RegionStore.cpp revision aa66b08d2d8bbf05bae8c68f58724f754ab57b35
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/Analysis/Analyses/LiveVariables.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25#include "llvm/ADT/ImmutableList.h"
26#include "llvm/ADT/ImmutableMap.h"
27#include "llvm/ADT/Optional.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace clang;
31using namespace ento;
32using llvm::Optional;
33
34//===----------------------------------------------------------------------===//
35// Representation of binding keys.
36//===----------------------------------------------------------------------===//
37
38namespace {
39class BindingKey {
40public:
41  enum Kind { Default = 0x0, Direct = 0x1 };
42private:
43  enum { Symbolic = 0x2 };
44
45  llvm::PointerIntPair<const MemRegion *, 2> P;
46  uint64_t Data;
47
48  explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k)
49    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
50    assert(r && Base && "Must have known regions.");
51    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
52  }
53  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
54    : P(r, k), Data(offset) {
55    assert(r && "Must have known regions.");
56    assert(getOffset() == offset && "Failed to store offset");
57    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
58  }
59public:
60
61  bool isDirect() const { return P.getInt() & Direct; }
62  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
63
64  const MemRegion *getRegion() const { return P.getPointer(); }
65  uint64_t getOffset() const {
66    assert(!hasSymbolicOffset());
67    return Data;
68  }
69
70  const MemRegion *getConcreteOffsetRegion() const {
71    assert(hasSymbolicOffset());
72    return reinterpret_cast<const MemRegion *>(static_cast<uintptr_t>(Data));
73  }
74
75  const MemRegion *getBaseRegion() const {
76    if (hasSymbolicOffset())
77      return getConcreteOffsetRegion()->getBaseRegion();
78    return getRegion()->getBaseRegion();
79  }
80
81  void Profile(llvm::FoldingSetNodeID& ID) const {
82    ID.AddPointer(P.getOpaqueValue());
83    ID.AddInteger(Data);
84  }
85
86  static BindingKey Make(const MemRegion *R, Kind k);
87
88  bool operator<(const BindingKey &X) const {
89    if (P.getOpaqueValue() < X.P.getOpaqueValue())
90      return true;
91    if (P.getOpaqueValue() > X.P.getOpaqueValue())
92      return false;
93    return Data < X.Data;
94  }
95
96  bool operator==(const BindingKey &X) const {
97    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
98           Data == X.Data;
99  }
100
101  LLVM_ATTRIBUTE_USED void dump() const;
102};
103} // end anonymous namespace
104
105BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
106  const RegionOffset &RO = R->getAsOffset();
107  if (RO.hasSymbolicOffset())
108    return BindingKey(R, RO.getRegion(), k);
109
110  return BindingKey(RO.getRegion(), RO.getOffset(), k);
111}
112
113namespace llvm {
114  static inline
115  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
116    os << '(' << K.getRegion();
117    if (!K.hasSymbolicOffset())
118      os << ',' << K.getOffset();
119    os << ',' << (K.isDirect() ? "direct" : "default")
120       << ')';
121    return os;
122  }
123} // end llvm namespace
124
125void BindingKey::dump() const {
126  llvm::errs() << *this;
127}
128
129//===----------------------------------------------------------------------===//
130// Actual Store type.
131//===----------------------------------------------------------------------===//
132
133typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
134typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> RegionBindings;
135
136//===----------------------------------------------------------------------===//
137// Fine-grained control of RegionStoreManager.
138//===----------------------------------------------------------------------===//
139
140namespace {
141struct minimal_features_tag {};
142struct maximal_features_tag {};
143
144class RegionStoreFeatures {
145  bool SupportsFields;
146public:
147  RegionStoreFeatures(minimal_features_tag) :
148    SupportsFields(false) {}
149
150  RegionStoreFeatures(maximal_features_tag) :
151    SupportsFields(true) {}
152
153  void enableFields(bool t) { SupportsFields = t; }
154
155  bool supportsFields() const { return SupportsFields; }
156};
157}
158
159//===----------------------------------------------------------------------===//
160// Main RegionStore logic.
161//===----------------------------------------------------------------------===//
162
163namespace {
164
165class RegionStoreManager : public StoreManager {
166  const RegionStoreFeatures Features;
167  RegionBindings::Factory RBFactory;
168  ClusterBindings::Factory CBFactory;
169
170public:
171  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
172    : StoreManager(mgr), Features(f),
173      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
174
175  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
176  /// getDefaultBinding - Returns an SVal* representing an optional default
177  ///  binding associated with a region and its subregions.
178  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
179
180  /// setImplicitDefaultValue - Set the default binding for the provided
181  ///  MemRegion to the value implicitly defined for compound literals when
182  ///  the value is not specified.
183  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
184
185  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
186  ///  type.  'Array' represents the lvalue of the array being decayed
187  ///  to a pointer, and the returned SVal represents the decayed
188  ///  version of that lvalue (i.e., a pointer to the first element of
189  ///  the array).  This is called by ExprEngine when evaluating
190  ///  casts from arrays to pointers.
191  SVal ArrayToPointer(Loc Array);
192
193  StoreRef getInitialStore(const LocationContext *InitLoc) {
194    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
195  }
196
197  //===-------------------------------------------------------------------===//
198  // Binding values to regions.
199  //===-------------------------------------------------------------------===//
200  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
201                                        const Expr *Ex,
202                                        unsigned Count,
203                                        const LocationContext *LCtx,
204                                        RegionBindings B,
205                                        InvalidatedRegions *Invalidated);
206
207  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
208                             const Expr *E, unsigned Count,
209                             const LocationContext *LCtx,
210                             InvalidatedSymbols &IS,
211                             const CallEvent *Call,
212                             InvalidatedRegions *Invalidated);
213
214  bool scanReachableSymbols(Store S, const MemRegion *R,
215                            ScanReachableSymbols &Callbacks);
216
217public:   // Made public for helper classes.
218
219  RegionBindings removeSubRegionBindings(RegionBindings B, const SubRegion *R);
220
221  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
222
223  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
224                     BindingKey::Kind k, SVal V);
225
226  const SVal *lookup(RegionBindings B, BindingKey K);
227  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
228
229  RegionBindings removeBinding(RegionBindings B, BindingKey K);
230  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
231                               BindingKey::Kind k);
232
233  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
234    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
235                        BindingKey::Default);
236  }
237
238  RegionBindings removeCluster(RegionBindings B, const MemRegion *R);
239
240public: // Part of public interface to class.
241
242  StoreRef Bind(Store store, Loc LV, SVal V);
243
244  // BindDefault is only used to initialize a region with a default value.
245  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
246    RegionBindings B = GetRegionBindings(store);
247    assert(!lookup(B, R, BindingKey::Default));
248    assert(!lookup(B, R, BindingKey::Direct));
249    return StoreRef(addBinding(B, R, BindingKey::Default, V)
250                      .getRootWithoutRetain(), *this);
251  }
252
253  /// \brief Create a new store that binds a value to a compound literal.
254  ///
255  /// \param ST The original store whose bindings are the basis for the new
256  ///        store.
257  ///
258  /// \param CL The compound literal to bind (the binding key).
259  ///
260  /// \param LC The LocationContext for the binding.
261  ///
262  /// \param V The value to bind to the compound literal.
263  StoreRef bindCompoundLiteral(Store ST,
264                               const CompoundLiteralExpr *CL,
265                               const LocationContext *LC, SVal V);
266
267  /// BindStruct - Bind a compound value to a structure.
268  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
269
270  /// BindVector - Bind a compound value to a vector.
271  StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
272
273  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
274
275  /// Clears out all bindings in the given region and assigns a new value
276  /// as a Default binding.
277  StoreRef BindAggregate(Store store, const TypedRegion *R, SVal DefaultVal);
278
279  /// \brief Create a new store with the specified binding removed.
280  /// \param ST the original store, that is the basis for the new store.
281  /// \param L the location whose binding should be removed.
282  StoreRef killBinding(Store ST, Loc L);
283
284  void incrementReferenceCount(Store store) {
285    GetRegionBindings(store).manualRetain();
286  }
287
288  /// If the StoreManager supports it, decrement the reference count of
289  /// the specified Store object.  If the reference count hits 0, the memory
290  /// associated with the object is recycled.
291  void decrementReferenceCount(Store store) {
292    GetRegionBindings(store).manualRelease();
293  }
294
295  bool includedInBindings(Store store, const MemRegion *region) const;
296
297  /// \brief Return the value bound to specified location in a given state.
298  ///
299  /// The high level logic for this method is this:
300  /// getBinding (L)
301  ///   if L has binding
302  ///     return L's binding
303  ///   else if L is in killset
304  ///     return unknown
305  ///   else
306  ///     if L is on stack or heap
307  ///       return undefined
308  ///     else
309  ///       return symbolic
310  SVal getBinding(Store store, Loc L, QualType T = QualType());
311
312  SVal getBindingForElement(Store store, const ElementRegion *R);
313
314  SVal getBindingForField(Store store, const FieldRegion *R);
315
316  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
317
318  SVal getBindingForVar(Store store, const VarRegion *R);
319
320  SVal getBindingForLazySymbol(const TypedValueRegion *R);
321
322  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
323                                         QualType Ty, const MemRegion *superR);
324
325  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
326                      Store lazyBindingStore);
327
328  /// Get bindings for the values in a struct and return a CompoundVal, used
329  /// when doing struct copy:
330  /// struct s x, y;
331  /// x = y;
332  /// y's value is retrieved by this method.
333  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
334
335  SVal getBindingForArray(Store store, const TypedValueRegion* R);
336
337  /// Used to lazily generate derived symbols for bindings that are defined
338  ///  implicitly by default bindings in a super region.
339  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
340                                                  const MemRegion *superR,
341                                                  const TypedValueRegion *R,
342                                                  QualType Ty);
343
344  /// Get the state and region whose binding this region R corresponds to.
345  std::pair<Store, const MemRegion*>
346  GetLazyBinding(RegionBindings B, const MemRegion *R,
347                 const MemRegion *originalRegion,
348                 bool includeSuffix = false);
349
350  //===------------------------------------------------------------------===//
351  // State pruning.
352  //===------------------------------------------------------------------===//
353
354  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
355  ///  It returns a new Store with these values removed.
356  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
357                              SymbolReaper& SymReaper);
358
359  //===------------------------------------------------------------------===//
360  // Region "extents".
361  //===------------------------------------------------------------------===//
362
363  // FIXME: This method will soon be eliminated; see the note in Store.h.
364  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
365                                         const MemRegion* R, QualType EleTy);
366
367  //===------------------------------------------------------------------===//
368  // Utility methods.
369  //===------------------------------------------------------------------===//
370
371  static inline RegionBindings GetRegionBindings(Store store) {
372    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
373  }
374
375  void print(Store store, raw_ostream &Out, const char* nl,
376             const char *sep);
377
378  void iterBindings(Store store, BindingsHandler& f) {
379    RegionBindings B = GetRegionBindings(store);
380    for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
381      const ClusterBindings &Cluster = I.getData();
382      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
383           CI != CE; ++CI) {
384        const BindingKey &K = CI.getKey();
385        if (!K.isDirect())
386          continue;
387        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
388          // FIXME: Possibly incorporate the offset?
389          if (!f.HandleBinding(*this, store, R, CI.getData()))
390            return;
391        }
392      }
393    }
394  }
395};
396
397} // end anonymous namespace
398
399//===----------------------------------------------------------------------===//
400// RegionStore creation.
401//===----------------------------------------------------------------------===//
402
403StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
404  RegionStoreFeatures F = maximal_features_tag();
405  return new RegionStoreManager(StMgr, F);
406}
407
408StoreManager *
409ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
410  RegionStoreFeatures F = minimal_features_tag();
411  F.enableFields(true);
412  return new RegionStoreManager(StMgr, F);
413}
414
415
416//===----------------------------------------------------------------------===//
417// Region Cluster analysis.
418//===----------------------------------------------------------------------===//
419
420namespace {
421template <typename DERIVED>
422class ClusterAnalysis  {
423protected:
424  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
425  typedef SmallVector<const MemRegion *, 10> WorkList;
426
427  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
428
429  WorkList WL;
430
431  RegionStoreManager &RM;
432  ASTContext &Ctx;
433  SValBuilder &svalBuilder;
434
435  RegionBindings B;
436
437  const bool includeGlobals;
438
439  const ClusterBindings *getCluster(const MemRegion *R) {
440    return B.lookup(R);
441  }
442
443public:
444  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
445                  RegionBindings b, const bool includeGlobals)
446    : RM(rm), Ctx(StateMgr.getContext()),
447      svalBuilder(StateMgr.getSValBuilder()),
448      B(b), includeGlobals(includeGlobals) {}
449
450  RegionBindings getRegionBindings() const { return B; }
451
452  bool isVisited(const MemRegion *R) {
453    return Visited.count(getCluster(R));
454  }
455
456  void GenerateClusters() {
457    // Scan the entire set of bindings and record the region clusters.
458    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
459      const MemRegion *Base = RI.getKey();
460
461      const ClusterBindings &Cluster = RI.getData();
462      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
463      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
464
465      if (includeGlobals)
466        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
467          AddToWorkList(Base, &Cluster);
468    }
469  }
470
471  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
472    if (C && !Visited.insert(C))
473      return false;
474    WL.push_back(R);
475    return true;
476  }
477
478  bool AddToWorkList(const MemRegion *R) {
479    const MemRegion *baseR = R->getBaseRegion();
480    return AddToWorkList(baseR, getCluster(baseR));
481  }
482
483  void RunWorkList() {
484    while (!WL.empty()) {
485      const MemRegion *baseR = WL.pop_back_val();
486
487      // First visit the cluster.
488      if (const ClusterBindings *Cluster = getCluster(baseR))
489        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
490
491      // Next, visit the base region.
492      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
493    }
494  }
495
496public:
497  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
498  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
499  void VisitBaseRegion(const MemRegion *baseR) {}
500};
501}
502
503//===----------------------------------------------------------------------===//
504// Binding invalidation.
505//===----------------------------------------------------------------------===//
506
507bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
508                                              ScanReachableSymbols &Callbacks) {
509  assert(R == R->getBaseRegion() && "Should only be called for base regions");
510  RegionBindings B = GetRegionBindings(S);
511  const ClusterBindings *Cluster = B.lookup(R);
512
513  if (!Cluster)
514    return true;
515
516  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
517       RI != RE; ++RI) {
518    if (!Callbacks.scan(RI.getData()))
519      return false;
520  }
521
522  return true;
523}
524
525RegionBindings RegionStoreManager::removeSubRegionBindings(RegionBindings B,
526                                                           const SubRegion *R) {
527  BindingKey SRKey = BindingKey::Make(R, BindingKey::Default);
528  const MemRegion *ClusterHead = SRKey.getBaseRegion();
529  if (R == ClusterHead) {
530    // We can remove an entire cluster's bindings all in one go.
531    return RBFactory.remove(B, R);
532  }
533
534  if (SRKey.hasSymbolicOffset()) {
535    const SubRegion *Base = cast<SubRegion>(SRKey.getConcreteOffsetRegion());
536    B = removeSubRegionBindings(B, Base);
537    return addBinding(B, Base, BindingKey::Default, UnknownVal());
538  }
539
540  // This assumes the region being invalidated is char-aligned. This isn't
541  // true for bitfields, but since bitfields have no subregions they shouldn't
542  // be using this function anyway.
543  uint64_t Length = UINT64_MAX;
544
545  SVal Extent = R->getExtent(svalBuilder);
546  if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
547    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
548    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
549    // Extents are in bytes but region offsets are in bits. Be careful!
550    Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth();
551  }
552
553  const ClusterBindings *Cluster = B.lookup(ClusterHead);
554  if (!Cluster)
555    return B;
556
557  ClusterBindings Result = *Cluster;
558
559  // It is safe to iterate over the bindings as they are being changed
560  // because they are in an ImmutableMap.
561  for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end();
562       I != E; ++I) {
563    BindingKey NextKey = I.getKey();
564    if (NextKey.getRegion() == SRKey.getRegion()) {
565      if (NextKey.getOffset() > SRKey.getOffset() &&
566          NextKey.getOffset() - SRKey.getOffset() < Length) {
567        // Case 1: The next binding is inside the region we're invalidating.
568        // Remove it.
569        Result = CBFactory.remove(Result, NextKey);
570      } else if (NextKey.getOffset() == SRKey.getOffset()) {
571        // Case 2: The next binding is at the same offset as the region we're
572        // invalidating. In this case, we need to leave default bindings alone,
573        // since they may be providing a default value for a regions beyond what
574        // we're invalidating.
575        // FIXME: This is probably incorrect; consider invalidating an outer
576        // struct whose first field is bound to a LazyCompoundVal.
577        if (NextKey.isDirect())
578          Result = CBFactory.remove(Result, NextKey);
579      }
580    } else if (NextKey.hasSymbolicOffset()) {
581      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
582      if (R->isSubRegionOf(Base)) {
583        // Case 3: The next key is symbolic and we just changed something within
584        // its concrete region. We don't know if the binding is still valid, so
585        // we'll be conservative and remove it.
586        if (NextKey.isDirect())
587          Result = CBFactory.remove(Result, NextKey);
588      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
589        // Case 4: The next key is symbolic, but we changed a known
590        // super-region. In this case the binding is certainly no longer valid.
591        if (R == Base || BaseSR->isSubRegionOf(R))
592          Result = CBFactory.remove(Result, NextKey);
593      }
594    }
595  }
596
597  if (Result.isEmpty())
598    return RBFactory.remove(B, ClusterHead);
599  return RBFactory.add(B, ClusterHead, Result);
600}
601
602namespace {
603class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
604{
605  const Expr *Ex;
606  unsigned Count;
607  const LocationContext *LCtx;
608  StoreManager::InvalidatedSymbols &IS;
609  StoreManager::InvalidatedRegions *Regions;
610public:
611  invalidateRegionsWorker(RegionStoreManager &rm,
612                          ProgramStateManager &stateMgr,
613                          RegionBindings b,
614                          const Expr *ex, unsigned count,
615                          const LocationContext *lctx,
616                          StoreManager::InvalidatedSymbols &is,
617                          StoreManager::InvalidatedRegions *r,
618                          bool includeGlobals)
619    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
620      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
621
622  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
623  void VisitBaseRegion(const MemRegion *baseR);
624
625private:
626  void VisitBinding(SVal V);
627};
628}
629
630void invalidateRegionsWorker::VisitBinding(SVal V) {
631  // A symbol?  Mark it touched by the invalidation.
632  if (SymbolRef Sym = V.getAsSymbol())
633    IS.insert(Sym);
634
635  if (const MemRegion *R = V.getAsRegion()) {
636    AddToWorkList(R);
637    return;
638  }
639
640  // Is it a LazyCompoundVal?  All references get invalidated as well.
641  if (const nonloc::LazyCompoundVal *LCS =
642        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
643
644    const MemRegion *LazyR = LCS->getRegion();
645    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
646
647    // FIXME: This should not have to walk all bindings in the old store.
648    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
649      const ClusterBindings &Cluster = RI.getData();
650      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
651           CI != CE; ++CI) {
652        BindingKey K = CI.getKey();
653        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
654          if (BaseR == LazyR)
655            VisitBinding(CI.getData());
656          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
657            VisitBinding(CI.getData());
658        }
659      }
660    }
661
662    return;
663  }
664}
665
666void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
667                                           const ClusterBindings &C) {
668  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
669    VisitBinding(I.getData());
670
671  B = RM.removeCluster(B, BaseR);
672}
673
674void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
675  // Symbolic region?  Mark that symbol touched by the invalidation.
676  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
677    IS.insert(SR->getSymbol());
678
679  // BlockDataRegion?  If so, invalidate captured variables that are passed
680  // by reference.
681  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
682    for (BlockDataRegion::referenced_vars_iterator
683         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
684         BI != BE; ++BI) {
685      const VarRegion *VR = *BI;
686      const VarDecl *VD = VR->getDecl();
687      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
688        AddToWorkList(VR);
689      }
690      else if (Loc::isLocType(VR->getValueType())) {
691        // Map the current bindings to a Store to retrieve the value
692        // of the binding.  If that binding itself is a region, we should
693        // invalidate that region.  This is because a block may capture
694        // a pointer value, but the thing pointed by that pointer may
695        // get invalidated.
696        Store store = B.getRootWithoutRetain();
697        SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
698        if (const Loc *L = dyn_cast<Loc>(&V)) {
699          if (const MemRegion *LR = L->getAsRegion())
700            AddToWorkList(LR);
701        }
702      }
703    }
704    return;
705  }
706
707  // Otherwise, we have a normal data region. Record that we touched the region.
708  if (Regions)
709    Regions->push_back(baseR);
710
711  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
712    // Invalidate the region by setting its default value to
713    // conjured symbol. The type of the symbol is irrelavant.
714    DefinedOrUnknownSVal V =
715      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
716    B = RM.addBinding(B, baseR, BindingKey::Default, V);
717    return;
718  }
719
720  if (!baseR->isBoundable())
721    return;
722
723  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
724  QualType T = TR->getValueType();
725
726    // Invalidate the binding.
727  if (T->isStructureOrClassType()) {
728    // Invalidate the region by setting its default value to
729    // conjured symbol. The type of the symbol is irrelavant.
730    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
731                                                          Ctx.IntTy, Count);
732    B = RM.addBinding(B, baseR, BindingKey::Default, V);
733    return;
734  }
735
736  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
737      // Set the default value of the array to conjured symbol.
738    DefinedOrUnknownSVal V =
739    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
740                                     AT->getElementType(), Count);
741    B = RM.addBinding(B, baseR, BindingKey::Default, V);
742    return;
743  }
744
745  if (includeGlobals &&
746      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
747    // If the region is a global and we are invalidating all globals,
748    // just erase the entry.  This causes all globals to be lazily
749    // symbolicated from the same base symbol.
750    B = RM.removeBinding(B, baseR);
751    return;
752  }
753
754
755  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
756                                                        T,Count);
757  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
758  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
759}
760
761RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
762                                                          const Expr *Ex,
763                                                          unsigned Count,
764                                                    const LocationContext *LCtx,
765                                                          RegionBindings B,
766                                            InvalidatedRegions *Invalidated) {
767  // Bind the globals memory space to a new symbol that we will use to derive
768  // the bindings for all globals.
769  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
770  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
771                                        /* type does not matter */ Ctx.IntTy,
772                                        Count);
773
774  B = removeBinding(B, GS);
775  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
776
777  // Even if there are no bindings in the global scope, we still need to
778  // record that we touched it.
779  if (Invalidated)
780    Invalidated->push_back(GS);
781
782  return B;
783}
784
785StoreRef RegionStoreManager::invalidateRegions(Store store,
786                                            ArrayRef<const MemRegion *> Regions,
787                                               const Expr *Ex, unsigned Count,
788                                               const LocationContext *LCtx,
789                                               InvalidatedSymbols &IS,
790                                               const CallEvent *Call,
791                                              InvalidatedRegions *Invalidated) {
792  invalidateRegionsWorker W(*this, StateMgr,
793                            RegionStoreManager::GetRegionBindings(store),
794                            Ex, Count, LCtx, IS, Invalidated, false);
795
796  // Scan the bindings and generate the clusters.
797  W.GenerateClusters();
798
799  // Add the regions to the worklist.
800  for (ArrayRef<const MemRegion *>::iterator
801       I = Regions.begin(), E = Regions.end(); I != E; ++I)
802    W.AddToWorkList(*I);
803
804  W.RunWorkList();
805
806  // Return the new bindings.
807  RegionBindings B = W.getRegionBindings();
808
809  // For all globals which are not static nor immutable: determine which global
810  // regions should be invalidated and invalidate them.
811  // TODO: This could possibly be more precise with modules.
812  //
813  // System calls invalidate only system globals.
814  if (Call && Call->isInSystemHeader()) {
815    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
816                               Ex, Count, LCtx, B, Invalidated);
817  // Internal calls might invalidate both system and internal globals.
818  } else {
819    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
820                               Ex, Count, LCtx, B, Invalidated);
821    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
822                               Ex, Count, LCtx, B, Invalidated);
823  }
824
825  return StoreRef(B.getRootWithoutRetain(), *this);
826}
827
828//===----------------------------------------------------------------------===//
829// Extents for regions.
830//===----------------------------------------------------------------------===//
831
832DefinedOrUnknownSVal
833RegionStoreManager::getSizeInElements(ProgramStateRef state,
834                                      const MemRegion *R,
835                                      QualType EleTy) {
836  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
837  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
838  if (!SizeInt)
839    return UnknownVal();
840
841  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
842
843  if (Ctx.getAsVariableArrayType(EleTy)) {
844    // FIXME: We need to track extra state to properly record the size
845    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
846    // we don't have a divide-by-zero below.
847    return UnknownVal();
848  }
849
850  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
851
852  // If a variable is reinterpreted as a type that doesn't fit into a larger
853  // type evenly, round it down.
854  // This is a signed value, since it's used in arithmetic with signed indices.
855  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
856}
857
858//===----------------------------------------------------------------------===//
859// Location and region casting.
860//===----------------------------------------------------------------------===//
861
862/// ArrayToPointer - Emulates the "decay" of an array to a pointer
863///  type.  'Array' represents the lvalue of the array being decayed
864///  to a pointer, and the returned SVal represents the decayed
865///  version of that lvalue (i.e., a pointer to the first element of
866///  the array).  This is called by ExprEngine when evaluating casts
867///  from arrays to pointers.
868SVal RegionStoreManager::ArrayToPointer(Loc Array) {
869  if (!isa<loc::MemRegionVal>(Array))
870    return UnknownVal();
871
872  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
873  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
874
875  if (!ArrayR)
876    return UnknownVal();
877
878  // Strip off typedefs from the ArrayRegion's ValueType.
879  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
880  const ArrayType *AT = cast<ArrayType>(T);
881  T = AT->getElementType();
882
883  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
884  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
885}
886
887//===----------------------------------------------------------------------===//
888// Loading values from regions.
889//===----------------------------------------------------------------------===//
890
891Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
892                                                    const MemRegion *R) {
893
894  if (const SVal *V = lookup(B, R, BindingKey::Direct))
895    return *V;
896
897  return Optional<SVal>();
898}
899
900Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
901                                                     const MemRegion *R) {
902  if (R->isBoundable())
903    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
904      if (TR->getValueType()->isUnionType())
905        return UnknownVal();
906
907  if (const SVal *V = lookup(B, R, BindingKey::Default))
908    return *V;
909
910  return Optional<SVal>();
911}
912
913SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
914  assert(!isa<UnknownVal>(L) && "location unknown");
915  assert(!isa<UndefinedVal>(L) && "location undefined");
916
917  // For access to concrete addresses, return UnknownVal.  Checks
918  // for null dereferences (and similar errors) are done by checkers, not
919  // the Store.
920  // FIXME: We can consider lazily symbolicating such memory, but we really
921  // should defer this when we can reason easily about symbolicating arrays
922  // of bytes.
923  if (isa<loc::ConcreteInt>(L)) {
924    return UnknownVal();
925  }
926  if (!isa<loc::MemRegionVal>(L)) {
927    return UnknownVal();
928  }
929
930  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
931
932  if (isa<AllocaRegion>(MR) ||
933      isa<SymbolicRegion>(MR) ||
934      isa<CodeTextRegion>(MR)) {
935    if (T.isNull()) {
936      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
937        T = TR->getLocationType();
938      else {
939        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
940        T = SR->getSymbol()->getType();
941      }
942    }
943    MR = GetElementZeroRegion(MR, T);
944  }
945
946  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
947  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
948  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
949  QualType RTy = R->getValueType();
950
951  // FIXME: We should eventually handle funny addressing.  e.g.:
952  //
953  //   int x = ...;
954  //   int *p = &x;
955  //   char *q = (char*) p;
956  //   char c = *q;  // returns the first byte of 'x'.
957  //
958  // Such funny addressing will occur due to layering of regions.
959
960  if (RTy->isStructureOrClassType())
961    return getBindingForStruct(store, R);
962
963  // FIXME: Handle unions.
964  if (RTy->isUnionType())
965    return UnknownVal();
966
967  if (RTy->isArrayType()) {
968    if (RTy->isConstantArrayType())
969      return getBindingForArray(store, R);
970    else
971      return UnknownVal();
972  }
973
974  // FIXME: handle Vector types.
975  if (RTy->isVectorType())
976    return UnknownVal();
977
978  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
979    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
980
981  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
982    // FIXME: Here we actually perform an implicit conversion from the loaded
983    // value to the element type.  Eventually we want to compose these values
984    // more intelligently.  For example, an 'element' can encompass multiple
985    // bound regions (e.g., several bound bytes), or could be a subset of
986    // a larger value.
987    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
988  }
989
990  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
991    // FIXME: Here we actually perform an implicit conversion from the loaded
992    // value to the ivar type.  What we should model is stores to ivars
993    // that blow past the extent of the ivar.  If the address of the ivar is
994    // reinterpretted, it is possible we stored a different value that could
995    // fit within the ivar.  Either we need to cast these when storing them
996    // or reinterpret them lazily (as we do here).
997    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
998  }
999
1000  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1001    // FIXME: Here we actually perform an implicit conversion from the loaded
1002    // value to the variable type.  What we should model is stores to variables
1003    // that blow past the extent of the variable.  If the address of the
1004    // variable is reinterpretted, it is possible we stored a different value
1005    // that could fit within the variable.  Either we need to cast these when
1006    // storing them or reinterpret them lazily (as we do here).
1007    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1008  }
1009
1010  RegionBindings B = GetRegionBindings(store);
1011  const SVal *V = lookup(B, R, BindingKey::Direct);
1012
1013  // Check if the region has a binding.
1014  if (V)
1015    return *V;
1016
1017  // The location does not have a bound value.  This means that it has
1018  // the value it had upon its creation and/or entry to the analyzed
1019  // function/method.  These are either symbolic values or 'undefined'.
1020  if (R->hasStackNonParametersStorage()) {
1021    // All stack variables are considered to have undefined values
1022    // upon creation.  All heap allocated blocks are considered to
1023    // have undefined values as well unless they are explicitly bound
1024    // to specific values.
1025    return UndefinedVal();
1026  }
1027
1028  // All other values are symbolic.
1029  return svalBuilder.getRegionValueSymbolVal(R);
1030}
1031
1032std::pair<Store, const MemRegion *>
1033RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1034                                   const MemRegion *originalRegion,
1035                                   bool includeSuffix) {
1036
1037  if (originalRegion != R) {
1038    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1039      if (const nonloc::LazyCompoundVal *V =
1040          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1041        return std::make_pair(V->getStore(), V->getRegion());
1042    }
1043  }
1044
1045  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1046    const std::pair<Store, const MemRegion *> &X =
1047      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1048
1049    if (X.second)
1050      return std::make_pair(X.first,
1051                            MRMgr.getElementRegionWithSuper(ER, X.second));
1052  }
1053  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1054    const std::pair<Store, const MemRegion *> &X =
1055      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1056
1057    if (X.second) {
1058      if (includeSuffix)
1059        return std::make_pair(X.first,
1060                              MRMgr.getFieldRegionWithSuper(FR, X.second));
1061      return X;
1062    }
1063
1064  }
1065  // C++ base object region is another kind of region that we should blast
1066  // through to look for lazy compound value. It is like a field region.
1067  else if (const CXXBaseObjectRegion *baseReg =
1068                            dyn_cast<CXXBaseObjectRegion>(R)) {
1069    const std::pair<Store, const MemRegion *> &X =
1070      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1071
1072    if (X.second) {
1073      if (includeSuffix)
1074        return std::make_pair(X.first,
1075                              MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1076                                                                    X.second));
1077      return X;
1078    }
1079  }
1080
1081  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1082  // possible for a valid lazy binding.
1083  return std::make_pair((Store) 0, (const MemRegion *) 0);
1084}
1085
1086SVal RegionStoreManager::getBindingForElement(Store store,
1087                                              const ElementRegion* R) {
1088  // We do not currently model bindings of the CompoundLiteralregion.
1089  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1090    return UnknownVal();
1091
1092  // Check if the region has a binding.
1093  RegionBindings B = GetRegionBindings(store);
1094  if (const Optional<SVal> &V = getDirectBinding(B, R))
1095    return *V;
1096
1097  const MemRegion* superR = R->getSuperRegion();
1098
1099  // Check if the region is an element region of a string literal.
1100  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1101    // FIXME: Handle loads from strings where the literal is treated as
1102    // an integer, e.g., *((unsigned int*)"hello")
1103    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1104    if (T != Ctx.getCanonicalType(R->getElementType()))
1105      return UnknownVal();
1106
1107    const StringLiteral *Str = StrR->getStringLiteral();
1108    SVal Idx = R->getIndex();
1109    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1110      int64_t i = CI->getValue().getSExtValue();
1111      // Abort on string underrun.  This can be possible by arbitrary
1112      // clients of getBindingForElement().
1113      if (i < 0)
1114        return UndefinedVal();
1115      int64_t length = Str->getLength();
1116      // Technically, only i == length is guaranteed to be null.
1117      // However, such overflows should be caught before reaching this point;
1118      // the only time such an access would be made is if a string literal was
1119      // used to initialize a larger array.
1120      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1121      return svalBuilder.makeIntVal(c, T);
1122    }
1123  }
1124
1125  // Check for loads from a code text region.  For such loads, just give up.
1126  if (isa<CodeTextRegion>(superR))
1127    return UnknownVal();
1128
1129  // Handle the case where we are indexing into a larger scalar object.
1130  // For example, this handles:
1131  //   int x = ...
1132  //   char *y = &x;
1133  //   return *y;
1134  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1135  const RegionRawOffset &O = R->getAsArrayOffset();
1136
1137  // If we cannot reason about the offset, return an unknown value.
1138  if (!O.getRegion())
1139    return UnknownVal();
1140
1141  if (const TypedValueRegion *baseR =
1142        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1143    QualType baseT = baseR->getValueType();
1144    if (baseT->isScalarType()) {
1145      QualType elemT = R->getElementType();
1146      if (elemT->isScalarType()) {
1147        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1148          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1149            if (SymbolRef parentSym = V->getAsSymbol())
1150              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1151
1152            if (V->isUnknownOrUndef())
1153              return *V;
1154            // Other cases: give up.  We are indexing into a larger object
1155            // that has some value, but we don't know how to handle that yet.
1156            return UnknownVal();
1157          }
1158        }
1159      }
1160    }
1161  }
1162  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1163                                           superR);
1164}
1165
1166SVal RegionStoreManager::getBindingForField(Store store,
1167                                       const FieldRegion* R) {
1168
1169  // Check if the region has a binding.
1170  RegionBindings B = GetRegionBindings(store);
1171  if (const Optional<SVal> &V = getDirectBinding(B, R))
1172    return *V;
1173
1174  QualType Ty = R->getValueType();
1175  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1176}
1177
1178Optional<SVal>
1179RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1180                                                     const MemRegion *superR,
1181                                                     const TypedValueRegion *R,
1182                                                     QualType Ty) {
1183
1184  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1185    const SVal &val = D.getValue();
1186    if (SymbolRef parentSym = val.getAsSymbol())
1187      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1188
1189    if (val.isZeroConstant())
1190      return svalBuilder.makeZeroVal(Ty);
1191
1192    if (val.isUnknownOrUndef())
1193      return val;
1194
1195    // Lazy bindings are handled later.
1196    if (isa<nonloc::LazyCompoundVal>(val))
1197      return Optional<SVal>();
1198
1199    llvm_unreachable("Unknown default value");
1200  }
1201
1202  return Optional<SVal>();
1203}
1204
1205SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1206                                             Store lazyBindingStore) {
1207  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1208    return getBindingForElement(lazyBindingStore, ER);
1209
1210  return getBindingForField(lazyBindingStore,
1211                            cast<FieldRegion>(lazyBindingRegion));
1212}
1213
1214SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1215                                                      const TypedValueRegion *R,
1216                                                      QualType Ty,
1217                                                      const MemRegion *superR) {
1218
1219  // At this point we have already checked in either getBindingForElement or
1220  // getBindingForField if 'R' has a direct binding.
1221  RegionBindings B = GetRegionBindings(store);
1222
1223  // Lazy binding?
1224  Store lazyBindingStore = NULL;
1225  const MemRegion *lazyBindingRegion = NULL;
1226  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
1227                                                                  true);
1228
1229  if (lazyBindingRegion)
1230    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1231
1232  // Record whether or not we see a symbolic index.  That can completely
1233  // be out of scope of our lookup.
1234  bool hasSymbolicIndex = false;
1235
1236  while (superR) {
1237    if (const Optional<SVal> &D =
1238        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1239      return *D;
1240
1241    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1242      NonLoc index = ER->getIndex();
1243      if (!index.isConstant())
1244        hasSymbolicIndex = true;
1245    }
1246
1247    // If our super region is a field or element itself, walk up the region
1248    // hierarchy to see if there is a default value installed in an ancestor.
1249    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1250      superR = SR->getSuperRegion();
1251      continue;
1252    }
1253    break;
1254  }
1255
1256  if (R->hasStackNonParametersStorage()) {
1257    if (isa<ElementRegion>(R)) {
1258      // Currently we don't reason specially about Clang-style vectors.  Check
1259      // if superR is a vector and if so return Unknown.
1260      if (const TypedValueRegion *typedSuperR =
1261            dyn_cast<TypedValueRegion>(superR)) {
1262        if (typedSuperR->getValueType()->isVectorType())
1263          return UnknownVal();
1264      }
1265    }
1266
1267    // FIXME: We also need to take ElementRegions with symbolic indexes into
1268    // account.  This case handles both directly accessing an ElementRegion
1269    // with a symbolic offset, but also fields within an element with
1270    // a symbolic offset.
1271    if (hasSymbolicIndex)
1272      return UnknownVal();
1273
1274    return UndefinedVal();
1275  }
1276
1277  // All other values are symbolic.
1278  return svalBuilder.getRegionValueSymbolVal(R);
1279}
1280
1281SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1282                                               const ObjCIvarRegion* R) {
1283
1284    // Check if the region has a binding.
1285  RegionBindings B = GetRegionBindings(store);
1286
1287  if (const Optional<SVal> &V = getDirectBinding(B, R))
1288    return *V;
1289
1290  const MemRegion *superR = R->getSuperRegion();
1291
1292  // Check if the super region has a default binding.
1293  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1294    if (SymbolRef parentSym = V->getAsSymbol())
1295      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1296
1297    // Other cases: give up.
1298    return UnknownVal();
1299  }
1300
1301  return getBindingForLazySymbol(R);
1302}
1303
1304SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1305
1306  // Check if the region has a binding.
1307  RegionBindings B = GetRegionBindings(store);
1308
1309  if (const Optional<SVal> &V = getDirectBinding(B, R))
1310    return *V;
1311
1312  // Lazily derive a value for the VarRegion.
1313  const VarDecl *VD = R->getDecl();
1314  QualType T = VD->getType();
1315  const MemSpaceRegion *MS = R->getMemorySpace();
1316
1317  if (isa<UnknownSpaceRegion>(MS) ||
1318      isa<StackArgumentsSpaceRegion>(MS))
1319    return svalBuilder.getRegionValueSymbolVal(R);
1320
1321  if (isa<GlobalsSpaceRegion>(MS)) {
1322    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1323      // Is 'VD' declared constant?  If so, retrieve the constant value.
1324      QualType CT = Ctx.getCanonicalType(T);
1325      if (CT.isConstQualified()) {
1326        const Expr *Init = VD->getInit();
1327        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1328        if (Init)
1329          if (const IntegerLiteral *IL =
1330              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1331            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1332            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1333          }
1334      }
1335
1336      if (const Optional<SVal> &V
1337            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1338        return V.getValue();
1339
1340      return svalBuilder.getRegionValueSymbolVal(R);
1341    }
1342
1343    if (T->isIntegerType())
1344      return svalBuilder.makeIntVal(0, T);
1345    if (T->isPointerType())
1346      return svalBuilder.makeNull();
1347
1348    return UnknownVal();
1349  }
1350
1351  return UndefinedVal();
1352}
1353
1354SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1355  // All other values are symbolic.
1356  return svalBuilder.getRegionValueSymbolVal(R);
1357}
1358
1359static bool mayHaveLazyBinding(QualType Ty) {
1360  return Ty->isArrayType() || Ty->isStructureOrClassType();
1361}
1362
1363SVal RegionStoreManager::getBindingForStruct(Store store,
1364                                        const TypedValueRegion* R) {
1365  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1366  if (RD->field_empty())
1367    return UnknownVal();
1368
1369  // If we already have a lazy binding, don't create a new one,
1370  // unless the first field might have a lazy binding of its own.
1371  // (Right now we can't tell the difference.)
1372  QualType FirstFieldType = RD->field_begin()->getType();
1373  if (!mayHaveLazyBinding(FirstFieldType)) {
1374    RegionBindings B = GetRegionBindings(store);
1375    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1376    if (const nonloc::LazyCompoundVal *V =
1377          dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1378      return *V;
1379    }
1380  }
1381
1382  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1383}
1384
1385SVal RegionStoreManager::getBindingForArray(Store store,
1386                                       const TypedValueRegion * R) {
1387  const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
1388  assert(Ty && "Only constant array types can have compound bindings.");
1389
1390  // If we already have a lazy binding, don't create a new one,
1391  // unless the first element might have a lazy binding of its own.
1392  // (Right now we can't tell the difference.)
1393  if (!mayHaveLazyBinding(Ty->getElementType())) {
1394    RegionBindings B = GetRegionBindings(store);
1395    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1396    if (const nonloc::LazyCompoundVal *V =
1397        dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1398      return *V;
1399    }
1400  }
1401
1402  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1403}
1404
1405bool RegionStoreManager::includedInBindings(Store store,
1406                                            const MemRegion *region) const {
1407  RegionBindings B = GetRegionBindings(store);
1408  region = region->getBaseRegion();
1409
1410  // Quick path: if the base is the head of a cluster, the region is live.
1411  if (B.lookup(region))
1412    return true;
1413
1414  // Slow path: if the region is the VALUE of any binding, it is live.
1415  for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1416    const ClusterBindings &Cluster = RI.getData();
1417    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1418         CI != CE; ++CI) {
1419      const SVal &D = CI.getData();
1420      if (const MemRegion *R = D.getAsRegion())
1421        if (R->getBaseRegion() == region)
1422          return true;
1423    }
1424  }
1425
1426  return false;
1427}
1428
1429//===----------------------------------------------------------------------===//
1430// Binding values to regions.
1431//===----------------------------------------------------------------------===//
1432
1433StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1434  if (isa<loc::MemRegionVal>(L))
1435    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1436      return StoreRef(removeBinding(GetRegionBindings(ST),
1437                                    R).getRootWithoutRetain(),
1438                      *this);
1439
1440  return StoreRef(ST, *this);
1441}
1442
1443StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1444  if (isa<loc::ConcreteInt>(L))
1445    return StoreRef(store, *this);
1446
1447  // If we get here, the location should be a region.
1448  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1449
1450  // Check if the region is a struct region.
1451  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1452    QualType Ty = TR->getValueType();
1453    if (Ty->isArrayType())
1454      return BindArray(store, TR, V);
1455    if (Ty->isStructureOrClassType())
1456      return BindStruct(store, TR, V);
1457    if (Ty->isVectorType())
1458      return BindVector(store, TR, V);
1459  }
1460
1461  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1462    // Binding directly to a symbolic region should be treated as binding
1463    // to element 0.
1464    QualType T = SR->getSymbol()->getType();
1465    if (T->isAnyPointerType() || T->isReferenceType())
1466      T = T->getPointeeType();
1467
1468    R = GetElementZeroRegion(SR, T);
1469  }
1470
1471  // Clear out bindings that may overlap with this binding.
1472
1473  // Perform the binding.
1474  RegionBindings B = GetRegionBindings(store);
1475  B = removeSubRegionBindings(B, cast<SubRegion>(R));
1476  BindingKey Key = BindingKey::Make(R, BindingKey::Direct);
1477  return StoreRef(addBinding(B, Key, V).getRootWithoutRetain(), *this);
1478}
1479
1480// FIXME: this method should be merged into Bind().
1481StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
1482                                                 const CompoundLiteralExpr *CL,
1483                                                 const LocationContext *LC,
1484                                                 SVal V) {
1485  return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
1486}
1487
1488StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1489                                                     const MemRegion *R,
1490                                                     QualType T) {
1491  RegionBindings B = GetRegionBindings(store);
1492  SVal V;
1493
1494  if (Loc::isLocType(T))
1495    V = svalBuilder.makeNull();
1496  else if (T->isIntegerType())
1497    V = svalBuilder.makeZeroVal(T);
1498  else if (T->isStructureOrClassType() || T->isArrayType()) {
1499    // Set the default value to a zero constant when it is a structure
1500    // or array.  The type doesn't really matter.
1501    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1502  }
1503  else {
1504    // We can't represent values of this type, but we still need to set a value
1505    // to record that the region has been initialized.
1506    // If this assertion ever fires, a new case should be added above -- we
1507    // should know how to default-initialize any value we can symbolicate.
1508    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1509    V = UnknownVal();
1510  }
1511
1512  return StoreRef(addBinding(B, R, BindingKey::Default,
1513                             V).getRootWithoutRetain(), *this);
1514}
1515
1516StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1517                                       SVal Init) {
1518
1519  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1520  QualType ElementTy = AT->getElementType();
1521  Optional<uint64_t> Size;
1522
1523  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1524    Size = CAT->getSize().getZExtValue();
1525
1526  // Check if the init expr is a string literal.
1527  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1528    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1529
1530    // Treat the string as a lazy compound value.
1531    nonloc::LazyCompoundVal LCV =
1532      cast<nonloc::LazyCompoundVal>(svalBuilder.
1533                                makeLazyCompoundVal(StoreRef(store, *this), S));
1534    return BindAggregate(store, R, LCV);
1535  }
1536
1537  // Handle lazy compound values.
1538  if (isa<nonloc::LazyCompoundVal>(Init))
1539    return BindAggregate(store, R, Init);
1540
1541  // Remaining case: explicit compound values.
1542
1543  if (Init.isUnknown())
1544    return setImplicitDefaultValue(store, R, ElementTy);
1545
1546  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1547  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1548  uint64_t i = 0;
1549
1550  StoreRef newStore(store, *this);
1551  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1552    // The init list might be shorter than the array length.
1553    if (VI == VE)
1554      break;
1555
1556    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1557    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1558
1559    if (ElementTy->isStructureOrClassType())
1560      newStore = BindStruct(newStore.getStore(), ER, *VI);
1561    else if (ElementTy->isArrayType())
1562      newStore = BindArray(newStore.getStore(), ER, *VI);
1563    else
1564      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1565  }
1566
1567  // If the init list is shorter than the array length, set the
1568  // array default value.
1569  if (Size.hasValue() && i < Size.getValue())
1570    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1571
1572  return newStore;
1573}
1574
1575StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
1576                                        SVal V) {
1577  QualType T = R->getValueType();
1578  assert(T->isVectorType());
1579  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1580
1581  // Handle lazy compound values and symbolic values.
1582  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1583    return BindAggregate(store, R, V);
1584
1585  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1586  // that we are binding symbolic struct value. Kill the field values, and if
1587  // the value is symbolic go and bind it as a "default" binding.
1588  if (!isa<nonloc::CompoundVal>(V)) {
1589    return BindAggregate(store, R, UnknownVal());
1590  }
1591
1592  QualType ElemType = VT->getElementType();
1593  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1594  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1595  unsigned index = 0, numElements = VT->getNumElements();
1596  StoreRef newStore(store, *this);
1597
1598  for ( ; index != numElements ; ++index) {
1599    if (VI == VE)
1600      break;
1601
1602    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1603    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1604
1605    if (ElemType->isArrayType())
1606      newStore = BindArray(newStore.getStore(), ER, *VI);
1607    else if (ElemType->isStructureOrClassType())
1608      newStore = BindStruct(newStore.getStore(), ER, *VI);
1609    else
1610      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1611  }
1612  return newStore;
1613}
1614
1615StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1616                                        SVal V) {
1617
1618  if (!Features.supportsFields())
1619    return StoreRef(store, *this);
1620
1621  QualType T = R->getValueType();
1622  assert(T->isStructureOrClassType());
1623
1624  const RecordType* RT = T->getAs<RecordType>();
1625  RecordDecl *RD = RT->getDecl();
1626
1627  if (!RD->isCompleteDefinition())
1628    return StoreRef(store, *this);
1629
1630  // Handle lazy compound values and symbolic values.
1631  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1632    return BindAggregate(store, R, V);
1633
1634  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1635  // that we are binding symbolic struct value. Kill the field values, and if
1636  // the value is symbolic go and bind it as a "default" binding.
1637  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
1638    return BindAggregate(store, R, UnknownVal());
1639
1640  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1641  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1642
1643  RecordDecl::field_iterator FI, FE;
1644  StoreRef newStore(store, *this);
1645
1646  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1647
1648    if (VI == VE)
1649      break;
1650
1651    // Skip any unnamed bitfields to stay in sync with the initializers.
1652    if (FI->isUnnamedBitfield())
1653      continue;
1654
1655    QualType FTy = FI->getType();
1656    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1657
1658    if (FTy->isArrayType())
1659      newStore = BindArray(newStore.getStore(), FR, *VI);
1660    else if (FTy->isStructureOrClassType())
1661      newStore = BindStruct(newStore.getStore(), FR, *VI);
1662    else
1663      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1664    ++VI;
1665  }
1666
1667  // There may be fewer values in the initialize list than the fields of struct.
1668  if (FI != FE) {
1669    RegionBindings B = GetRegionBindings(newStore.getStore());
1670    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1671    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1672  }
1673
1674  return newStore;
1675}
1676
1677StoreRef RegionStoreManager::BindAggregate(Store store, const TypedRegion *R,
1678                                           SVal Val) {
1679  // Remove the old bindings, using 'R' as the root of all regions
1680  // we will invalidate. Then add the new binding.
1681  RegionBindings B = GetRegionBindings(store);
1682
1683  B = removeSubRegionBindings(B, R);
1684  B = addBinding(B, R, BindingKey::Default, Val);
1685
1686  return StoreRef(B.getRootWithoutRetain(), *this);
1687}
1688
1689//===----------------------------------------------------------------------===//
1690// "Raw" retrievals and bindings.
1691//===----------------------------------------------------------------------===//
1692
1693
1694RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1695                                              SVal V) {
1696  const MemRegion *Base = K.getBaseRegion();
1697
1698  const ClusterBindings *ExistingCluster = B.lookup(Base);
1699  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
1700                                             : CBFactory.getEmptyMap());
1701
1702  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
1703  return RBFactory.add(B, Base, NewCluster);
1704}
1705
1706RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1707                                              const MemRegion *R,
1708                                              BindingKey::Kind k, SVal V) {
1709  return addBinding(B, BindingKey::Make(R, k), V);
1710}
1711
1712const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1713  const ClusterBindings *Cluster = B.lookup(K.getBaseRegion());
1714  if (!Cluster)
1715    return 0;
1716
1717  return Cluster->lookup(K);
1718}
1719
1720const SVal *RegionStoreManager::lookup(RegionBindings B,
1721                                       const MemRegion *R,
1722                                       BindingKey::Kind k) {
1723  return lookup(B, BindingKey::Make(R, k));
1724}
1725
1726RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1727                                                 BindingKey K) {
1728  const MemRegion *Base = K.getBaseRegion();
1729  const ClusterBindings *Cluster = B.lookup(Base);
1730  if (!Cluster)
1731    return B;
1732
1733  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
1734  if (NewCluster.isEmpty())
1735    return RBFactory.remove(B, Base);
1736  return RBFactory.add(B, Base, NewCluster);
1737}
1738
1739RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1740                                                 const MemRegion *R,
1741                                                 BindingKey::Kind k){
1742  return removeBinding(B, BindingKey::Make(R, k));
1743}
1744
1745RegionBindings RegionStoreManager::removeCluster(RegionBindings B,
1746                                                 const MemRegion *Base) {
1747  return RBFactory.remove(B, Base);
1748}
1749
1750//===----------------------------------------------------------------------===//
1751// State pruning.
1752//===----------------------------------------------------------------------===//
1753
1754namespace {
1755class removeDeadBindingsWorker :
1756  public ClusterAnalysis<removeDeadBindingsWorker> {
1757  SmallVector<const SymbolicRegion*, 12> Postponed;
1758  SymbolReaper &SymReaper;
1759  const StackFrameContext *CurrentLCtx;
1760
1761public:
1762  removeDeadBindingsWorker(RegionStoreManager &rm,
1763                           ProgramStateManager &stateMgr,
1764                           RegionBindings b, SymbolReaper &symReaper,
1765                           const StackFrameContext *LCtx)
1766    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1767                                                /* includeGlobals = */ false),
1768      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1769
1770  // Called by ClusterAnalysis.
1771  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
1772  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
1773
1774  bool UpdatePostponed();
1775  void VisitBinding(SVal V);
1776};
1777}
1778
1779void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1780                                                   const ClusterBindings &C) {
1781
1782  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1783    if (SymReaper.isLive(VR))
1784      AddToWorkList(baseR, &C);
1785
1786    return;
1787  }
1788
1789  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1790    if (SymReaper.isLive(SR->getSymbol()))
1791      AddToWorkList(SR, &C);
1792    else
1793      Postponed.push_back(SR);
1794
1795    return;
1796  }
1797
1798  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1799    AddToWorkList(baseR, &C);
1800    return;
1801  }
1802
1803  // CXXThisRegion in the current or parent location context is live.
1804  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1805    const StackArgumentsSpaceRegion *StackReg =
1806      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1807    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1808    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1809      AddToWorkList(TR, &C);
1810  }
1811}
1812
1813void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1814                                            const ClusterBindings &C) {
1815  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
1816  // This means we should continue to track that symbol.
1817  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
1818    SymReaper.markLive(SymR->getSymbol());
1819
1820  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
1821    VisitBinding(I.getData());
1822}
1823
1824void removeDeadBindingsWorker::VisitBinding(SVal V) {
1825  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1826  if (const nonloc::LazyCompoundVal *LCS =
1827        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1828
1829    const MemRegion *LazyR = LCS->getRegion();
1830    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1831
1832    // FIXME: This should not have to walk all bindings in the old store.
1833    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1834      const ClusterBindings &Cluster = RI.getData();
1835      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1836           CI != CE; ++CI) {
1837        BindingKey K = CI.getKey();
1838        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
1839          if (BaseR == LazyR)
1840            VisitBinding(CI.getData());
1841          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
1842            VisitBinding(CI.getData());
1843        }
1844      }
1845    }
1846
1847    return;
1848  }
1849
1850  // If V is a region, then add it to the worklist.
1851  if (const MemRegion *R = V.getAsRegion()) {
1852    AddToWorkList(R);
1853
1854    // All regions captured by a block are also live.
1855    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1856      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1857                                                E = BR->referenced_vars_end();
1858      for ( ; I != E; ++I)
1859        AddToWorkList(I.getCapturedRegion());
1860    }
1861  }
1862
1863
1864  // Update the set of live symbols.
1865  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1866       SI!=SE; ++SI)
1867    SymReaper.markLive(*SI);
1868}
1869
1870bool removeDeadBindingsWorker::UpdatePostponed() {
1871  // See if any postponed SymbolicRegions are actually live now, after
1872  // having done a scan.
1873  bool changed = false;
1874
1875  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1876        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1877    if (const SymbolicRegion *SR = *I) {
1878      if (SymReaper.isLive(SR->getSymbol())) {
1879        changed |= AddToWorkList(SR);
1880        *I = NULL;
1881      }
1882    }
1883  }
1884
1885  return changed;
1886}
1887
1888StoreRef RegionStoreManager::removeDeadBindings(Store store,
1889                                                const StackFrameContext *LCtx,
1890                                                SymbolReaper& SymReaper) {
1891  RegionBindings B = GetRegionBindings(store);
1892  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1893  W.GenerateClusters();
1894
1895  // Enqueue the region roots onto the worklist.
1896  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1897       E = SymReaper.region_end(); I != E; ++I) {
1898    W.AddToWorkList(*I);
1899  }
1900
1901  do W.RunWorkList(); while (W.UpdatePostponed());
1902
1903  // We have now scanned the store, marking reachable regions and symbols
1904  // as live.  We now remove all the regions that are dead from the store
1905  // as well as update DSymbols with the set symbols that are now dead.
1906  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1907    const MemRegion *Base = I.getKey();
1908
1909    // If the cluster has been visited, we know the region has been marked.
1910    if (W.isVisited(Base))
1911      continue;
1912
1913    // Remove the dead entry.
1914    B = removeCluster(B, Base);
1915
1916    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
1917      SymReaper.maybeDead(SymR->getSymbol());
1918
1919    // Mark all non-live symbols that this binding references as dead.
1920    const ClusterBindings &Cluster = I.getData();
1921    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1922         CI != CE; ++CI) {
1923      SVal X = CI.getData();
1924      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1925      for (; SI != SE; ++SI)
1926        SymReaper.maybeDead(*SI);
1927    }
1928  }
1929
1930  return StoreRef(B.getRootWithoutRetain(), *this);
1931}
1932
1933//===----------------------------------------------------------------------===//
1934// Utility methods.
1935//===----------------------------------------------------------------------===//
1936
1937void RegionStoreManager::print(Store store, raw_ostream &OS,
1938                               const char* nl, const char *sep) {
1939  RegionBindings B = GetRegionBindings(store);
1940  OS << "Store (direct and default bindings), "
1941     << (void*) B.getRootWithoutRetain()
1942     << " :" << nl;
1943
1944  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1945    const ClusterBindings &Cluster = I.getData();
1946    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1947         CI != CE; ++CI) {
1948      OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
1949    }
1950    OS << nl;
1951  }
1952}
1953