isBoundable())
994    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
995      if (TR->getValueType()->isUnionType())
996        return UnknownVal();
997
998  if (const SVal *V = lookup(B, R, BindingKey::Default))
999    return *V;
1000
1001  return Optional<SVal>();
1002}
1003
1004SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
1005  assert(!isa<UnknownVal>(L) && "location unknown");
1006  assert(!isa<UndefinedVal>(L) && "location undefined");
1007
1008  // For access to concrete addresses, return UnknownVal.  Checks
1009  // for null dereferences (and similar errors) are done by checkers, not
1010  // the Store.
1011  // FIXME: We can consider lazily symbolicating such memory, but we really
1012  // should defer this when we can reason easily about symbolicating arrays
1013  // of bytes.
1014  if (isa<loc::ConcreteInt>(L)) {
1015    return UnknownVal();
1016  }
1017  if (!isa<loc::MemRegionVal>(L)) {
1018    return UnknownVal();
1019  }
1020
1021  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1022
1023  if (isa<AllocaRegion>(MR) ||
1024      isa<SymbolicRegion>(MR) ||
1025      isa<CodeTextRegion>(MR)) {
1026    if (T.isNull()) {
1027      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1028        T = TR->getLocationType();
1029      else {
1030        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1031        T = SR->getSymbol()->getType(Ctx);
1032      }
1033    }
1034    MR = GetElementZeroRegion(MR, T);
1035  }
1036
1037  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1038  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1039  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1040  QualType RTy = R->getValueType();
1041
1042  // FIXME: We should eventually handle funny addressing.  e.g.:
1043  //
1044  //   int x = ...;
1045  //   int *p = &x;
1046  //   char *q = (char*) p;
1047  //   char c = *q;  // returns the first byte of 'x'.
1048  //
1049  // Such funny addressing will occur due to layering of regions.
1050
1051  if (RTy->isStructureOrClassType())
1052    return getBindingForStruct(store, R);
1053
1054  // FIXME: Handle unions.
1055  if (RTy->isUnionType())
1056    return UnknownVal();
1057
1058  if (RTy->isArrayType()) {
1059    if (RTy->isConstantArrayType())
1060      return getBindingForArray(store, R);
1061    else
1062      return UnknownVal();
1063  }
1064
1065  // FIXME: handle Vector types.
1066  if (RTy->isVectorType())
1067    return UnknownVal();
1068
1069  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1070    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
1071
1072  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1073    // FIXME: Here we actually perform an implicit conversion from the loaded
1074    // value to the element type.  Eventually we want to compose these values
1075    // more intelligently.  For example, an 'element' can encompass multiple
1076    // bound regions (e.g., several bound bytes), or could be a subset of
1077    // a larger value.
1078    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
1079  }
1080
1081  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1082    // FIXME: Here we actually perform an implicit conversion from the loaded
1083    // value to the ivar type.  What we should model is stores to ivars
1084    // that blow past the extent of the ivar.  If the address of the ivar is
1085    // reinterpretted, it is possible we stored a different value that could
1086    // fit within the ivar.  Either we need to cast these when storing them
1087    // or reinterpret them lazily (as we do here).
1088    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
1089  }
1090
1091  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1092    // FIXME: Here we actually perform an implicit conversion from the loaded
1093    // value to the variable type.  What we should model is stores to variables
1094    // that blow past the extent of the variable.  If the address of the
1095    // variable is reinterpretted, it is possible we stored a different value
1096    // that could fit within the variable.  Either we need to cast these when
1097    // storing them or reinterpret them lazily (as we do here).
1098    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1099  }
1100
1101  RegionBindings B = GetRegionBindings(store);
1102  const SVal *V = lookup(B, R, BindingKey::Direct);
1103
1104  // Check if the region has a binding.
1105  if (V)
1106    return *V;
1107
1108  // The location does not have a bound value.  This means that it has
1109  // the value it had upon its creation and/or entry to the analyzed
1110  // function/method.  These are either symbolic values or 'undefined'.
1111  if (R->hasStackNonParametersStorage()) {
1112    // All stack variables are considered to have undefined values
1113    // upon creation.  All heap allocated blocks are considered to
1114    // have undefined values as well unless they are explicitly bound
1115    // to specific values.
1116    return UndefinedVal();
1117  }
1118
1119  // All other values are symbolic.
1120  return svalBuilder.getRegionValueSymbolVal(R);
1121}
1122
1123std::pair<Store, const MemRegion *>
1124RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1125                                   const MemRegion *originalRegion,
1126                                   bool includeSuffix) {
1127
1128  if (originalRegion != R) {
1129    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1130      if (const nonloc::LazyCompoundVal *V =
1131          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1132        return std::make_pair(V->getStore(), V->getRegion());
1133    }
1134  }
1135
1136  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1137    const std::pair<Store, const MemRegion *> &X =
1138      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1139
1140    if (X.second)
1141      return std::make_pair(X.first,
1142                            MRMgr.getElementRegionWithSuper(ER, X.second));
1143  }
1144  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1145    const std::pair<Store, const MemRegion *> &X =
1146      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1147
1148    if (X.second) {
1149      if (includeSuffix)
1150        return std::make_pair(X.first,
1151                              MRMgr.getFieldRegionWithSuper(FR, X.second));
1152      return X;
1153    }
1154
1155  }
1156  // C++ base object region is another kind of region that we should blast
1157  // through to look for lazy compound value. It is like a field region.
1158  else if (const CXXBaseObjectRegion *baseReg =
1159                            dyn_cast<CXXBaseObjectRegion>(R)) {
1160    const std::pair<Store, const MemRegion *> &X =
1161      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1162
1163    if (X.second) {
1164      if (includeSuffix)
1165        return std::make_pair(X.first,
1166                              MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1167                                                                    X.second));
1168      return X;
1169    }
1170  }
1171
1172  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1173  // possible for a valid lazy binding.
1174  return std::make_pair((Store) 0, (const MemRegion *) 0);
1175}
1176
1177SVal RegionStoreManager::getBindingForElement(Store store,
1178                                              const ElementRegion* R) {
1179  // We do not currently model bindings of the CompoundLiteralregion.
1180  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1181    return UnknownVal();
1182
1183  // Check if the region has a binding.
1184  RegionBindings B = GetRegionBindings(store);
1185  if (const Optional<SVal> &V = getDirectBinding(B, R))
1186    return *V;
1187
1188  const MemRegion* superR = R->getSuperRegion();
1189
1190  // Check if the region is an element region of a string literal.
1191  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1192    // FIXME: Handle loads from strings where the literal is treated as
1193    // an integer, e.g., *((unsigned int*)"hello")
1194    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1195    if (T != Ctx.getCanonicalType(R->getElementType()))
1196      return UnknownVal();
1197
1198    const StringLiteral *Str = StrR->getStringLiteral();
1199    SVal Idx = R->getIndex();
1200    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1201      int64_t i = CI->getValue().getSExtValue();
1202      // Abort on string underrun.  This can be possible by arbitrary
1203      // clients of getBindingForElement().
1204      if (i < 0)
1205        return UndefinedVal();
1206      int64_t length = Str->getLength();
1207      // Technically, only i == length is guaranteed to be null.
1208      // However, such overflows should be caught before reaching this point;
1209      // the only time such an access would be made is if a string literal was
1210      // used to initialize a larger array.
1211      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1212      return svalBuilder.makeIntVal(c, T);
1213    }
1214  }
1215
1216  // Check for loads from a code text region.  For such loads, just give up.
1217  if (isa<CodeTextRegion>(superR))
1218    return UnknownVal();
1219
1220  // Handle the case where we are indexing into a larger scalar object.
1221  // For example, this handles:
1222  //   int x = ...
1223  //   char *y = &x;
1224  //   return *y;
1225  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1226  const RegionRawOffset &O = R->getAsArrayOffset();
1227
1228  // If we cannot reason about the offset, return an unknown value.
1229  if (!O.getRegion())
1230    return UnknownVal();
1231
1232  if (const TypedValueRegion *baseR =
1233        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1234    QualType baseT = baseR->getValueType();
1235    if (baseT->isScalarType()) {
1236      QualType elemT = R->getElementType();
1237      if (elemT->isScalarType()) {
1238        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1239          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1240            if (SymbolRef parentSym = V->getAsSymbol())
1241              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1242
1243            if (V->isUnknownOrUndef())
1244              return *V;
1245            // Other cases: give up.  We are indexing into a larger object
1246            // that has some value, but we don't know how to handle that yet.
1247            return UnknownVal();
1248          }
1249        }
1250      }
1251    }
1252  }
1253  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1254                                           superR);
1255}
1256
1257SVal RegionStoreManager::getBindingForField(Store store,
1258                                       const FieldRegion* R) {
1259
1260  // Check if the region has a binding.
1261  RegionBindings B = GetRegionBindings(store);
1262  if (const Optional<SVal> &V = getDirectBinding(B, R))
1263    return *V;
1264
1265  QualType Ty = R->getValueType();
1266  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1267}
1268
1269Optional<SVal>
1270RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1271                                                     const MemRegion *superR,
1272                                                     const TypedValueRegion *R,
1273                                                     QualType Ty) {
1274
1275  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1276    const SVal &val = D.getValue();
1277    if (SymbolRef parentSym = val.getAsSymbol())
1278      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1279
1280    if (val.isZeroConstant())
1281      return svalBuilder.makeZeroVal(Ty);
1282
1283    if (val.isUnknownOrUndef())
1284      return val;
1285
1286    // Lazy bindings are handled later.
1287    if (isa<nonloc::LazyCompoundVal>(val))
1288      return Optional<SVal>();
1289
1290    llvm_unreachable("Unknown default value");
1291  }
1292
1293  return Optional<SVal>();
1294}
1295
1296SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1297                                             Store lazyBindingStore) {
1298  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1299    return getBindingForElement(lazyBindingStore, ER);
1300
1301  return getBindingForField(lazyBindingStore,
1302                            cast<FieldRegion>(lazyBindingRegion));
1303}
1304
1305SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1306                                                      const TypedValueRegion *R,
1307                                                      QualType Ty,
1308                                                      const MemRegion *superR) {
1309
1310  // At this point we have already checked in either getBindingForElement or
1311  // getBindingForField if 'R' has a direct binding.
1312  RegionBindings B = GetRegionBindings(store);
1313
1314  // Lazy binding?
1315  Store lazyBindingStore = NULL;
1316  const MemRegion *lazyBindingRegion = NULL;
1317  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
1318                                                                  true);
1319
1320  if (lazyBindingRegion)
1321    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1322
1323  // Record whether or not we see a symbolic index.  That can completely
1324  // be out of scope of our lookup.
1325  bool hasSymbolicIndex = false;
1326
1327  while (superR) {
1328    if (const Optional<SVal> &D =
1329        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1330      return *D;
1331
1332    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1333      NonLoc index = ER->getIndex();
1334      if (!index.isConstant())
1335        hasSymbolicIndex = true;
1336    }
1337
1338    // If our super region is a field or element itself, walk up the region
1339    // hierarchy to see if there is a default value installed in an ancestor.
1340    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1341      superR = SR->getSuperRegion();
1342      continue;
1343    }
1344    break;
1345  }
1346
1347  if (R->hasStackNonParametersStorage()) {
1348    if (isa<ElementRegion>(R)) {
1349      // Currently we don't reason specially about Clang-style vectors.  Check
1350      // if superR is a vector and if so return Unknown.
1351      if (const TypedValueRegion *typedSuperR =
1352            dyn_cast<TypedValueRegion>(superR)) {
1353        if (typedSuperR->getValueType()->isVectorType())
1354          return UnknownVal();
1355      }
1356    }
1357
1358    // FIXME: We also need to take ElementRegions with symbolic indexes into
1359    // account.  This case handles both directly accessing an ElementRegion
1360    // with a symbolic offset, but also fields within an element with
1361    // a symbolic offset.
1362    if (hasSymbolicIndex)
1363      return UnknownVal();
1364
1365    return UndefinedVal();
1366  }
1367
1368  // All other values are symbolic.
1369  return svalBuilder.getRegionValueSymbolVal(R);
1370}
1371
1372SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1373                                               const ObjCIvarRegion* R) {
1374
1375    // Check if the region has a binding.
1376  RegionBindings B = GetRegionBindings(store);
1377
1378  if (const Optional<SVal> &V = getDirectBinding(B, R))
1379    return *V;
1380
1381  const MemRegion *superR = R->getSuperRegion();
1382
1383  // Check if the super region has a default binding.
1384  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1385    if (SymbolRef parentSym = V->getAsSymbol())
1386      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1387
1388    // Other cases: give up.
1389    return UnknownVal();
1390  }
1391
1392  return getBindingForLazySymbol(R);
1393}
1394
1395SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1396
1397  // Check if the region has a binding.
1398  RegionBindings B = GetRegionBindings(store);
1399
1400  if (const Optional<SVal> &V = getDirectBinding(B, R))
1401    return *V;
1402
1403  // Lazily derive a value for the VarRegion.
1404  const VarDecl *VD = R->getDecl();
1405  QualType T = VD->getType();
1406  const MemSpaceRegion *MS = R->getMemorySpace();
1407
1408  if (isa<UnknownSpaceRegion>(MS) ||
1409      isa<StackArgumentsSpaceRegion>(MS))
1410    return svalBuilder.getRegionValueSymbolVal(R);
1411
1412  if (isa<GlobalsSpaceRegion>(MS)) {
1413    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1414      // Is 'VD' declared constant?  If so, retrieve the constant value.
1415      QualType CT = Ctx.getCanonicalType(T);
1416      if (CT.isConstQualified()) {
1417        const Expr *Init = VD->getInit();
1418        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1419        if (Init)
1420          if (const IntegerLiteral *IL =
1421              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1422            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1423            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1424          }
1425      }
1426
1427      if (const Optional<SVal> &V
1428            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1429        return V.getValue();
1430
1431      return svalBuilder.getRegionValueSymbolVal(R);
1432    }
1433
1434    if (T->isIntegerType())
1435      return svalBuilder.makeIntVal(0, T);
1436    if (T->isPointerType())
1437      return svalBuilder.makeNull();
1438
1439    return UnknownVal();
1440  }
1441
1442  return UndefinedVal();
1443}
1444
1445SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1446  // All other values are symbolic.
1447  return svalBuilder.getRegionValueSymbolVal(R);
1448}
1449
1450SVal RegionStoreManager::getBindingForStruct(Store store,
1451                                        const TypedValueRegion* R) {
1452  assert(R->getValueType()->isStructureOrClassType());
1453
1454  // If we already have a lazy binding, don't create a new one.
1455  RegionBindings B = GetRegionBindings(store);
1456  BindingKey K = BindingKey::Make(R, BindingKey::Default);
1457  if (const nonloc::LazyCompoundVal *V =
1458      dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1459    return *V;
1460  }
1461
1462  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1463}
1464
1465SVal RegionStoreManager::getBindingForArray(Store store,
1466                                       const TypedValueRegion * R) {
1467  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1468
1469  // If we already have a lazy binding, don't create a new one.
1470  RegionBindings B = GetRegionBindings(store);
1471  BindingKey K = BindingKey::Make(R, BindingKey::Default);
1472  if (const nonloc::LazyCompoundVal *V =
1473      dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1474    return *V;
1475  }
1476
1477  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1478}
1479
1480bool RegionStoreManager::includedInBindings(Store store,
1481                                            const MemRegion *region) const {
1482  RegionBindings B = GetRegionBindings(store);
1483  region = region->getBaseRegion();
1484
1485  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1486    const BindingKey &K = it.getKey();
1487    if (region == K.getRegion())
1488      return true;
1489    const SVal &D = it.getData();
1490    if (const MemRegion *r = D.getAsRegion())
1491      if (r == region)
1492        return true;
1493  }
1494  return false;
1495}
1496
1497//===----------------------------------------------------------------------===//
1498// Binding values to regions.
1499//===----------------------------------------------------------------------===//
1500
1501StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1502  if (isa<loc::MemRegionVal>(L))
1503    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1504      return StoreRef(removeBinding(GetRegionBindings(store),
1505                                    R).getRootWithoutRetain(),
1506                      *this);
1507
1508  return StoreRef(store, *this);
1509}
1510
1511StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1512  if (isa<loc::ConcreteInt>(L))
1513    return StoreRef(store, *this);
1514
1515  // If we get here, the location should be a region.
1516  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1517
1518  // Check if the region is a struct region.
1519  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1520    QualType Ty = TR->getValueType();
1521    if (Ty->isStructureOrClassType())
1522      return BindStruct(store, TR, V);
1523    if (Ty->isVectorType())
1524      return BindVector(store, TR, V);
1525  }
1526
1527  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1528    if (ER->getIndex().isZeroConstant()) {
1529      if (const TypedValueRegion *superR =
1530            dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1531        QualType superTy = superR->getValueType();
1532        // For now, just invalidate the fields of the struct/union/class.
1533        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1534        // FIXME: Precisely handle the fields of the record.
1535        if (superTy->isStructureOrClassType())
1536          return KillStruct(store, superR, UnknownVal());
1537      }
1538    }
1539  }
1540  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1541    // Binding directly to a symbolic region should be treated as binding
1542    // to element 0.
1543    QualType T = SR->getSymbol()->getType(Ctx);
1544
1545    // FIXME: Is this the right way to handle symbols that are references?
1546    if (const PointerType *PT = T->getAs<PointerType>())
1547      T = PT->getPointeeType();
1548    else
1549      T = T->getAs<ReferenceType>()->getPointeeType();
1550
1551    R = GetElementZeroRegion(SR, T);
1552  }
1553
1554  // Perform the binding.
1555  RegionBindings B = GetRegionBindings(store);
1556  return StoreRef(addBinding(B, R, BindingKey::Direct,
1557                             V).getRootWithoutRetain(), *this);
1558}
1559
1560StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1561                                      SVal InitVal) {
1562
1563  QualType T = VR->getDecl()->getType();
1564
1565  if (T->isArrayType())
1566    return BindArray(store, VR, InitVal);
1567  if (T->isStructureOrClassType())
1568    return BindStruct(store, VR, InitVal);
1569
1570  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1571}
1572
1573// FIXME: this method should be merged into Bind().
1574StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1575                                                 const CompoundLiteralExpr *CL,
1576                                                 const LocationContext *LC,
1577                                                 SVal V) {
1578  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1579              V);
1580}
1581
1582StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1583                                                     const MemRegion *R,
1584                                                     QualType T) {
1585  RegionBindings B = GetRegionBindings(store);
1586  SVal V;
1587
1588  if (Loc::isLocType(T))
1589    V = svalBuilder.makeNull();
1590  else if (T->isIntegerType())
1591    V = svalBuilder.makeZeroVal(T);
1592  else if (T->isStructureOrClassType() || T->isArrayType()) {
1593    // Set the default value to a zero constant when it is a structure
1594    // or array.  The type doesn't really matter.
1595    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1596  }
1597  else {
1598    // We can't represent values of this type, but we still need to set a value
1599    // to record that the region has been initialized.
1600    // If this assertion ever fires, a new case should be added above -- we
1601    // should know how to default-initialize any value we can symbolicate.
1602    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1603    V = UnknownVal();
1604  }
1605
1606  return StoreRef(addBinding(B, R, BindingKey::Default,
1607                             V).getRootWithoutRetain(), *this);
1608}
1609
1610StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1611                                       SVal Init) {
1612
1613  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1614  QualType ElementTy = AT->getElementType();
1615  Optional<uint64_t> Size;
1616
1617  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1618    Size = CAT->getSize().getZExtValue();
1619
1620  // Check if the init expr is a string literal.
1621  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1622    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1623
1624    // Treat the string as a lazy compound value.
1625    nonloc::LazyCompoundVal LCV =
1626      cast<nonloc::LazyCompoundVal>(svalBuilder.
1627                                makeLazyCompoundVal(StoreRef(store, *this), S));
1628    return CopyLazyBindings(LCV, store, R);
1629  }
1630
1631  // Handle lazy compound values.
1632  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1633    return CopyLazyBindings(*LCV, store, R);
1634
1635  // Remaining case: explicit compound values.
1636
1637  if (Init.isUnknown())
1638    return setImplicitDefaultValue(store, R, ElementTy);
1639
1640  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1641  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1642  uint64_t i = 0;
1643
1644  StoreRef newStore(store, *this);
1645  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1646    // The init list might be shorter than the array length.
1647    if (VI == VE)
1648      break;
1649
1650    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1651    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1652
1653    if (ElementTy->isStructureOrClassType())
1654      newStore = BindStruct(newStore.getStore(), ER, *VI);
1655    else if (ElementTy->isArrayType())
1656      newStore = BindArray(newStore.getStore(), ER, *VI);
1657    else
1658      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1659  }
1660
1661  // If the init list is shorter than the array length, set the
1662  // array default value.
1663  if (Size.hasValue() && i < Size.getValue())
1664    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1665
1666  return newStore;
1667}
1668
1669StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
1670                                        SVal V) {
1671  QualType T = R->getValueType();
1672  assert(T->isVectorType());
1673  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1674
1675  // Handle lazy compound values.
1676  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&V))
1677    return CopyLazyBindings(*LCV, store, R);
1678
1679  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1680  // that we are binding symbolic struct value. Kill the field values, and if
1681  // the value is symbolic go and bind it as a "default" binding.
1682  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1683    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1684    return KillStruct(store, R, SV);
1685  }
1686
1687  QualType ElemType = VT->getElementType();
1688  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1689  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1690  unsigned index = 0, numElements = VT->getNumElements();
1691  StoreRef newStore(store, *this);
1692
1693  for ( ; index != numElements ; ++index) {
1694    if (VI == VE)
1695      break;
1696
1697    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1698    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1699
1700    if (ElemType->isArrayType())
1701      newStore = BindArray(newStore.getStore(), ER, *VI);
1702    else if (ElemType->isStructureOrClassType())
1703      newStore = BindStruct(newStore.getStore(), ER, *VI);
1704    else
1705      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1706  }
1707  return newStore;
1708}
1709
1710StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1711                                        SVal V) {
1712
1713  if (!Features.supportsFields())
1714    return StoreRef(store, *this);
1715
1716  QualType T = R->getValueType();
1717  assert(T->isStructureOrClassType());
1718
1719  const RecordType* RT = T->getAs<RecordType>();
1720  RecordDecl *RD = RT->getDecl();
1721
1722  if (!RD->isCompleteDefinition())
1723    return StoreRef(store, *this);
1724
1725  // Handle lazy compound values.
1726  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1727    return CopyLazyBindings(*LCV, store, R);
1728
1729  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1730  // that we are binding symbolic struct value. Kill the field values, and if
1731  // the value is symbolic go and bind it as a "default" binding.
1732  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1733    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1734    return KillStruct(store, R, SV);
1735  }
1736
1737  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1738  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1739
1740  RecordDecl::field_iterator FI, FE;
1741  StoreRef newStore(store, *this);
1742
1743  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1744
1745    if (VI == VE)
1746      break;
1747
1748    // Skip any unnamed bitfields to stay in sync with the initializers.
1749    if (FI->isUnnamedBitfield())
1750      continue;
1751
1752    QualType FTy = FI->getType();
1753    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1754
1755    if (FTy->isArrayType())
1756      newStore = BindArray(newStore.getStore(), FR, *VI);
1757    else if (FTy->isStructureOrClassType())
1758      newStore = BindStruct(newStore.getStore(), FR, *VI);
1759    else
1760      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1761    ++VI;
1762  }
1763
1764  // There may be fewer values in the initialize list than the fields of struct.
1765  if (FI != FE) {
1766    RegionBindings B = GetRegionBindings(newStore.getStore());
1767    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1768    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1769  }
1770
1771  return newStore;
1772}
1773
1774StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1775                                     SVal DefaultVal) {
1776  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1777
1778  // The BindingKey may be "invalid" if we cannot handle the region binding
1779  // explicitly.  One example is something like array[index], where index
1780  // is a symbolic value.  In such cases, we want to invalidate the entire
1781  // array, as the index assignment could have been to any element.  In
1782  // the case of nested symbolic indices, we need to march up the region
1783  // hierarchy untile we reach a region whose binding we can reason about.
1784  const SubRegion *subReg = R;
1785
1786  while (!key.isValid()) {
1787    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1788      subReg = tmp;
1789      key = BindingKey::Make(tmp, BindingKey::Default);
1790    }
1791    else
1792      break;
1793  }
1794
1795  // Remove the old bindings, using 'subReg' as the root of all regions
1796  // we will invalidate.
1797  RegionBindings B = GetRegionBindings(store);
1798  OwningPtr<RegionStoreSubRegionMap>
1799    SubRegions(getRegionStoreSubRegionMap(store));
1800  RemoveSubRegionBindings(B, subReg, *SubRegions);
1801
1802  // Set the default value of the struct region to "unknown".
1803  if (!key.isValid())
1804    return StoreRef(B.getRootWithoutRetain(), *this);
1805
1806  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1807}
1808
1809StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1810                                              Store store,
1811                                              const TypedRegion *R) {
1812
1813  // Nuke the old bindings stemming from R.
1814  RegionBindings B = GetRegionBindings(store);
1815
1816  OwningPtr<RegionStoreSubRegionMap>
1817    SubRegions(getRegionStoreSubRegionMap(store));
1818
1819  // B and DVM are updated after the call to RemoveSubRegionBindings.
1820  RemoveSubRegionBindings(B, R, *SubRegions.get());
1821
1822  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1823  // results in a zero-copy algorithm.
1824  return StoreRef(addBinding(B, R, BindingKey::Default,
1825                             V).getRootWithoutRetain(), *this);
1826}
1827
1828//===----------------------------------------------------------------------===//
1829// "Raw" retrievals and bindings.
1830//===----------------------------------------------------------------------===//
1831
1832
1833RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1834                                              SVal V) {
1835  if (!K.isValid())
1836    return B;
1837  return RBFactory.add(B, K, V);
1838}
1839
1840RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1841                                              const MemRegion *R,
1842                                              BindingKey::Kind k, SVal V) {
1843  return addBinding(B, BindingKey::Make(R, k), V);
1844}
1845
1846const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1847  if (!K.isValid())
1848    return NULL;
1849  return B.lookup(K);
1850}
1851
1852const SVal *RegionStoreManager::lookup(RegionBindings B,
1853                                       const MemRegion *R,
1854                                       BindingKey::Kind k) {
1855  return lookup(B, BindingKey::Make(R, k));
1856}
1857
1858RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1859                                                 BindingKey K) {
1860  if (!K.isValid())
1861    return B;
1862  return RBFactory.remove(B, K);
1863}
1864
1865RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1866                                                 const MemRegion *R,
1867                                                BindingKey::Kind k){
1868  return removeBinding(B, BindingKey::Make(R, k));
1869}
1870
1871//===----------------------------------------------------------------------===//
1872// State pruning.
1873//===----------------------------------------------------------------------===//
1874
1875namespace {
1876class removeDeadBindingsWorker :
1877  public ClusterAnalysis<removeDeadBindingsWorker> {
1878  SmallVector<const SymbolicRegion*, 12> Postponed;
1879  SymbolReaper &SymReaper;
1880  const StackFrameContext *CurrentLCtx;
1881
1882public:
1883  removeDeadBindingsWorker(RegionStoreManager &rm,
1884                           ProgramStateManager &stateMgr,
1885                           RegionBindings b, SymbolReaper &symReaper,
1886                           const StackFrameContext *LCtx)
1887    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1888                                                /* includeGlobals = */ false),
1889      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1890
1891  // Called by ClusterAnalysis.
1892  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1893  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1894
1895  void VisitBindingKey(BindingKey K);
1896  bool UpdatePostponed();
1897  void VisitBinding(SVal V);
1898};
1899}
1900
1901void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1902                                                   RegionCluster &C) {
1903
1904  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1905    if (SymReaper.isLive(VR))
1906      AddToWorkList(baseR, C);
1907
1908    return;
1909  }
1910
1911  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1912    if (SymReaper.isLive(SR->getSymbol()))
1913      AddToWorkList(SR, C);
1914    else
1915      Postponed.push_back(SR);
1916
1917    return;
1918  }
1919
1920  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1921    AddToWorkList(baseR, C);
1922    return;
1923  }
1924
1925  // CXXThisRegion in the current or parent location context is live.
1926  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1927    const StackArgumentsSpaceRegion *StackReg =
1928      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1929    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1930    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1931      AddToWorkList(TR, C);
1932  }
1933}
1934
1935void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1936                                            BindingKey *I, BindingKey *E) {
1937  for ( ; I != E; ++I)
1938    VisitBindingKey(*I);
1939}
1940
1941void removeDeadBindingsWorker::VisitBinding(SVal V) {
1942  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1943  if (const nonloc::LazyCompoundVal *LCS =
1944      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1945
1946    const MemRegion *LazyR = LCS->getRegion();
1947    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1948    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1949      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1950      if (baseR && baseR->isSubRegionOf(LazyR))
1951        VisitBinding(RI.getData());
1952    }
1953    return;
1954  }
1955
1956  // If V is a region, then add it to the worklist.
1957  if (const MemRegion *R = V.getAsRegion()) {
1958    AddToWorkList(R);
1959
1960    // All regions captured by a block are also live.
1961    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1962      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1963                                                E = BR->referenced_vars_end();
1964        for ( ; I != E; ++I)
1965          AddToWorkList(I.getCapturedRegion());
1966    }
1967  }
1968
1969
1970  // Update the set of live symbols.
1971  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1972       SI!=SE; ++SI)
1973    SymReaper.markLive(*SI);
1974}
1975
1976void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1977  const MemRegion *R = K.getRegion();
1978
1979  // Mark this region "live" by adding it to the worklist.  This will cause
1980  // use to visit all regions in the cluster (if we haven't visited them
1981  // already).
1982  if (AddToWorkList(R)) {
1983    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1984    // should continue to track that symbol.
1985    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1986      SymReaper.markLive(SymR->getSymbol());
1987  }
1988
1989  // Visit the data binding for K.
1990  if (const SVal *V = RM.lookup(B, K))
1991    VisitBinding(*V);
1992}
1993
1994bool removeDeadBindingsWorker::UpdatePostponed() {
1995  // See if any postponed SymbolicRegions are actually live now, after
1996  // having done a scan.
1997  bool changed = false;
1998
1999  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2000        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2001    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
2002      if (SymReaper.isLive(SR->getSymbol())) {
2003        changed |= AddToWorkList(SR);
2004        *I = NULL;
2005      }
2006    }
2007  }
2008
2009  return changed;
2010}
2011
2012StoreRef RegionStoreManager::removeDeadBindings(Store store,
2013                                                const StackFrameContext *LCtx,
2014                                                SymbolReaper& SymReaper) {
2015  RegionBindings B = GetRegionBindings(store);
2016  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2017  W.GenerateClusters();
2018
2019  // Enqueue the region roots onto the worklist.
2020  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2021       E = SymReaper.region_end(); I != E; ++I) {
2022    W.AddToWorkList(*I);
2023  }
2024
2025  do W.RunWorkList(); while (W.UpdatePostponed());
2026
2027  // We have now scanned the store, marking reachable regions and symbols
2028  // as live.  We now remove all the regions that are dead from the store
2029  // as well as update DSymbols with the set symbols that are now dead.
2030  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2031    const BindingKey &K = I.getKey();
2032
2033    // If the cluster has been visited, we know the region has been marked.
2034    if (W.isVisited(K.getRegion()))
2035      continue;
2036
2037    // Remove the dead entry.
2038    B = removeBinding(B, K);
2039
2040    // Mark all non-live symbols that this binding references as dead.
2041    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
2042      SymReaper.maybeDead(SymR->getSymbol());
2043
2044    SVal X = I.getData();
2045    SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2046    for (; SI != SE; ++SI)
2047      SymReaper.maybeDead(*SI);
2048  }
2049
2050  return StoreRef(B.getRootWithoutRetain(), *this);
2051}
2052
2053StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
2054                                             const LocationContext *callerCtx,
2055                                             const StackFrameContext *calleeCtx)
2056{
2057  const Decl *D = calleeCtx->getDecl();
2058  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2059    return enterStackFrame(state, FD, callerCtx, calleeCtx);
2060
2061  // FIXME: when we handle more cases, this will need to be expanded.
2062
2063  const BlockDecl *BD = cast<BlockDecl>(D);
2064  BlockDecl::param_const_iterator PI = BD->param_begin(),
2065                                  PE = BD->param_end();
2066  StoreRef store = StoreRef(state->getStore(), *this);
2067  const CallExpr *CE = cast<CallExpr>(calleeCtx->getCallSite());
2068  CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
2069  for (; AI != AE && PI != PE; ++AI, ++PI) {
2070    SVal ArgVal = state->getSVal(*AI, callerCtx);
2071    store = Bind(store.getStore(),
2072                 svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2073                 ArgVal);
2074  }
2075
2076  return store;
2077}
2078
2079StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
2080                                             const FunctionDecl *FD,
2081                                             const LocationContext *callerCtx,
2082                                             const StackFrameContext *calleeCtx)
2083{
2084  FunctionDecl::param_const_iterator PI = FD->param_begin(),
2085                                     PE = FD->param_end();
2086  StoreRef store = StoreRef(state->getStore(), *this);
2087
2088  if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
2089    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
2090
2091    // Copy the arg expression value to the arg variables.  We check that
2092    // PI != PE because the actual number of arguments may be different than
2093    // the function declaration.
2094    for (; AI != AE && PI != PE; ++AI, ++PI) {
2095      SVal ArgVal = state->getSVal(*AI, callerCtx);
2096      store = Bind(store.getStore(),
2097                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2098                   ArgVal);
2099    }
2100
2101    // For C++ method calls, also include the 'this' pointer.
2102    if (const CXXMemberCallExpr *CME = dyn_cast<CXXMemberCallExpr>(CE)) {
2103      loc::MemRegionVal This =
2104        svalBuilder.getCXXThis(cast<CXXMethodDecl>(CME->getCalleeDecl()),
2105                               calleeCtx);
2106      SVal CalledObj = state->getSVal(CME->getImplicitObjectArgument(),
2107                                      callerCtx);
2108      store = Bind(store.getStore(), This, CalledObj);
2109    }
2110  }
2111  else if (const CXXConstructExpr *CE =
2112            dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
2113    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
2114      AE = CE->arg_end();
2115
2116    // Copy the arg expression value to the arg variables.
2117    for (; AI != AE; ++AI, ++PI) {
2118      SVal ArgVal = state->getSVal(*AI, callerCtx);
2119      store = Bind(store.getStore(),
2120                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
2121                   ArgVal);
2122    }
2123  }
2124  else {
2125    assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
2126  }
2127
2128  return store;
2129}
2130
2131//===----------------------------------------------------------------------===//
2132// Utility methods.
2133//===----------------------------------------------------------------------===//
2134
2135void RegionStoreManager::print(Store store, raw_ostream &OS,
2136                               const char* nl, const char *sep) {
2137  RegionBindings B = GetRegionBindings(store);
2138  OS << "Store (direct and default bindings), "
2139     << (void*) B.getRootWithoutRetain()
2140     << " :" << nl;
2141
2142  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
2143    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
2144}
2145