RegionStore.cpp revision ab9c04fda542d096c667d6a3746d94c884f80e7b
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/Analysis/Analyses/LiveVariables.h"
22#include "clang/Analysis/AnalysisContext.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28#include "llvm/ADT/ImmutableList.h"
29#include "llvm/ADT/ImmutableMap.h"
30#include "llvm/ADT/Optional.h"
31#include "llvm/Support/raw_ostream.h"
32
33using namespace clang;
34using namespace ento;
35using llvm::Optional;
36
37//===----------------------------------------------------------------------===//
38// Representation of binding keys.
39//===----------------------------------------------------------------------===//
40
41namespace {
42class BindingKey {
43public:
44  enum Kind { Default = 0x0, Direct = 0x1 };
45private:
46  enum { Symbolic = 0x2 };
47
48  llvm::PointerIntPair<const MemRegion *, 2> P;
49  uint64_t Data;
50
51  explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k)
52    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
53    assert(r && Base && "Must have known regions.");
54    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
55  }
56  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
57    : P(r, k), Data(offset) {
58    assert(r && "Must have known regions.");
59    assert(getOffset() == offset && "Failed to store offset");
60    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
61  }
62public:
63
64  bool isDirect() const { return P.getInt() & Direct; }
65  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
66
67  const MemRegion *getRegion() const { return P.getPointer(); }
68  uint64_t getOffset() const {
69    assert(!hasSymbolicOffset());
70    return Data;
71  }
72
73  const MemRegion *getConcreteOffsetRegion() const {
74    assert(hasSymbolicOffset());
75    return reinterpret_cast<const MemRegion *>(static_cast<uintptr_t>(Data));
76  }
77
78  const MemRegion *getBaseRegion() const {
79    if (hasSymbolicOffset())
80      return getConcreteOffsetRegion()->getBaseRegion();
81    return getRegion()->getBaseRegion();
82  }
83
84  void Profile(llvm::FoldingSetNodeID& ID) const {
85    ID.AddPointer(P.getOpaqueValue());
86    ID.AddInteger(Data);
87  }
88
89  static BindingKey Make(const MemRegion *R, Kind k);
90
91  bool operator<(const BindingKey &X) const {
92    if (P.getOpaqueValue() < X.P.getOpaqueValue())
93      return true;
94    if (P.getOpaqueValue() > X.P.getOpaqueValue())
95      return false;
96    return Data < X.Data;
97  }
98
99  bool operator==(const BindingKey &X) const {
100    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
101           Data == X.Data;
102  }
103
104  LLVM_ATTRIBUTE_USED void dump() const;
105};
106} // end anonymous namespace
107
108BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
109  const RegionOffset &RO = R->getAsOffset();
110  if (RO.hasSymbolicOffset())
111    return BindingKey(R, RO.getRegion(), k);
112
113  return BindingKey(RO.getRegion(), RO.getOffset(), k);
114}
115
116namespace llvm {
117  static inline
118  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
119    os << '(' << K.getRegion();
120    if (!K.hasSymbolicOffset())
121      os << ',' << K.getOffset();
122    os << ',' << (K.isDirect() ? "direct" : "default")
123       << ')';
124    return os;
125  }
126} // end llvm namespace
127
128void BindingKey::dump() const {
129  llvm::errs() << *this;
130}
131
132//===----------------------------------------------------------------------===//
133// Actual Store type.
134//===----------------------------------------------------------------------===//
135
136typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
137typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> RegionBindings;
138
139//===----------------------------------------------------------------------===//
140// Fine-grained control of RegionStoreManager.
141//===----------------------------------------------------------------------===//
142
143namespace {
144struct minimal_features_tag {};
145struct maximal_features_tag {};
146
147class RegionStoreFeatures {
148  bool SupportsFields;
149public:
150  RegionStoreFeatures(minimal_features_tag) :
151    SupportsFields(false) {}
152
153  RegionStoreFeatures(maximal_features_tag) :
154    SupportsFields(true) {}
155
156  void enableFields(bool t) { SupportsFields = t; }
157
158  bool supportsFields() const { return SupportsFields; }
159};
160}
161
162//===----------------------------------------------------------------------===//
163// Main RegionStore logic.
164//===----------------------------------------------------------------------===//
165
166namespace {
167
168class RegionStoreManager : public StoreManager {
169  const RegionStoreFeatures Features;
170  RegionBindings::Factory RBFactory;
171  ClusterBindings::Factory CBFactory;
172
173public:
174  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
175    : StoreManager(mgr), Features(f),
176      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
177
178  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
179  /// getDefaultBinding - Returns an SVal* representing an optional default
180  ///  binding associated with a region and its subregions.
181  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
182
183  /// setImplicitDefaultValue - Set the default binding for the provided
184  ///  MemRegion to the value implicitly defined for compound literals when
185  ///  the value is not specified.
186  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
187
188  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
189  ///  type.  'Array' represents the lvalue of the array being decayed
190  ///  to a pointer, and the returned SVal represents the decayed
191  ///  version of that lvalue (i.e., a pointer to the first element of
192  ///  the array).  This is called by ExprEngine when evaluating
193  ///  casts from arrays to pointers.
194  SVal ArrayToPointer(Loc Array);
195
196  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
197  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
198
199  /// \brief Evaluates C++ dynamic_cast cast.
200  /// The callback may result in the following 3 scenarios:
201  ///  - Successful cast (ex: derived is subclass of base).
202  ///  - Failed cast (ex: derived is definitely not a subclass of base).
203  ///  - We don't know (base is a symbolic region and we don't have
204  ///    enough info to determine if the cast will succeed at run time).
205  /// The function returns an SVal representing the derived class; it's
206  /// valid only if Failed flag is set to false.
207  virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
208
209  StoreRef getInitialStore(const LocationContext *InitLoc) {
210    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
211  }
212
213  //===-------------------------------------------------------------------===//
214  // Binding values to regions.
215  //===-------------------------------------------------------------------===//
216  RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
217                                        const Expr *Ex,
218                                        unsigned Count,
219                                        const LocationContext *LCtx,
220                                        RegionBindings B,
221                                        InvalidatedRegions *Invalidated);
222
223  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
224                             const Expr *E, unsigned Count,
225                             const LocationContext *LCtx,
226                             InvalidatedSymbols &IS,
227                             const CallEvent *Call,
228                             InvalidatedRegions *Invalidated);
229
230  bool scanReachableSymbols(Store S, const MemRegion *R,
231                            ScanReachableSymbols &Callbacks);
232
233public:   // Made public for helper classes.
234
235  RegionBindings removeSubRegionBindings(RegionBindings B, const SubRegion *R);
236
237  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
238
239  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
240                     BindingKey::Kind k, SVal V);
241
242  const SVal *lookup(RegionBindings B, BindingKey K);
243  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
244
245  RegionBindings removeBinding(RegionBindings B, BindingKey K);
246  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
247                        BindingKey::Kind k);
248
249  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
250    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
251                        BindingKey::Default);
252  }
253
254  RegionBindings removeCluster(RegionBindings B, const MemRegion *R);
255
256public: // Part of public interface to class.
257
258  StoreRef Bind(Store store, Loc LV, SVal V);
259
260  // BindDefault is only used to initialize a region with a default value.
261  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
262    RegionBindings B = GetRegionBindings(store);
263    assert(!lookup(B, R, BindingKey::Default));
264    assert(!lookup(B, R, BindingKey::Direct));
265    return StoreRef(addBinding(B, R, BindingKey::Default, V)
266                      .getRootWithoutRetain(), *this);
267  }
268
269  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
270                               const LocationContext *LC, SVal V);
271
272  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
273
274  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
275    return StoreRef(store, *this);
276  }
277
278  /// BindStruct - Bind a compound value to a structure.
279  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
280
281  /// BindVector - Bind a compound value to a vector.
282  StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
283
284  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
285
286  /// Clears out all bindings in the given region and assigns a new value
287  /// as a Default binding.
288  StoreRef BindAggregate(Store store, const TypedRegion *R, SVal DefaultVal);
289
290  StoreRef Remove(Store store, Loc LV);
291
292  void incrementReferenceCount(Store store) {
293    GetRegionBindings(store).manualRetain();
294  }
295
296  /// If the StoreManager supports it, decrement the reference count of
297  /// the specified Store object.  If the reference count hits 0, the memory
298  /// associated with the object is recycled.
299  void decrementReferenceCount(Store store) {
300    GetRegionBindings(store).manualRelease();
301  }
302
303  bool includedInBindings(Store store, const MemRegion *region) const;
304
305  /// \brief Return the value bound to specified location in a given state.
306  ///
307  /// The high level logic for this method is this:
308  /// getBinding (L)
309  ///   if L has binding
310  ///     return L's binding
311  ///   else if L is in killset
312  ///     return unknown
313  ///   else
314  ///     if L is on stack or heap
315  ///       return undefined
316  ///     else
317  ///       return symbolic
318  SVal getBinding(Store store, Loc L, QualType T = QualType());
319
320  SVal getBindingForElement(Store store, const ElementRegion *R);
321
322  SVal getBindingForField(Store store, const FieldRegion *R);
323
324  SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
325
326  SVal getBindingForVar(Store store, const VarRegion *R);
327
328  SVal getBindingForLazySymbol(const TypedValueRegion *R);
329
330  SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
331                                         QualType Ty, const MemRegion *superR);
332
333  SVal getLazyBinding(const MemRegion *lazyBindingRegion,
334                      Store lazyBindingStore);
335
336  /// Get bindings for the values in a struct and return a CompoundVal, used
337  /// when doing struct copy:
338  /// struct s x, y;
339  /// x = y;
340  /// y's value is retrieved by this method.
341  SVal getBindingForStruct(Store store, const TypedValueRegion* R);
342
343  SVal getBindingForArray(Store store, const TypedValueRegion* R);
344
345  /// Used to lazily generate derived symbols for bindings that are defined
346  ///  implicitly by default bindings in a super region.
347  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
348                                                  const MemRegion *superR,
349                                                  const TypedValueRegion *R,
350                                                  QualType Ty);
351
352  /// Get the state and region whose binding this region R corresponds to.
353  std::pair<Store, const MemRegion*>
354  GetLazyBinding(RegionBindings B, const MemRegion *R,
355                 const MemRegion *originalRegion,
356                 bool includeSuffix = false);
357
358  //===------------------------------------------------------------------===//
359  // State pruning.
360  //===------------------------------------------------------------------===//
361
362  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
363  ///  It returns a new Store with these values removed.
364  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
365                              SymbolReaper& SymReaper);
366
367  //===------------------------------------------------------------------===//
368  // Region "extents".
369  //===------------------------------------------------------------------===//
370
371  // FIXME: This method will soon be eliminated; see the note in Store.h.
372  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
373                                         const MemRegion* R, QualType EleTy);
374
375  //===------------------------------------------------------------------===//
376  // Utility methods.
377  //===------------------------------------------------------------------===//
378
379  static inline RegionBindings GetRegionBindings(Store store) {
380    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
381  }
382
383  void print(Store store, raw_ostream &Out, const char* nl,
384             const char *sep);
385
386  void iterBindings(Store store, BindingsHandler& f) {
387    RegionBindings B = GetRegionBindings(store);
388    for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
389      const ClusterBindings &Cluster = I.getData();
390      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
391           CI != CE; ++CI) {
392        const BindingKey &K = CI.getKey();
393        if (!K.isDirect())
394          continue;
395        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
396          // FIXME: Possibly incorporate the offset?
397          if (!f.HandleBinding(*this, store, R, CI.getData()))
398            return;
399        }
400      }
401    }
402  }
403};
404
405} // end anonymous namespace
406
407//===----------------------------------------------------------------------===//
408// RegionStore creation.
409//===----------------------------------------------------------------------===//
410
411StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
412  RegionStoreFeatures F = maximal_features_tag();
413  return new RegionStoreManager(StMgr, F);
414}
415
416StoreManager *
417ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
418  RegionStoreFeatures F = minimal_features_tag();
419  F.enableFields(true);
420  return new RegionStoreManager(StMgr, F);
421}
422
423
424//===----------------------------------------------------------------------===//
425// Region Cluster analysis.
426//===----------------------------------------------------------------------===//
427
428namespace {
429template <typename DERIVED>
430class ClusterAnalysis  {
431protected:
432  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
433  typedef SmallVector<const MemRegion *, 10> WorkList;
434
435  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
436
437  WorkList WL;
438
439  RegionStoreManager &RM;
440  ASTContext &Ctx;
441  SValBuilder &svalBuilder;
442
443  RegionBindings B;
444
445  const bool includeGlobals;
446
447  const ClusterBindings *getCluster(const MemRegion *R) {
448    return B.lookup(R);
449  }
450
451public:
452  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
453                  RegionBindings b, const bool includeGlobals)
454    : RM(rm), Ctx(StateMgr.getContext()),
455      svalBuilder(StateMgr.getSValBuilder()),
456      B(b), includeGlobals(includeGlobals) {}
457
458  RegionBindings getRegionBindings() const { return B; }
459
460  bool isVisited(const MemRegion *R) {
461    return Visited.count(getCluster(R));
462  }
463
464  void GenerateClusters() {
465    // Scan the entire set of bindings and record the region clusters.
466    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
467      const MemRegion *Base = RI.getKey();
468
469      const ClusterBindings &Cluster = RI.getData();
470      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
471      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
472
473      if (includeGlobals)
474        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
475          AddToWorkList(Base, &Cluster);
476    }
477  }
478
479  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
480    if (C && !Visited.insert(C))
481      return false;
482    WL.push_back(R);
483    return true;
484  }
485
486  bool AddToWorkList(const MemRegion *R) {
487    const MemRegion *baseR = R->getBaseRegion();
488    return AddToWorkList(baseR, getCluster(baseR));
489  }
490
491  void RunWorkList() {
492    while (!WL.empty()) {
493      const MemRegion *baseR = WL.pop_back_val();
494
495      // First visit the cluster.
496      if (const ClusterBindings *Cluster = getCluster(baseR))
497        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
498
499      // Next, visit the base region.
500      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
501    }
502  }
503
504public:
505  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
506  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
507  void VisitBaseRegion(const MemRegion *baseR) {}
508};
509}
510
511//===----------------------------------------------------------------------===//
512// Binding invalidation.
513//===----------------------------------------------------------------------===//
514
515bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
516                                              ScanReachableSymbols &Callbacks) {
517  assert(R == R->getBaseRegion() && "Should only be called for base regions");
518  RegionBindings B = GetRegionBindings(S);
519  const ClusterBindings *Cluster = B.lookup(R);
520
521  if (!Cluster)
522    return true;
523
524  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
525       RI != RE; ++RI) {
526    if (!Callbacks.scan(RI.getData()))
527      return false;
528  }
529
530  return true;
531}
532
533RegionBindings RegionStoreManager::removeSubRegionBindings(RegionBindings B,
534                                                           const SubRegion *R) {
535  BindingKey SRKey = BindingKey::Make(R, BindingKey::Default);
536  const MemRegion *ClusterHead = SRKey.getBaseRegion();
537  if (R == ClusterHead) {
538    // We can remove an entire cluster's bindings all in one go.
539    return RBFactory.remove(B, R);
540  }
541
542  if (SRKey.hasSymbolicOffset()) {
543    const SubRegion *Base = cast<SubRegion>(SRKey.getConcreteOffsetRegion());
544    B = removeSubRegionBindings(B, Base);
545    return addBinding(B, Base, BindingKey::Default, UnknownVal());
546  }
547
548  // This assumes the region being invalidated is char-aligned. This isn't
549  // true for bitfields, but since bitfields have no subregions they shouldn't
550  // be using this function anyway.
551  uint64_t Length = UINT64_MAX;
552
553  SVal Extent = R->getExtent(svalBuilder);
554  if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
555    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
556    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
557    // Extents are in bytes but region offsets are in bits. Be careful!
558    Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth();
559  }
560
561  const ClusterBindings *Cluster = B.lookup(ClusterHead);
562  if (!Cluster)
563    return B;
564
565  ClusterBindings Result = *Cluster;
566
567  // It is safe to iterate over the bindings as they are being changed
568  // because they are in an ImmutableMap.
569  for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end();
570       I != E; ++I) {
571    BindingKey NextKey = I.getKey();
572    if (NextKey.getRegion() == SRKey.getRegion()) {
573      if (NextKey.getOffset() > SRKey.getOffset() &&
574          NextKey.getOffset() - SRKey.getOffset() < Length) {
575        // Case 1: The next binding is inside the region we're invalidating.
576        // Remove it.
577        Result = CBFactory.remove(Result, NextKey);
578      } else if (NextKey.getOffset() == SRKey.getOffset()) {
579        // Case 2: The next binding is at the same offset as the region we're
580        // invalidating. In this case, we need to leave default bindings alone,
581        // since they may be providing a default value for a regions beyond what
582        // we're invalidating.
583        // FIXME: This is probably incorrect; consider invalidating an outer
584        // struct whose first field is bound to a LazyCompoundVal.
585        if (NextKey.isDirect())
586          Result = CBFactory.remove(Result, NextKey);
587      }
588    } else if (NextKey.hasSymbolicOffset()) {
589      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
590      if (R->isSubRegionOf(Base)) {
591        // Case 3: The next key is symbolic and we just changed something within
592        // its concrete region. We don't know if the binding is still valid, so
593        // we'll be conservative and remove it.
594        if (NextKey.isDirect())
595          Result = CBFactory.remove(Result, NextKey);
596      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
597        // Case 4: The next key is symbolic, but we changed a known
598        // super-region. In this case the binding is certainly no longer valid.
599        if (R == Base || BaseSR->isSubRegionOf(R))
600          Result = CBFactory.remove(Result, NextKey);
601      }
602    }
603  }
604
605  if (Result.isEmpty())
606    return RBFactory.remove(B, ClusterHead);
607  return RBFactory.add(B, ClusterHead, Result);
608}
609
610namespace {
611class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
612{
613  const Expr *Ex;
614  unsigned Count;
615  const LocationContext *LCtx;
616  StoreManager::InvalidatedSymbols &IS;
617  StoreManager::InvalidatedRegions *Regions;
618public:
619  invalidateRegionsWorker(RegionStoreManager &rm,
620                          ProgramStateManager &stateMgr,
621                          RegionBindings b,
622                          const Expr *ex, unsigned count,
623                          const LocationContext *lctx,
624                          StoreManager::InvalidatedSymbols &is,
625                          StoreManager::InvalidatedRegions *r,
626                          bool includeGlobals)
627    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
628      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
629
630  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
631  void VisitBaseRegion(const MemRegion *baseR);
632
633private:
634  void VisitBinding(SVal V);
635};
636}
637
638void invalidateRegionsWorker::VisitBinding(SVal V) {
639  // A symbol?  Mark it touched by the invalidation.
640  if (SymbolRef Sym = V.getAsSymbol())
641    IS.insert(Sym);
642
643  if (const MemRegion *R = V.getAsRegion()) {
644    AddToWorkList(R);
645    return;
646  }
647
648  // Is it a LazyCompoundVal?  All references get invalidated as well.
649  if (const nonloc::LazyCompoundVal *LCS =
650        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
651
652    const MemRegion *LazyR = LCS->getRegion();
653    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
654
655    // FIXME: This should not have to walk all bindings in the old store.
656    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
657      const ClusterBindings &Cluster = RI.getData();
658      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
659           CI != CE; ++CI) {
660        BindingKey K = CI.getKey();
661        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
662          if (BaseR == LazyR)
663            VisitBinding(CI.getData());
664          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
665            VisitBinding(CI.getData());
666        }
667      }
668    }
669
670    return;
671  }
672}
673
674void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
675                                           const ClusterBindings &C) {
676  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
677    VisitBinding(I.getData());
678
679  B = RM.removeCluster(B, BaseR);
680}
681
682void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
683  // Symbolic region?  Mark that symbol touched by the invalidation.
684  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
685    IS.insert(SR->getSymbol());
686
687  // BlockDataRegion?  If so, invalidate captured variables that are passed
688  // by reference.
689  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
690    for (BlockDataRegion::referenced_vars_iterator
691         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
692         BI != BE; ++BI) {
693      const VarRegion *VR = *BI;
694      const VarDecl *VD = VR->getDecl();
695      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
696        AddToWorkList(VR);
697      }
698      else if (Loc::isLocType(VR->getValueType())) {
699        // Map the current bindings to a Store to retrieve the value
700        // of the binding.  If that binding itself is a region, we should
701        // invalidate that region.  This is because a block may capture
702        // a pointer value, but the thing pointed by that pointer may
703        // get invalidated.
704        Store store = B.getRootWithoutRetain();
705        SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
706        if (const Loc *L = dyn_cast<Loc>(&V)) {
707          if (const MemRegion *LR = L->getAsRegion())
708            AddToWorkList(LR);
709        }
710      }
711    }
712    return;
713  }
714
715  // Otherwise, we have a normal data region. Record that we touched the region.
716  if (Regions)
717    Regions->push_back(baseR);
718
719  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
720    // Invalidate the region by setting its default value to
721    // conjured symbol. The type of the symbol is irrelavant.
722    DefinedOrUnknownSVal V =
723      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
724    B = RM.addBinding(B, baseR, BindingKey::Default, V);
725    return;
726  }
727
728  if (!baseR->isBoundable())
729    return;
730
731  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
732  QualType T = TR->getValueType();
733
734    // Invalidate the binding.
735  if (T->isStructureOrClassType()) {
736    // Invalidate the region by setting its default value to
737    // conjured symbol. The type of the symbol is irrelavant.
738    DefinedOrUnknownSVal V =
739      svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
740    B = RM.addBinding(B, baseR, BindingKey::Default, V);
741    return;
742  }
743
744  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
745      // Set the default value of the array to conjured symbol.
746    DefinedOrUnknownSVal V =
747    svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
748                                     AT->getElementType(), Count);
749    B = RM.addBinding(B, baseR, BindingKey::Default, V);
750    return;
751  }
752
753  if (includeGlobals &&
754      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
755    // If the region is a global and we are invalidating all globals,
756    // just erase the entry.  This causes all globals to be lazily
757    // symbolicated from the same base symbol.
758    B = RM.removeBinding(B, baseR);
759    return;
760  }
761
762
763  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
764                                                            T,Count);
765  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
766  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
767}
768
769RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
770                                                          const Expr *Ex,
771                                                          unsigned Count,
772                                                    const LocationContext *LCtx,
773                                                          RegionBindings B,
774                                            InvalidatedRegions *Invalidated) {
775  // Bind the globals memory space to a new symbol that we will use to derive
776  // the bindings for all globals.
777  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
778  SVal V =
779      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
780          /* symbol type, doesn't matter */ Ctx.IntTy,
781          Count);
782
783  B = removeBinding(B, GS);
784  B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
785
786  // Even if there are no bindings in the global scope, we still need to
787  // record that we touched it.
788  if (Invalidated)
789    Invalidated->push_back(GS);
790
791  return B;
792}
793
794StoreRef RegionStoreManager::invalidateRegions(Store store,
795                                            ArrayRef<const MemRegion *> Regions,
796                                               const Expr *Ex, unsigned Count,
797                                               const LocationContext *LCtx,
798                                               InvalidatedSymbols &IS,
799                                               const CallEvent *Call,
800                                              InvalidatedRegions *Invalidated) {
801  invalidateRegionsWorker W(*this, StateMgr,
802                            RegionStoreManager::GetRegionBindings(store),
803                            Ex, Count, LCtx, IS, Invalidated, false);
804
805  // Scan the bindings and generate the clusters.
806  W.GenerateClusters();
807
808  // Add the regions to the worklist.
809  for (ArrayRef<const MemRegion *>::iterator
810       I = Regions.begin(), E = Regions.end(); I != E; ++I)
811    W.AddToWorkList(*I);
812
813  W.RunWorkList();
814
815  // Return the new bindings.
816  RegionBindings B = W.getRegionBindings();
817
818  // For all globals which are not static nor immutable: determine which global
819  // regions should be invalidated and invalidate them.
820  // TODO: This could possibly be more precise with modules.
821  //
822  // System calls invalidate only system globals.
823  if (Call && Call->isInSystemHeader()) {
824    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
825                               Ex, Count, LCtx, B, Invalidated);
826  // Internal calls might invalidate both system and internal globals.
827  } else {
828    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
829                               Ex, Count, LCtx, B, Invalidated);
830    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
831                               Ex, Count, LCtx, B, Invalidated);
832  }
833
834  return StoreRef(B.getRootWithoutRetain(), *this);
835}
836
837//===----------------------------------------------------------------------===//
838// Extents for regions.
839//===----------------------------------------------------------------------===//
840
841DefinedOrUnknownSVal
842RegionStoreManager::getSizeInElements(ProgramStateRef state,
843                                      const MemRegion *R,
844                                      QualType EleTy) {
845  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
846  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
847  if (!SizeInt)
848    return UnknownVal();
849
850  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
851
852  if (Ctx.getAsVariableArrayType(EleTy)) {
853    // FIXME: We need to track extra state to properly record the size
854    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
855    // we don't have a divide-by-zero below.
856    return UnknownVal();
857  }
858
859  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
860
861  // If a variable is reinterpreted as a type that doesn't fit into a larger
862  // type evenly, round it down.
863  // This is a signed value, since it's used in arithmetic with signed indices.
864  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
865}
866
867//===----------------------------------------------------------------------===//
868// Location and region casting.
869//===----------------------------------------------------------------------===//
870
871/// ArrayToPointer - Emulates the "decay" of an array to a pointer
872///  type.  'Array' represents the lvalue of the array being decayed
873///  to a pointer, and the returned SVal represents the decayed
874///  version of that lvalue (i.e., a pointer to the first element of
875///  the array).  This is called by ExprEngine when evaluating casts
876///  from arrays to pointers.
877SVal RegionStoreManager::ArrayToPointer(Loc Array) {
878  if (!isa<loc::MemRegionVal>(Array))
879    return UnknownVal();
880
881  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
882  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
883
884  if (!ArrayR)
885    return UnknownVal();
886
887  // Strip off typedefs from the ArrayRegion's ValueType.
888  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
889  const ArrayType *AT = cast<ArrayType>(T);
890  T = AT->getElementType();
891
892  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
893  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
894}
895
896// This mirrors Type::getCXXRecordDeclForPointerType(), but there doesn't
897// appear to be another need for this in the rest of the codebase.
898static const CXXRecordDecl *GetCXXRecordDeclForReferenceType(QualType Ty) {
899  if (const ReferenceType *RT = Ty->getAs<ReferenceType>())
900    if (const RecordType *RCT = RT->getPointeeType()->getAs<RecordType>())
901      return dyn_cast<CXXRecordDecl>(RCT->getDecl());
902  return 0;
903}
904
905SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
906  const CXXRecordDecl *baseDecl;
907
908  if (baseType->isPointerType())
909    baseDecl = baseType->getCXXRecordDeclForPointerType();
910  else if (baseType->isReferenceType())
911    baseDecl = GetCXXRecordDeclForReferenceType(baseType);
912  else
913    baseDecl = baseType->getAsCXXRecordDecl();
914
915  assert(baseDecl && "not a CXXRecordDecl?");
916
917  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
918  if (!derivedRegVal)
919    return derived;
920
921  const MemRegion *baseReg =
922    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
923
924  return loc::MemRegionVal(baseReg);
925}
926
927SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
928                                         bool &Failed) {
929  Failed = false;
930
931  loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
932  if (!baseRegVal)
933    return UnknownVal();
934  const MemRegion *BaseRegion = baseRegVal->stripCasts(/*StripBases=*/false);
935
936  // Assume the derived class is a pointer or a reference to a CXX record.
937  derivedType = derivedType->getPointeeType();
938  assert(!derivedType.isNull());
939  const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
940  if (!DerivedDecl && !derivedType->isVoidType())
941    return UnknownVal();
942
943  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
944  // derived to base).
945  const MemRegion *SR = BaseRegion;
946  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
947    QualType BaseType = TSR->getLocationType()->getPointeeType();
948    assert(!BaseType.isNull());
949    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
950    if (!SRDecl)
951      return UnknownVal();
952
953    // If found the derived class, the cast succeeds.
954    if (SRDecl == DerivedDecl)
955      return loc::MemRegionVal(TSR);
956
957    if (!derivedType->isVoidType()) {
958      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
959      // only happen when multiple or virtual inheritance is involved.
960      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
961                         /*DetectVirtual=*/false);
962      if (SRDecl->isDerivedFrom(DerivedDecl, Paths)) {
963        SVal Result = loc::MemRegionVal(TSR);
964        const CXXBasePath &Path = *Paths.begin();
965        for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
966             I != E; ++I) {
967          Result = evalDerivedToBase(Result, I->Base->getType());
968        }
969        return Result;
970      }
971    }
972
973    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
974      // Drill down the chain to get the derived classes.
975      SR = R->getSuperRegion();
976    else {
977      // We reached the bottom of the hierarchy.
978
979      // If this is a cast to void*, return the region.
980      if (derivedType->isVoidType())
981        return loc::MemRegionVal(TSR);
982
983      // We did not find the derived class. We we must be casting the base to
984      // derived, so the cast should fail.
985      Failed = true;
986      return UnknownVal();
987    }
988  }
989
990  return UnknownVal();
991}
992
993//===----------------------------------------------------------------------===//
994// Loading values from regions.
995//===----------------------------------------------------------------------===//
996
997Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
998                                                    const MemRegion *R) {
999
1000  if (const SVal *V = lookup(B, R, BindingKey::Direct))
1001    return *V;
1002
1003  return Optional<SVal>();
1004}
1005
1006Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
1007                                                     const MemRegion *R) {
1008  if (R->isBoundable())
1009    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
1010      if (TR->getValueType()->isUnionType())
1011        return UnknownVal();
1012
1013  if (const SVal *V = lookup(B, R, BindingKey::Default))
1014    return *V;
1015
1016  return Optional<SVal>();
1017}
1018
1019SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
1020  assert(!isa<UnknownVal>(L) && "location unknown");
1021  assert(!isa<UndefinedVal>(L) && "location undefined");
1022
1023  // For access to concrete addresses, return UnknownVal.  Checks
1024  // for null dereferences (and similar errors) are done by checkers, not
1025  // the Store.
1026  // FIXME: We can consider lazily symbolicating such memory, but we really
1027  // should defer this when we can reason easily about symbolicating arrays
1028  // of bytes.
1029  if (isa<loc::ConcreteInt>(L)) {
1030    return UnknownVal();
1031  }
1032  if (!isa<loc::MemRegionVal>(L)) {
1033    return UnknownVal();
1034  }
1035
1036  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1037
1038  if (isa<AllocaRegion>(MR) ||
1039      isa<SymbolicRegion>(MR) ||
1040      isa<CodeTextRegion>(MR)) {
1041    if (T.isNull()) {
1042      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1043        T = TR->getLocationType();
1044      else {
1045        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1046        T = SR->getSymbol()->getType(Ctx);
1047      }
1048    }
1049    MR = GetElementZeroRegion(MR, T);
1050  }
1051
1052  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1053  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1054  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1055  QualType RTy = R->getValueType();
1056
1057  // FIXME: We should eventually handle funny addressing.  e.g.:
1058  //
1059  //   int x = ...;
1060  //   int *p = &x;
1061  //   char *q = (char*) p;
1062  //   char c = *q;  // returns the first byte of 'x'.
1063  //
1064  // Such funny addressing will occur due to layering of regions.
1065
1066  if (RTy->isStructureOrClassType())
1067    return getBindingForStruct(store, R);
1068
1069  // FIXME: Handle unions.
1070  if (RTy->isUnionType())
1071    return UnknownVal();
1072
1073  if (RTy->isArrayType()) {
1074    if (RTy->isConstantArrayType())
1075      return getBindingForArray(store, R);
1076    else
1077      return UnknownVal();
1078  }
1079
1080  // FIXME: handle Vector types.
1081  if (RTy->isVectorType())
1082    return UnknownVal();
1083
1084  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1085    return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
1086
1087  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1088    // FIXME: Here we actually perform an implicit conversion from the loaded
1089    // value to the element type.  Eventually we want to compose these values
1090    // more intelligently.  For example, an 'element' can encompass multiple
1091    // bound regions (e.g., several bound bytes), or could be a subset of
1092    // a larger value.
1093    return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
1094  }
1095
1096  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1097    // FIXME: Here we actually perform an implicit conversion from the loaded
1098    // value to the ivar type.  What we should model is stores to ivars
1099    // that blow past the extent of the ivar.  If the address of the ivar is
1100    // reinterpretted, it is possible we stored a different value that could
1101    // fit within the ivar.  Either we need to cast these when storing them
1102    // or reinterpret them lazily (as we do here).
1103    return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
1104  }
1105
1106  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1107    // FIXME: Here we actually perform an implicit conversion from the loaded
1108    // value to the variable type.  What we should model is stores to variables
1109    // that blow past the extent of the variable.  If the address of the
1110    // variable is reinterpretted, it is possible we stored a different value
1111    // that could fit within the variable.  Either we need to cast these when
1112    // storing them or reinterpret them lazily (as we do here).
1113    return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1114  }
1115
1116  RegionBindings B = GetRegionBindings(store);
1117  const SVal *V = lookup(B, R, BindingKey::Direct);
1118
1119  // Check if the region has a binding.
1120  if (V)
1121    return *V;
1122
1123  // The location does not have a bound value.  This means that it has
1124  // the value it had upon its creation and/or entry to the analyzed
1125  // function/method.  These are either symbolic values or 'undefined'.
1126  if (R->hasStackNonParametersStorage()) {
1127    // All stack variables are considered to have undefined values
1128    // upon creation.  All heap allocated blocks are considered to
1129    // have undefined values as well unless they are explicitly bound
1130    // to specific values.
1131    return UndefinedVal();
1132  }
1133
1134  // All other values are symbolic.
1135  return svalBuilder.getRegionValueSymbolVal(R);
1136}
1137
1138std::pair<Store, const MemRegion *>
1139RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1140                                   const MemRegion *originalRegion,
1141                                   bool includeSuffix) {
1142
1143  if (originalRegion != R) {
1144    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1145      if (const nonloc::LazyCompoundVal *V =
1146          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1147        return std::make_pair(V->getStore(), V->getRegion());
1148    }
1149  }
1150
1151  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1152    const std::pair<Store, const MemRegion *> &X =
1153      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1154
1155    if (X.second)
1156      return std::make_pair(X.first,
1157                            MRMgr.getElementRegionWithSuper(ER, X.second));
1158  }
1159  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1160    const std::pair<Store, const MemRegion *> &X =
1161      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1162
1163    if (X.second) {
1164      if (includeSuffix)
1165        return std::make_pair(X.first,
1166                              MRMgr.getFieldRegionWithSuper(FR, X.second));
1167      return X;
1168    }
1169
1170  }
1171  // C++ base object region is another kind of region that we should blast
1172  // through to look for lazy compound value. It is like a field region.
1173  else if (const CXXBaseObjectRegion *baseReg =
1174                            dyn_cast<CXXBaseObjectRegion>(R)) {
1175    const std::pair<Store, const MemRegion *> &X =
1176      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1177
1178    if (X.second) {
1179      if (includeSuffix)
1180        return std::make_pair(X.first,
1181                              MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1182                                                                    X.second));
1183      return X;
1184    }
1185  }
1186
1187  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1188  // possible for a valid lazy binding.
1189  return std::make_pair((Store) 0, (const MemRegion *) 0);
1190}
1191
1192SVal RegionStoreManager::getBindingForElement(Store store,
1193                                              const ElementRegion* R) {
1194  // We do not currently model bindings of the CompoundLiteralregion.
1195  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1196    return UnknownVal();
1197
1198  // Check if the region has a binding.
1199  RegionBindings B = GetRegionBindings(store);
1200  if (const Optional<SVal> &V = getDirectBinding(B, R))
1201    return *V;
1202
1203  const MemRegion* superR = R->getSuperRegion();
1204
1205  // Check if the region is an element region of a string literal.
1206  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1207    // FIXME: Handle loads from strings where the literal is treated as
1208    // an integer, e.g., *((unsigned int*)"hello")
1209    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1210    if (T != Ctx.getCanonicalType(R->getElementType()))
1211      return UnknownVal();
1212
1213    const StringLiteral *Str = StrR->getStringLiteral();
1214    SVal Idx = R->getIndex();
1215    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1216      int64_t i = CI->getValue().getSExtValue();
1217      // Abort on string underrun.  This can be possible by arbitrary
1218      // clients of getBindingForElement().
1219      if (i < 0)
1220        return UndefinedVal();
1221      int64_t length = Str->getLength();
1222      // Technically, only i == length is guaranteed to be null.
1223      // However, such overflows should be caught before reaching this point;
1224      // the only time such an access would be made is if a string literal was
1225      // used to initialize a larger array.
1226      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1227      return svalBuilder.makeIntVal(c, T);
1228    }
1229  }
1230
1231  // Check for loads from a code text region.  For such loads, just give up.
1232  if (isa<CodeTextRegion>(superR))
1233    return UnknownVal();
1234
1235  // Handle the case where we are indexing into a larger scalar object.
1236  // For example, this handles:
1237  //   int x = ...
1238  //   char *y = &x;
1239  //   return *y;
1240  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1241  const RegionRawOffset &O = R->getAsArrayOffset();
1242
1243  // If we cannot reason about the offset, return an unknown value.
1244  if (!O.getRegion())
1245    return UnknownVal();
1246
1247  if (const TypedValueRegion *baseR =
1248        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1249    QualType baseT = baseR->getValueType();
1250    if (baseT->isScalarType()) {
1251      QualType elemT = R->getElementType();
1252      if (elemT->isScalarType()) {
1253        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1254          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1255            if (SymbolRef parentSym = V->getAsSymbol())
1256              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1257
1258            if (V->isUnknownOrUndef())
1259              return *V;
1260            // Other cases: give up.  We are indexing into a larger object
1261            // that has some value, but we don't know how to handle that yet.
1262            return UnknownVal();
1263          }
1264        }
1265      }
1266    }
1267  }
1268  return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1269                                           superR);
1270}
1271
1272SVal RegionStoreManager::getBindingForField(Store store,
1273                                       const FieldRegion* R) {
1274
1275  // Check if the region has a binding.
1276  RegionBindings B = GetRegionBindings(store);
1277  if (const Optional<SVal> &V = getDirectBinding(B, R))
1278    return *V;
1279
1280  QualType Ty = R->getValueType();
1281  return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1282}
1283
1284Optional<SVal>
1285RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1286                                                     const MemRegion *superR,
1287                                                     const TypedValueRegion *R,
1288                                                     QualType Ty) {
1289
1290  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1291    const SVal &val = D.getValue();
1292    if (SymbolRef parentSym = val.getAsSymbol())
1293      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1294
1295    if (val.isZeroConstant())
1296      return svalBuilder.makeZeroVal(Ty);
1297
1298    if (val.isUnknownOrUndef())
1299      return val;
1300
1301    // Lazy bindings are handled later.
1302    if (isa<nonloc::LazyCompoundVal>(val))
1303      return Optional<SVal>();
1304
1305    llvm_unreachable("Unknown default value");
1306  }
1307
1308  return Optional<SVal>();
1309}
1310
1311SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1312                                             Store lazyBindingStore) {
1313  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1314    return getBindingForElement(lazyBindingStore, ER);
1315
1316  return getBindingForField(lazyBindingStore,
1317                            cast<FieldRegion>(lazyBindingRegion));
1318}
1319
1320SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1321                                                      const TypedValueRegion *R,
1322                                                      QualType Ty,
1323                                                      const MemRegion *superR) {
1324
1325  // At this point we have already checked in either getBindingForElement or
1326  // getBindingForField if 'R' has a direct binding.
1327  RegionBindings B = GetRegionBindings(store);
1328
1329  // Lazy binding?
1330  Store lazyBindingStore = NULL;
1331  const MemRegion *lazyBindingRegion = NULL;
1332  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
1333                                                                  true);
1334
1335  if (lazyBindingRegion)
1336    return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1337
1338  // Record whether or not we see a symbolic index.  That can completely
1339  // be out of scope of our lookup.
1340  bool hasSymbolicIndex = false;
1341
1342  while (superR) {
1343    if (const Optional<SVal> &D =
1344        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1345      return *D;
1346
1347    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1348      NonLoc index = ER->getIndex();
1349      if (!index.isConstant())
1350        hasSymbolicIndex = true;
1351    }
1352
1353    // If our super region is a field or element itself, walk up the region
1354    // hierarchy to see if there is a default value installed in an ancestor.
1355    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1356      superR = SR->getSuperRegion();
1357      continue;
1358    }
1359    break;
1360  }
1361
1362  if (R->hasStackNonParametersStorage()) {
1363    if (isa<ElementRegion>(R)) {
1364      // Currently we don't reason specially about Clang-style vectors.  Check
1365      // if superR is a vector and if so return Unknown.
1366      if (const TypedValueRegion *typedSuperR =
1367            dyn_cast<TypedValueRegion>(superR)) {
1368        if (typedSuperR->getValueType()->isVectorType())
1369          return UnknownVal();
1370      }
1371    }
1372
1373    // FIXME: We also need to take ElementRegions with symbolic indexes into
1374    // account.  This case handles both directly accessing an ElementRegion
1375    // with a symbolic offset, but also fields within an element with
1376    // a symbolic offset.
1377    if (hasSymbolicIndex)
1378      return UnknownVal();
1379
1380    return UndefinedVal();
1381  }
1382
1383  // All other values are symbolic.
1384  return svalBuilder.getRegionValueSymbolVal(R);
1385}
1386
1387SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1388                                               const ObjCIvarRegion* R) {
1389
1390    // Check if the region has a binding.
1391  RegionBindings B = GetRegionBindings(store);
1392
1393  if (const Optional<SVal> &V = getDirectBinding(B, R))
1394    return *V;
1395
1396  const MemRegion *superR = R->getSuperRegion();
1397
1398  // Check if the super region has a default binding.
1399  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1400    if (SymbolRef parentSym = V->getAsSymbol())
1401      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1402
1403    // Other cases: give up.
1404    return UnknownVal();
1405  }
1406
1407  return getBindingForLazySymbol(R);
1408}
1409
1410SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1411
1412  // Check if the region has a binding.
1413  RegionBindings B = GetRegionBindings(store);
1414
1415  if (const Optional<SVal> &V = getDirectBinding(B, R))
1416    return *V;
1417
1418  // Lazily derive a value for the VarRegion.
1419  const VarDecl *VD = R->getDecl();
1420  QualType T = VD->getType();
1421  const MemSpaceRegion *MS = R->getMemorySpace();
1422
1423  if (isa<UnknownSpaceRegion>(MS) ||
1424      isa<StackArgumentsSpaceRegion>(MS))
1425    return svalBuilder.getRegionValueSymbolVal(R);
1426
1427  if (isa<GlobalsSpaceRegion>(MS)) {
1428    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1429      // Is 'VD' declared constant?  If so, retrieve the constant value.
1430      QualType CT = Ctx.getCanonicalType(T);
1431      if (CT.isConstQualified()) {
1432        const Expr *Init = VD->getInit();
1433        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1434        if (Init)
1435          if (const IntegerLiteral *IL =
1436              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1437            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1438            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1439          }
1440      }
1441
1442      if (const Optional<SVal> &V
1443            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1444        return V.getValue();
1445
1446      return svalBuilder.getRegionValueSymbolVal(R);
1447    }
1448
1449    if (T->isIntegerType())
1450      return svalBuilder.makeIntVal(0, T);
1451    if (T->isPointerType())
1452      return svalBuilder.makeNull();
1453
1454    return UnknownVal();
1455  }
1456
1457  return UndefinedVal();
1458}
1459
1460SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1461  // All other values are symbolic.
1462  return svalBuilder.getRegionValueSymbolVal(R);
1463}
1464
1465static bool mayHaveLazyBinding(QualType Ty) {
1466  return Ty->isArrayType() || Ty->isStructureOrClassType();
1467}
1468
1469SVal RegionStoreManager::getBindingForStruct(Store store,
1470                                        const TypedValueRegion* R) {
1471  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1472  if (RD->field_empty())
1473    return UnknownVal();
1474
1475  // If we already have a lazy binding, don't create a new one,
1476  // unless the first field might have a lazy binding of its own.
1477  // (Right now we can't tell the difference.)
1478  QualType FirstFieldType = RD->field_begin()->getType();
1479  if (!mayHaveLazyBinding(FirstFieldType)) {
1480    RegionBindings B = GetRegionBindings(store);
1481    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1482    if (const nonloc::LazyCompoundVal *V =
1483          dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1484      return *V;
1485    }
1486  }
1487
1488  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1489}
1490
1491SVal RegionStoreManager::getBindingForArray(Store store,
1492                                       const TypedValueRegion * R) {
1493  const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
1494  assert(Ty && "Only constant array types can have compound bindings.");
1495
1496  // If we already have a lazy binding, don't create a new one,
1497  // unless the first element might have a lazy binding of its own.
1498  // (Right now we can't tell the difference.)
1499  if (!mayHaveLazyBinding(Ty->getElementType())) {
1500    RegionBindings B = GetRegionBindings(store);
1501    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1502    if (const nonloc::LazyCompoundVal *V =
1503        dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1504      return *V;
1505    }
1506  }
1507
1508  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1509}
1510
1511bool RegionStoreManager::includedInBindings(Store store,
1512                                            const MemRegion *region) const {
1513  RegionBindings B = GetRegionBindings(store);
1514  region = region->getBaseRegion();
1515
1516  // Quick path: if the base is the head of a cluster, the region is live.
1517  if (B.lookup(region))
1518    return true;
1519
1520  // Slow path: if the region is the VALUE of any binding, it is live.
1521  for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1522    const ClusterBindings &Cluster = RI.getData();
1523    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1524         CI != CE; ++CI) {
1525      const SVal &D = CI.getData();
1526      if (const MemRegion *R = D.getAsRegion())
1527        if (R->getBaseRegion() == region)
1528          return true;
1529    }
1530  }
1531
1532  return false;
1533}
1534
1535//===----------------------------------------------------------------------===//
1536// Binding values to regions.
1537//===----------------------------------------------------------------------===//
1538
1539StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1540  if (isa<loc::MemRegionVal>(L))
1541    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1542      return StoreRef(removeBinding(GetRegionBindings(store),
1543                                    R).getRootWithoutRetain(),
1544                      *this);
1545
1546  return StoreRef(store, *this);
1547}
1548
1549StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1550  if (isa<loc::ConcreteInt>(L))
1551    return StoreRef(store, *this);
1552
1553  // If we get here, the location should be a region.
1554  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1555
1556  // Check if the region is a struct region.
1557  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1558    QualType Ty = TR->getValueType();
1559    if (Ty->isStructureOrClassType())
1560      return BindStruct(store, TR, V);
1561    if (Ty->isVectorType())
1562      return BindVector(store, TR, V);
1563  }
1564
1565  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1566    // Binding directly to a symbolic region should be treated as binding
1567    // to element 0.
1568    QualType T = SR->getSymbol()->getType(Ctx);
1569
1570    // FIXME: Is this the right way to handle symbols that are references?
1571    if (const PointerType *PT = T->getAs<PointerType>())
1572      T = PT->getPointeeType();
1573    else
1574      T = T->getAs<ReferenceType>()->getPointeeType();
1575
1576    R = GetElementZeroRegion(SR, T);
1577  }
1578
1579  // Clear out bindings that may overlap with this binding.
1580
1581  // Perform the binding.
1582  RegionBindings B = GetRegionBindings(store);
1583  B = removeSubRegionBindings(B, cast<SubRegion>(R));
1584  BindingKey Key = BindingKey::Make(R, BindingKey::Direct);
1585  return StoreRef(addBinding(B, Key, V).getRootWithoutRetain(), *this);
1586}
1587
1588StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1589                                      SVal InitVal) {
1590
1591  QualType T = VR->getDecl()->getType();
1592
1593  if (T->isArrayType())
1594    return BindArray(store, VR, InitVal);
1595  if (T->isStructureOrClassType())
1596    return BindStruct(store, VR, InitVal);
1597
1598  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1599}
1600
1601// FIXME: this method should be merged into Bind().
1602StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1603                                                 const CompoundLiteralExpr *CL,
1604                                                 const LocationContext *LC,
1605                                                 SVal V) {
1606  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1607              V);
1608}
1609
1610StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1611                                                     const MemRegion *R,
1612                                                     QualType T) {
1613  RegionBindings B = GetRegionBindings(store);
1614  SVal V;
1615
1616  if (Loc::isLocType(T))
1617    V = svalBuilder.makeNull();
1618  else if (T->isIntegerType())
1619    V = svalBuilder.makeZeroVal(T);
1620  else if (T->isStructureOrClassType() || T->isArrayType()) {
1621    // Set the default value to a zero constant when it is a structure
1622    // or array.  The type doesn't really matter.
1623    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1624  }
1625  else {
1626    // We can't represent values of this type, but we still need to set a value
1627    // to record that the region has been initialized.
1628    // If this assertion ever fires, a new case should be added above -- we
1629    // should know how to default-initialize any value we can symbolicate.
1630    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1631    V = UnknownVal();
1632  }
1633
1634  return StoreRef(addBinding(B, R, BindingKey::Default,
1635                             V).getRootWithoutRetain(), *this);
1636}
1637
1638StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1639                                       SVal Init) {
1640
1641  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1642  QualType ElementTy = AT->getElementType();
1643  Optional<uint64_t> Size;
1644
1645  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1646    Size = CAT->getSize().getZExtValue();
1647
1648  // Check if the init expr is a string literal.
1649  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1650    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1651
1652    // Treat the string as a lazy compound value.
1653    nonloc::LazyCompoundVal LCV =
1654      cast<nonloc::LazyCompoundVal>(svalBuilder.
1655                                makeLazyCompoundVal(StoreRef(store, *this), S));
1656    return BindAggregate(store, R, LCV);
1657  }
1658
1659  // Handle lazy compound values.
1660  if (isa<nonloc::LazyCompoundVal>(Init))
1661    return BindAggregate(store, R, Init);
1662
1663  // Remaining case: explicit compound values.
1664
1665  if (Init.isUnknown())
1666    return setImplicitDefaultValue(store, R, ElementTy);
1667
1668  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1669  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1670  uint64_t i = 0;
1671
1672  StoreRef newStore(store, *this);
1673  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1674    // The init list might be shorter than the array length.
1675    if (VI == VE)
1676      break;
1677
1678    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1679    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1680
1681    if (ElementTy->isStructureOrClassType())
1682      newStore = BindStruct(newStore.getStore(), ER, *VI);
1683    else if (ElementTy->isArrayType())
1684      newStore = BindArray(newStore.getStore(), ER, *VI);
1685    else
1686      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1687  }
1688
1689  // If the init list is shorter than the array length, set the
1690  // array default value.
1691  if (Size.hasValue() && i < Size.getValue())
1692    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1693
1694  return newStore;
1695}
1696
1697StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
1698                                        SVal V) {
1699  QualType T = R->getValueType();
1700  assert(T->isVectorType());
1701  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1702
1703  // Handle lazy compound values and symbolic values.
1704  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1705    return BindAggregate(store, R, V);
1706
1707  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1708  // that we are binding symbolic struct value. Kill the field values, and if
1709  // the value is symbolic go and bind it as a "default" binding.
1710  if (!isa<nonloc::CompoundVal>(V)) {
1711    return BindAggregate(store, R, UnknownVal());
1712  }
1713
1714  QualType ElemType = VT->getElementType();
1715  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1716  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1717  unsigned index = 0, numElements = VT->getNumElements();
1718  StoreRef newStore(store, *this);
1719
1720  for ( ; index != numElements ; ++index) {
1721    if (VI == VE)
1722      break;
1723
1724    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1725    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1726
1727    if (ElemType->isArrayType())
1728      newStore = BindArray(newStore.getStore(), ER, *VI);
1729    else if (ElemType->isStructureOrClassType())
1730      newStore = BindStruct(newStore.getStore(), ER, *VI);
1731    else
1732      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1733  }
1734  return newStore;
1735}
1736
1737StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1738                                        SVal V) {
1739
1740  if (!Features.supportsFields())
1741    return StoreRef(store, *this);
1742
1743  QualType T = R->getValueType();
1744  assert(T->isStructureOrClassType());
1745
1746  const RecordType* RT = T->getAs<RecordType>();
1747  RecordDecl *RD = RT->getDecl();
1748
1749  if (!RD->isCompleteDefinition())
1750    return StoreRef(store, *this);
1751
1752  // Handle lazy compound values and symbolic values.
1753  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1754    return BindAggregate(store, R, V);
1755
1756  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1757  // that we are binding symbolic struct value. Kill the field values, and if
1758  // the value is symbolic go and bind it as a "default" binding.
1759  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
1760    return BindAggregate(store, R, UnknownVal());
1761
1762  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1763  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1764
1765  RecordDecl::field_iterator FI, FE;
1766  StoreRef newStore(store, *this);
1767
1768  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1769
1770    if (VI == VE)
1771      break;
1772
1773    // Skip any unnamed bitfields to stay in sync with the initializers.
1774    if (FI->isUnnamedBitfield())
1775      continue;
1776
1777    QualType FTy = FI->getType();
1778    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1779
1780    if (FTy->isArrayType())
1781      newStore = BindArray(newStore.getStore(), FR, *VI);
1782    else if (FTy->isStructureOrClassType())
1783      newStore = BindStruct(newStore.getStore(), FR, *VI);
1784    else
1785      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1786    ++VI;
1787  }
1788
1789  // There may be fewer values in the initialize list than the fields of struct.
1790  if (FI != FE) {
1791    RegionBindings B = GetRegionBindings(newStore.getStore());
1792    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1793    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1794  }
1795
1796  return newStore;
1797}
1798
1799StoreRef RegionStoreManager::BindAggregate(Store store, const TypedRegion *R,
1800                                           SVal Val) {
1801  // Remove the old bindings, using 'R' as the root of all regions
1802  // we will invalidate. Then add the new binding.
1803  RegionBindings B = GetRegionBindings(store);
1804
1805  B = removeSubRegionBindings(B, R);
1806  B = addBinding(B, R, BindingKey::Default, Val);
1807
1808  return StoreRef(B.getRootWithoutRetain(), *this);
1809}
1810
1811//===----------------------------------------------------------------------===//
1812// "Raw" retrievals and bindings.
1813//===----------------------------------------------------------------------===//
1814
1815
1816RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1817                                              SVal V) {
1818  const MemRegion *Base = K.getBaseRegion();
1819
1820  const ClusterBindings *ExistingCluster = B.lookup(Base);
1821  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
1822                                             : CBFactory.getEmptyMap());
1823
1824  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
1825  return RBFactory.add(B, Base, NewCluster);
1826}
1827
1828RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1829                                              const MemRegion *R,
1830                                              BindingKey::Kind k, SVal V) {
1831  return addBinding(B, BindingKey::Make(R, k), V);
1832}
1833
1834const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1835  const ClusterBindings *Cluster = B.lookup(K.getBaseRegion());
1836  if (!Cluster)
1837    return 0;
1838
1839  return Cluster->lookup(K);
1840}
1841
1842const SVal *RegionStoreManager::lookup(RegionBindings B,
1843                                       const MemRegion *R,
1844                                       BindingKey::Kind k) {
1845  return lookup(B, BindingKey::Make(R, k));
1846}
1847
1848RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1849                                                 BindingKey K) {
1850  const MemRegion *Base = K.getBaseRegion();
1851  const ClusterBindings *Cluster = B.lookup(Base);
1852  if (!Cluster)
1853    return B;
1854
1855  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
1856  if (NewCluster.isEmpty())
1857    return RBFactory.remove(B, Base);
1858  return RBFactory.add(B, Base, NewCluster);
1859}
1860
1861RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1862                                                 const MemRegion *R,
1863                                                BindingKey::Kind k){
1864  return removeBinding(B, BindingKey::Make(R, k));
1865}
1866
1867RegionBindings RegionStoreManager::removeCluster(RegionBindings B,
1868                                                 const MemRegion *Base) {
1869  return RBFactory.remove(B, Base);
1870}
1871
1872//===----------------------------------------------------------------------===//
1873// State pruning.
1874//===----------------------------------------------------------------------===//
1875
1876namespace {
1877class removeDeadBindingsWorker :
1878  public ClusterAnalysis<removeDeadBindingsWorker> {
1879  SmallVector<const SymbolicRegion*, 12> Postponed;
1880  SymbolReaper &SymReaper;
1881  const StackFrameContext *CurrentLCtx;
1882
1883public:
1884  removeDeadBindingsWorker(RegionStoreManager &rm,
1885                           ProgramStateManager &stateMgr,
1886                           RegionBindings b, SymbolReaper &symReaper,
1887                           const StackFrameContext *LCtx)
1888    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1889                                                /* includeGlobals = */ false),
1890      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1891
1892  // Called by ClusterAnalysis.
1893  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
1894  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
1895
1896  void VisitBindingKey(BindingKey K);
1897  bool UpdatePostponed();
1898  void VisitBinding(SVal V);
1899};
1900}
1901
1902void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1903                                                   const ClusterBindings &C) {
1904
1905  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1906    if (SymReaper.isLive(VR))
1907      AddToWorkList(baseR, &C);
1908
1909    return;
1910  }
1911
1912  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1913    if (SymReaper.isLive(SR->getSymbol()))
1914      AddToWorkList(SR, &C);
1915    else
1916      Postponed.push_back(SR);
1917
1918    return;
1919  }
1920
1921  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1922    AddToWorkList(baseR, &C);
1923    return;
1924  }
1925
1926  // CXXThisRegion in the current or parent location context is live.
1927  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1928    const StackArgumentsSpaceRegion *StackReg =
1929      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1930    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1931    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1932      AddToWorkList(TR, &C);
1933  }
1934}
1935
1936void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1937                                            const ClusterBindings &C) {
1938  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1939    VisitBindingKey(I.getKey());
1940    VisitBinding(I.getData());
1941  }
1942}
1943
1944void removeDeadBindingsWorker::VisitBinding(SVal V) {
1945  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1946  if (const nonloc::LazyCompoundVal *LCS =
1947        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1948
1949    const MemRegion *LazyR = LCS->getRegion();
1950    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1951
1952    // FIXME: This should not have to walk all bindings in the old store.
1953    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1954      const ClusterBindings &Cluster = RI.getData();
1955      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1956           CI != CE; ++CI) {
1957        BindingKey K = CI.getKey();
1958        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
1959          if (BaseR == LazyR)
1960            VisitBinding(CI.getData());
1961          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
1962            VisitBinding(CI.getData());
1963        }
1964      }
1965    }
1966
1967    return;
1968  }
1969
1970  // If V is a region, then add it to the worklist.
1971  if (const MemRegion *R = V.getAsRegion()) {
1972    AddToWorkList(R);
1973
1974    // All regions captured by a block are also live.
1975    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1976      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1977                                                E = BR->referenced_vars_end();
1978        for ( ; I != E; ++I)
1979          AddToWorkList(I.getCapturedRegion());
1980    }
1981  }
1982
1983
1984  // Update the set of live symbols.
1985  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1986       SI!=SE; ++SI)
1987    SymReaper.markLive(*SI);
1988}
1989
1990void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1991  const MemRegion *R = K.getRegion();
1992
1993  // Mark this region "live" by adding it to the worklist.  This will cause
1994  // use to visit all regions in the cluster (if we haven't visited them
1995  // already).
1996  if (AddToWorkList(R)) {
1997    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1998    // should continue to track that symbol.
1999    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
2000      SymReaper.markLive(SymR->getSymbol());
2001  }
2002}
2003
2004bool removeDeadBindingsWorker::UpdatePostponed() {
2005  // See if any postponed SymbolicRegions are actually live now, after
2006  // having done a scan.
2007  bool changed = false;
2008
2009  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2010        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2011    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
2012      if (SymReaper.isLive(SR->getSymbol())) {
2013        changed |= AddToWorkList(SR);
2014        *I = NULL;
2015      }
2016    }
2017  }
2018
2019  return changed;
2020}
2021
2022StoreRef RegionStoreManager::removeDeadBindings(Store store,
2023                                                const StackFrameContext *LCtx,
2024                                                SymbolReaper& SymReaper) {
2025  RegionBindings B = GetRegionBindings(store);
2026  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2027  W.GenerateClusters();
2028
2029  // Enqueue the region roots onto the worklist.
2030  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2031       E = SymReaper.region_end(); I != E; ++I) {
2032    W.AddToWorkList(*I);
2033  }
2034
2035  do W.RunWorkList(); while (W.UpdatePostponed());
2036
2037  // We have now scanned the store, marking reachable regions and symbols
2038  // as live.  We now remove all the regions that are dead from the store
2039  // as well as update DSymbols with the set symbols that are now dead.
2040  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2041    const MemRegion *Base = I.getKey();
2042
2043    // If the cluster has been visited, we know the region has been marked.
2044    if (W.isVisited(Base))
2045      continue;
2046
2047    // Remove the dead entry.
2048    B = removeCluster(B, Base);
2049
2050    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2051      SymReaper.maybeDead(SymR->getSymbol());
2052
2053    // Mark all non-live symbols that this binding references as dead.
2054    const ClusterBindings &Cluster = I.getData();
2055    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2056         CI != CE; ++CI) {
2057      SVal X = CI.getData();
2058      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2059      for (; SI != SE; ++SI)
2060        SymReaper.maybeDead(*SI);
2061    }
2062  }
2063
2064  return StoreRef(B.getRootWithoutRetain(), *this);
2065}
2066
2067//===----------------------------------------------------------------------===//
2068// Utility methods.
2069//===----------------------------------------------------------------------===//
2070
2071void RegionStoreManager::print(Store store, raw_ostream &OS,
2072                               const char* nl, const char *sep) {
2073  RegionBindings B = GetRegionBindings(store);
2074  OS << "Store (direct and default bindings), "
2075     << (void*) B.getRootWithoutRetain()
2076     << " :" << nl;
2077
2078  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2079    const ClusterBindings &Cluster = I.getData();
2080    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2081         CI != CE; ++CI) {
2082      OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
2083    }
2084    OS << nl;
2085  }
2086}
2087