RegionStore.cpp revision b0abacf2f1f77214e4c77d6ec8a02b097bb98f7a
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/Analysis/Analyses/LiveVariables.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Default = 0x0, Direct = 0x1 };
43private:
44  enum { Symbolic = 0x2 };
45
46  llvm::PointerIntPair<const MemRegion *, 2> P;
47  uint64_t Data;
48
49  explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k)
50    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
51    assert(r && Base && "Must have known regions.");
52    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
53  }
54  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
55    : P(r, k), Data(offset) {
56    assert(r && "Must have known regions.");
57    assert(getOffset() == offset && "Failed to store offset");
58    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
59  }
60public:
61
62  bool isDirect() const { return P.getInt() & Direct; }
63  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
64
65  const MemRegion *getRegion() const { return P.getPointer(); }
66  uint64_t getOffset() const {
67    assert(!hasSymbolicOffset());
68    return Data;
69  }
70
71  const MemRegion *getConcreteOffsetRegion() const {
72    assert(hasSymbolicOffset());
73    return reinterpret_cast<const MemRegion *>(static_cast<uintptr_t>(Data));
74  }
75
76  const MemRegion *getBaseRegion() const {
77    if (hasSymbolicOffset())
78      return getConcreteOffsetRegion()->getBaseRegion();
79    return getRegion()->getBaseRegion();
80  }
81
82  void Profile(llvm::FoldingSetNodeID& ID) const {
83    ID.AddPointer(P.getOpaqueValue());
84    ID.AddInteger(Data);
85  }
86
87  static BindingKey Make(const MemRegion *R, Kind k);
88
89  bool operator<(const BindingKey &X) const {
90    if (P.getOpaqueValue() < X.P.getOpaqueValue())
91      return true;
92    if (P.getOpaqueValue() > X.P.getOpaqueValue())
93      return false;
94    return Data < X.Data;
95  }
96
97  bool operator==(const BindingKey &X) const {
98    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
99           Data == X.Data;
100  }
101
102  LLVM_ATTRIBUTE_USED void dump() const;
103};
104} // end anonymous namespace
105
106BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
107  const RegionOffset &RO = R->getAsOffset();
108  if (RO.hasSymbolicOffset())
109    return BindingKey(R, RO.getRegion(), k);
110
111  return BindingKey(RO.getRegion(), RO.getOffset(), k);
112}
113
114namespace llvm {
115  static inline
116  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
117    os << '(' << K.getRegion();
118    if (!K.hasSymbolicOffset())
119      os << ',' << K.getOffset();
120    os << ',' << (K.isDirect() ? "direct" : "default")
121       << ')';
122    return os;
123  }
124} // end llvm namespace
125
126void BindingKey::dump() const {
127  llvm::errs() << *this;
128}
129
130//===----------------------------------------------------------------------===//
131// Actual Store type.
132//===----------------------------------------------------------------------===//
133
134typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
135typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
136
137typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
138        RegionBindings;
139
140namespace {
141class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
142                                 ClusterBindings> {
143 ClusterBindings::Factory &CBFactory;
144public:
145  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
146          ParentTy;
147
148  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
149                    const RegionBindings::TreeTy *T,
150                    RegionBindings::TreeTy::Factory *F)
151    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
152      CBFactory(CBFactory) {}
153
154  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
155    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
156      CBFactory(CBFactory) {}
157
158  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
159    return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
160                             CBFactory);
161  }
162
163  RegionBindingsRef remove(key_type_ref K) const {
164    return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
165                             CBFactory);
166  }
167
168  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
169
170  RegionBindingsRef addBinding(const MemRegion *R,
171                               BindingKey::Kind k, SVal V) const;
172
173  RegionBindingsRef &operator=(const RegionBindingsRef &X) {
174    *static_cast<ParentTy*>(this) = X;
175    return *this;
176  }
177
178  const SVal *lookup(BindingKey K) const;
179  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
180  const ClusterBindings *lookup(const MemRegion *R) const {
181    return static_cast<const ParentTy*>(this)->lookup(R);
182  }
183
184  RegionBindingsRef removeBinding(BindingKey K);
185
186  RegionBindingsRef removeBinding(const MemRegion *R,
187                                  BindingKey::Kind k);
188
189  RegionBindingsRef removeBinding(const MemRegion *R) {
190    return removeBinding(R, BindingKey::Direct).
191           removeBinding(R, BindingKey::Default);
192  }
193
194  Optional<SVal> getDirectBinding(const MemRegion *R) const;
195
196  /// getDefaultBinding - Returns an SVal* representing an optional default
197  ///  binding associated with a region and its subregions.
198  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
199
200  /// Return the internal tree as a Store.
201  Store asStore() const {
202    return asImmutableMap().getRootWithoutRetain();
203  }
204
205  void dump(llvm::raw_ostream &OS, const char *nl) const {
206   for (iterator I = begin(), E = end(); I != E; ++I) {
207     const ClusterBindings &Cluster = I.getData();
208     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
209          CI != CE; ++CI) {
210       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
211     }
212     OS << nl;
213   }
214  }
215
216  LLVM_ATTRIBUTE_USED void dump() const {
217    dump(llvm::errs(), "\n");
218  }
219};
220} // end anonymous namespace
221
222typedef const RegionBindingsRef& RegionBindingsConstRef;
223
224Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
225  if (const SVal *V = lookup(R, BindingKey::Direct))
226    return *V;
227  return Optional<SVal>();
228}
229
230Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
231  if (R->isBoundable())
232    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
233      if (TR->getValueType()->isUnionType())
234        return UnknownVal();
235  if (const SVal *V = lookup(R, BindingKey::Default))
236    return *V;
237  return Optional<SVal>();
238}
239
240RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
241  const MemRegion *Base = K.getBaseRegion();
242
243  const ClusterBindings *ExistingCluster = lookup(Base);
244  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
245                             : CBFactory.getEmptyMap());
246
247  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
248  return add(Base, NewCluster);
249}
250
251
252RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
253                                                BindingKey::Kind k,
254                                                SVal V) const {
255  return addBinding(BindingKey::Make(R, k), V);
256}
257
258const SVal *RegionBindingsRef::lookup(BindingKey K) const {
259  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
260  if (!Cluster)
261    return 0;
262  return Cluster->lookup(K);
263}
264
265const SVal *RegionBindingsRef::lookup(const MemRegion *R,
266                                      BindingKey::Kind k) const {
267  return lookup(BindingKey::Make(R, k));
268}
269
270RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
271  const MemRegion *Base = K.getBaseRegion();
272  const ClusterBindings *Cluster = lookup(Base);
273  if (!Cluster)
274    return *this;
275
276  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
277  if (NewCluster.isEmpty())
278    return remove(Base);
279  return add(Base, NewCluster);
280}
281
282RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
283                                                BindingKey::Kind k){
284  return removeBinding(BindingKey::Make(R, k));
285}
286
287//===----------------------------------------------------------------------===//
288// Fine-grained control of RegionStoreManager.
289//===----------------------------------------------------------------------===//
290
291namespace {
292struct minimal_features_tag {};
293struct maximal_features_tag {};
294
295class RegionStoreFeatures {
296  bool SupportsFields;
297public:
298  RegionStoreFeatures(minimal_features_tag) :
299    SupportsFields(false) {}
300
301  RegionStoreFeatures(maximal_features_tag) :
302    SupportsFields(true) {}
303
304  void enableFields(bool t) { SupportsFields = t; }
305
306  bool supportsFields() const { return SupportsFields; }
307};
308}
309
310//===----------------------------------------------------------------------===//
311// Main RegionStore logic.
312//===----------------------------------------------------------------------===//
313
314namespace {
315
316class RegionStoreManager : public StoreManager {
317public:
318  const RegionStoreFeatures Features;
319  RegionBindings::Factory RBFactory;
320  mutable ClusterBindings::Factory CBFactory;
321
322  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
323    : StoreManager(mgr), Features(f),
324      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
325
326
327  /// setImplicitDefaultValue - Set the default binding for the provided
328  ///  MemRegion to the value implicitly defined for compound literals when
329  ///  the value is not specified.
330  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
331                                            const MemRegion *R, QualType T);
332
333  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
334  ///  type.  'Array' represents the lvalue of the array being decayed
335  ///  to a pointer, and the returned SVal represents the decayed
336  ///  version of that lvalue (i.e., a pointer to the first element of
337  ///  the array).  This is called by ExprEngine when evaluating
338  ///  casts from arrays to pointers.
339  SVal ArrayToPointer(Loc Array);
340
341  StoreRef getInitialStore(const LocationContext *InitLoc) {
342    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
343  }
344
345  //===-------------------------------------------------------------------===//
346  // Binding values to regions.
347  //===-------------------------------------------------------------------===//
348  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
349                                           const Expr *Ex,
350                                           unsigned Count,
351                                           const LocationContext *LCtx,
352                                           RegionBindingsRef B,
353                                           InvalidatedRegions *Invalidated);
354
355  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
356                             const Expr *E, unsigned Count,
357                             const LocationContext *LCtx,
358                             InvalidatedSymbols &IS,
359                             const CallEvent *Call,
360                             InvalidatedRegions *Invalidated);
361
362  bool scanReachableSymbols(Store S, const MemRegion *R,
363                            ScanReachableSymbols &Callbacks);
364
365  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
366                                            const SubRegion *R);
367
368public: // Part of public interface to class.
369
370  virtual StoreRef Bind(Store store, Loc LV, SVal V) {
371    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
372  }
373
374  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
375
376  // BindDefault is only used to initialize a region with a default value.
377  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
378    RegionBindingsRef B = getRegionBindings(store);
379    assert(!B.lookup(R, BindingKey::Default));
380    assert(!B.lookup(R, BindingKey::Direct));
381    return StoreRef(B.addBinding(R, BindingKey::Default, V)
382                     .asImmutableMap()
383                     .getRootWithoutRetain(), *this);
384  }
385
386  /// \brief Create a new store that binds a value to a compound literal.
387  ///
388  /// \param ST The original store whose bindings are the basis for the new
389  ///        store.
390  ///
391  /// \param CL The compound literal to bind (the binding key).
392  ///
393  /// \param LC The LocationContext for the binding.
394  ///
395  /// \param V The value to bind to the compound literal.
396  StoreRef bindCompoundLiteral(Store ST,
397                               const CompoundLiteralExpr *CL,
398                               const LocationContext *LC, SVal V);
399
400  /// BindStruct - Bind a compound value to a structure.
401  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
402                               const TypedValueRegion* R, SVal V);
403
404  /// BindVector - Bind a compound value to a vector.
405  RegionBindingsRef bindVector(RegionBindingsConstRef B,
406                               const TypedValueRegion* R, SVal V);
407
408  RegionBindingsRef bindArray(RegionBindingsConstRef B,
409                              const TypedValueRegion* R,
410                              SVal V);
411
412  /// Clears out all bindings in the given region and assigns a new value
413  /// as a Default binding.
414  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
415                                  const TypedRegion *R,
416                                  SVal DefaultVal);
417
418  /// \brief Create a new store with the specified binding removed.
419  /// \param ST the original store, that is the basis for the new store.
420  /// \param L the location whose binding should be removed.
421  virtual StoreRef killBinding(Store ST, Loc L);
422
423  void incrementReferenceCount(Store store) {
424    getRegionBindings(store).manualRetain();
425  }
426
427  /// If the StoreManager supports it, decrement the reference count of
428  /// the specified Store object.  If the reference count hits 0, the memory
429  /// associated with the object is recycled.
430  void decrementReferenceCount(Store store) {
431    getRegionBindings(store).manualRelease();
432  }
433
434  bool includedInBindings(Store store, const MemRegion *region) const;
435
436  /// \brief Return the value bound to specified location in a given state.
437  ///
438  /// The high level logic for this method is this:
439  /// getBinding (L)
440  ///   if L has binding
441  ///     return L's binding
442  ///   else if L is in killset
443  ///     return unknown
444  ///   else
445  ///     if L is on stack or heap
446  ///       return undefined
447  ///     else
448  ///       return symbolic
449  virtual SVal getBinding(Store S, Loc L, QualType T) {
450    return getBinding(getRegionBindings(S), L, T);
451  }
452
453  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
454
455  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
456
457  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
458
459  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
460
461  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
462
463  SVal getBindingForLazySymbol(const TypedValueRegion *R);
464
465  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
466                                         const TypedValueRegion *R,
467                                         QualType Ty,
468                                         const MemRegion *superR);
469
470  SVal getLazyBinding(const MemRegion *LazyBindingRegion,
471                      RegionBindingsRef LazyBinding);
472
473  /// Get bindings for the values in a struct and return a CompoundVal, used
474  /// when doing struct copy:
475  /// struct s x, y;
476  /// x = y;
477  /// y's value is retrieved by this method.
478  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion* R);
479
480  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion* R);
481
482  /// Used to lazily generate derived symbols for bindings that are defined
483  ///  implicitly by default bindings in a super region.
484  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
485                                                  const MemRegion *superR,
486                                                  const TypedValueRegion *R,
487                                                  QualType Ty);
488
489  /// Get the state and region whose binding this region R corresponds to.
490  std::pair<Store, const MemRegion*>
491  getLazyBinding(RegionBindingsConstRef B, const MemRegion *R,
492                 const MemRegion *originalRegion,
493                 bool includeSuffix = false);
494
495  //===------------------------------------------------------------------===//
496  // State pruning.
497  //===------------------------------------------------------------------===//
498
499  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
500  ///  It returns a new Store with these values removed.
501  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
502                              SymbolReaper& SymReaper);
503
504  //===------------------------------------------------------------------===//
505  // Region "extents".
506  //===------------------------------------------------------------------===//
507
508  // FIXME: This method will soon be eliminated; see the note in Store.h.
509  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
510                                         const MemRegion* R, QualType EleTy);
511
512  //===------------------------------------------------------------------===//
513  // Utility methods.
514  //===------------------------------------------------------------------===//
515
516  RegionBindingsRef getRegionBindings(Store store) const {
517    return RegionBindingsRef(CBFactory,
518                             static_cast<const RegionBindings::TreeTy*>(store),
519                             RBFactory.getTreeFactory());
520  }
521
522  void print(Store store, raw_ostream &Out, const char* nl,
523             const char *sep);
524
525  void iterBindings(Store store, BindingsHandler& f) {
526    RegionBindingsRef B = getRegionBindings(store);
527    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
528      const ClusterBindings &Cluster = I.getData();
529      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
530           CI != CE; ++CI) {
531        const BindingKey &K = CI.getKey();
532        if (!K.isDirect())
533          continue;
534        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
535          // FIXME: Possibly incorporate the offset?
536          if (!f.HandleBinding(*this, store, R, CI.getData()))
537            return;
538        }
539      }
540    }
541  }
542};
543
544} // end anonymous namespace
545
546//===----------------------------------------------------------------------===//
547// RegionStore creation.
548//===----------------------------------------------------------------------===//
549
550StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
551  RegionStoreFeatures F = maximal_features_tag();
552  return new RegionStoreManager(StMgr, F);
553}
554
555StoreManager *
556ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
557  RegionStoreFeatures F = minimal_features_tag();
558  F.enableFields(true);
559  return new RegionStoreManager(StMgr, F);
560}
561
562
563//===----------------------------------------------------------------------===//
564// Region Cluster analysis.
565//===----------------------------------------------------------------------===//
566
567namespace {
568template <typename DERIVED>
569class ClusterAnalysis  {
570protected:
571  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
572  typedef SmallVector<const MemRegion *, 10> WorkList;
573
574  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
575
576  WorkList WL;
577
578  RegionStoreManager &RM;
579  ASTContext &Ctx;
580  SValBuilder &svalBuilder;
581
582  RegionBindingsRef B;
583
584  const bool includeGlobals;
585
586  const ClusterBindings *getCluster(const MemRegion *R) {
587    return B.lookup(R);
588  }
589
590public:
591  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
592                  RegionBindingsRef b, const bool includeGlobals)
593    : RM(rm), Ctx(StateMgr.getContext()),
594      svalBuilder(StateMgr.getSValBuilder()),
595      B(b), includeGlobals(includeGlobals) {}
596
597  RegionBindingsRef getRegionBindings() const { return B; }
598
599  bool isVisited(const MemRegion *R) {
600    return Visited.count(getCluster(R));
601  }
602
603  void GenerateClusters() {
604    // Scan the entire set of bindings and record the region clusters.
605    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
606         RI != RE; ++RI){
607      const MemRegion *Base = RI.getKey();
608
609      const ClusterBindings &Cluster = RI.getData();
610      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
611      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
612
613      if (includeGlobals)
614        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
615          AddToWorkList(Base, &Cluster);
616    }
617  }
618
619  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
620    if (C && !Visited.insert(C))
621      return false;
622    WL.push_back(R);
623    return true;
624  }
625
626  bool AddToWorkList(const MemRegion *R) {
627    const MemRegion *baseR = R->getBaseRegion();
628    return AddToWorkList(baseR, getCluster(baseR));
629  }
630
631  void RunWorkList() {
632    while (!WL.empty()) {
633      const MemRegion *baseR = WL.pop_back_val();
634
635      // First visit the cluster.
636      if (const ClusterBindings *Cluster = getCluster(baseR))
637        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
638
639      // Next, visit the base region.
640      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
641    }
642  }
643
644public:
645  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
646  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
647  void VisitBaseRegion(const MemRegion *baseR) {}
648};
649}
650
651//===----------------------------------------------------------------------===//
652// Binding invalidation.
653//===----------------------------------------------------------------------===//
654
655bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
656                                              ScanReachableSymbols &Callbacks) {
657  assert(R == R->getBaseRegion() && "Should only be called for base regions");
658  RegionBindingsRef B = getRegionBindings(S);
659  const ClusterBindings *Cluster = B.lookup(R);
660
661  if (!Cluster)
662    return true;
663
664  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
665       RI != RE; ++RI) {
666    if (!Callbacks.scan(RI.getData()))
667      return false;
668  }
669
670  return true;
671}
672
673static inline bool isUnionField(const FieldRegion *FR) {
674  return FR->getDecl()->getParent()->isUnion();
675}
676
677typedef SmallVector<const FieldDecl *, 8> FieldVector;
678
679void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
680  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
681
682  const MemRegion *Base = K.getConcreteOffsetRegion();
683  const MemRegion *R = K.getRegion();
684
685  while (R != Base) {
686    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
687      if (!isUnionField(FR))
688        Fields.push_back(FR->getDecl());
689
690    R = cast<SubRegion>(R)->getSuperRegion();
691  }
692}
693
694static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
695  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
696
697  if (Fields.empty())
698    return true;
699
700  FieldVector FieldsInBindingKey;
701  getSymbolicOffsetFields(K, FieldsInBindingKey);
702
703  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
704  if (Delta >= 0)
705    return std::equal(FieldsInBindingKey.begin() + Delta,
706                      FieldsInBindingKey.end(),
707                      Fields.begin());
708  else
709    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
710                      Fields.begin() - Delta);
711}
712
713RegionBindingsRef
714RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
715                                            const SubRegion *R) {
716  BindingKey SRKey = BindingKey::Make(R, BindingKey::Default);
717  const MemRegion *ClusterHead = SRKey.getBaseRegion();
718  if (R == ClusterHead) {
719    // We can remove an entire cluster's bindings all in one go.
720    return B.remove(R);
721  }
722
723  FieldVector FieldsInSymbolicSubregions;
724  bool HasSymbolicOffset = SRKey.hasSymbolicOffset();
725  if (HasSymbolicOffset) {
726    getSymbolicOffsetFields(SRKey, FieldsInSymbolicSubregions);
727    R = cast<SubRegion>(SRKey.getConcreteOffsetRegion());
728    SRKey = BindingKey::Make(R, BindingKey::Default);
729  }
730
731  // This assumes the region being invalidated is char-aligned. This isn't
732  // true for bitfields, but since bitfields have no subregions they shouldn't
733  // be using this function anyway.
734  uint64_t Length = UINT64_MAX;
735
736  SVal Extent = R->getExtent(svalBuilder);
737  if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
738    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
739    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
740    // Extents are in bytes but region offsets are in bits. Be careful!
741    Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth();
742  }
743
744  const ClusterBindings *Cluster = B.lookup(ClusterHead);
745  if (!Cluster)
746    return B;
747
748  ClusterBindingsRef Result(*Cluster, CBFactory);
749
750  // It is safe to iterate over the bindings as they are being changed
751  // because they are in an ImmutableMap.
752  for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end();
753       I != E; ++I) {
754    BindingKey NextKey = I.getKey();
755    if (NextKey.getRegion() == SRKey.getRegion()) {
756      // FIXME: This doesn't catch the case where we're really invalidating a
757      // region with a symbolic offset. Example:
758      //      R: points[i].y
759      //   Next: points[0].x
760
761      if (NextKey.getOffset() > SRKey.getOffset() &&
762          NextKey.getOffset() - SRKey.getOffset() < Length) {
763        // Case 1: The next binding is inside the region we're invalidating.
764        // Remove it.
765        Result = Result.remove(NextKey);
766
767      } else if (NextKey.getOffset() == SRKey.getOffset()) {
768        // Case 2: The next binding is at the same offset as the region we're
769        // invalidating. In this case, we need to leave default bindings alone,
770        // since they may be providing a default value for a regions beyond what
771        // we're invalidating.
772        // FIXME: This is probably incorrect; consider invalidating an outer
773        // struct whose first field is bound to a LazyCompoundVal.
774        if (NextKey.isDirect())
775          Result = Result.remove(NextKey);
776      }
777
778    } else if (NextKey.hasSymbolicOffset()) {
779      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
780      if (R->isSubRegionOf(Base)) {
781        // Case 3: The next key is symbolic and we just changed something within
782        // its concrete region. We don't know if the binding is still valid, so
783        // we'll be conservative and remove it.
784        if (NextKey.isDirect())
785          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
786            Result = Result.remove(NextKey);
787      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
788        // Case 4: The next key is symbolic, but we changed a known
789        // super-region. In this case the binding is certainly no longer valid.
790        if (R == Base || BaseSR->isSubRegionOf(R))
791          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
792            Result = Result.remove(NextKey);
793      }
794    }
795  }
796
797  // If we're invalidating a region with a symbolic offset, we need to make sure
798  // we don't treat the base region as uninitialized anymore.
799  // FIXME: This isn't very precise; see the example in the loop.
800  if (HasSymbolicOffset)
801    Result = Result.add(SRKey, UnknownVal());
802
803  if (Result.isEmpty())
804    return B.remove(ClusterHead);
805  return B.add(ClusterHead, Result.asImmutableMap());
806}
807
808namespace {
809class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
810{
811  const Expr *Ex;
812  unsigned Count;
813  const LocationContext *LCtx;
814  StoreManager::InvalidatedSymbols &IS;
815  StoreManager::InvalidatedRegions *Regions;
816public:
817  invalidateRegionsWorker(RegionStoreManager &rm,
818                          ProgramStateManager &stateMgr,
819                          RegionBindingsRef b,
820                          const Expr *ex, unsigned count,
821                          const LocationContext *lctx,
822                          StoreManager::InvalidatedSymbols &is,
823                          StoreManager::InvalidatedRegions *r,
824                          bool includeGlobals)
825    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
826      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
827
828  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
829  void VisitBaseRegion(const MemRegion *baseR);
830
831private:
832  void VisitBinding(SVal V);
833};
834}
835
836void invalidateRegionsWorker::VisitBinding(SVal V) {
837  // A symbol?  Mark it touched by the invalidation.
838  if (SymbolRef Sym = V.getAsSymbol())
839    IS.insert(Sym);
840
841  if (const MemRegion *R = V.getAsRegion()) {
842    AddToWorkList(R);
843    return;
844  }
845
846  // Is it a LazyCompoundVal?  All references get invalidated as well.
847  if (const nonloc::LazyCompoundVal *LCS =
848        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
849
850    const MemRegion *LazyR = LCS->getRegion();
851    RegionBindingsRef B = RM.getRegionBindings(LCS->getStore());
852
853    // FIXME: This should not have to walk all bindings in the old store.
854    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
855      const ClusterBindings &Cluster = RI.getData();
856      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
857           CI != CE; ++CI) {
858        BindingKey K = CI.getKey();
859        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
860          if (BaseR == LazyR)
861            VisitBinding(CI.getData());
862          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
863            VisitBinding(CI.getData());
864        }
865      }
866    }
867
868    return;
869  }
870}
871
872void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
873                                           const ClusterBindings &C) {
874  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
875    VisitBinding(I.getData());
876
877  B = B.remove(BaseR);
878}
879
880void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
881  // Symbolic region?  Mark that symbol touched by the invalidation.
882  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
883    IS.insert(SR->getSymbol());
884
885  // BlockDataRegion?  If so, invalidate captured variables that are passed
886  // by reference.
887  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
888    for (BlockDataRegion::referenced_vars_iterator
889         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
890         BI != BE; ++BI) {
891      const VarRegion *VR = BI.getCapturedRegion();
892      const VarDecl *VD = VR->getDecl();
893      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
894        AddToWorkList(VR);
895      }
896      else if (Loc::isLocType(VR->getValueType())) {
897        // Map the current bindings to a Store to retrieve the value
898        // of the binding.  If that binding itself is a region, we should
899        // invalidate that region.  This is because a block may capture
900        // a pointer value, but the thing pointed by that pointer may
901        // get invalidated.
902        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
903        if (const Loc *L = dyn_cast<Loc>(&V)) {
904          if (const MemRegion *LR = L->getAsRegion())
905            AddToWorkList(LR);
906        }
907      }
908    }
909    return;
910  }
911
912  // Otherwise, we have a normal data region. Record that we touched the region.
913  if (Regions)
914    Regions->push_back(baseR);
915
916  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
917    // Invalidate the region by setting its default value to
918    // conjured symbol. The type of the symbol is irrelavant.
919    DefinedOrUnknownSVal V =
920      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
921    B = B.addBinding(baseR, BindingKey::Default, V);
922    return;
923  }
924
925  if (!baseR->isBoundable())
926    return;
927
928  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
929  QualType T = TR->getValueType();
930
931    // Invalidate the binding.
932  if (T->isStructureOrClassType()) {
933    // Invalidate the region by setting its default value to
934    // conjured symbol. The type of the symbol is irrelavant.
935    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
936                                                          Ctx.IntTy, Count);
937    B = B.addBinding(baseR, BindingKey::Default, V);
938    return;
939  }
940
941  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
942      // Set the default value of the array to conjured symbol.
943    DefinedOrUnknownSVal V =
944    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
945                                     AT->getElementType(), Count);
946    B = B.addBinding(baseR, BindingKey::Default, V);
947    return;
948  }
949
950  if (includeGlobals &&
951      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
952    // If the region is a global and we are invalidating all globals,
953    // just erase the entry.  This causes all globals to be lazily
954    // symbolicated from the same base symbol.
955    B = B.removeBinding(baseR);
956    return;
957  }
958
959
960  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
961                                                        T,Count);
962  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
963  B = B.addBinding(baseR, BindingKey::Direct, V);
964}
965
966RegionBindingsRef
967RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
968                                           const Expr *Ex,
969                                           unsigned Count,
970                                           const LocationContext *LCtx,
971                                           RegionBindingsRef B,
972                                           InvalidatedRegions *Invalidated) {
973  // Bind the globals memory space to a new symbol that we will use to derive
974  // the bindings for all globals.
975  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
976  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
977                                        /* type does not matter */ Ctx.IntTy,
978                                        Count);
979
980  B = B.removeBinding(GS)
981       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
982
983  // Even if there are no bindings in the global scope, we still need to
984  // record that we touched it.
985  if (Invalidated)
986    Invalidated->push_back(GS);
987
988  return B;
989}
990
991StoreRef
992RegionStoreManager::invalidateRegions(Store store,
993                                      ArrayRef<const MemRegion *> Regions,
994                                      const Expr *Ex, unsigned Count,
995                                      const LocationContext *LCtx,
996                                      InvalidatedSymbols &IS,
997                                      const CallEvent *Call,
998                                      InvalidatedRegions *Invalidated) {
999  invalidateRegionsWorker W(*this, StateMgr,
1000                            RegionStoreManager::getRegionBindings(store),
1001                            Ex, Count, LCtx, IS, Invalidated, false);
1002
1003  // Scan the bindings and generate the clusters.
1004  W.GenerateClusters();
1005
1006  // Add the regions to the worklist.
1007  for (ArrayRef<const MemRegion *>::iterator
1008       I = Regions.begin(), E = Regions.end(); I != E; ++I)
1009    W.AddToWorkList(*I);
1010
1011  W.RunWorkList();
1012
1013  // Return the new bindings.
1014  RegionBindingsRef B = W.getRegionBindings();
1015
1016  // For all globals which are not static nor immutable: determine which global
1017  // regions should be invalidated and invalidate them.
1018  // TODO: This could possibly be more precise with modules.
1019  //
1020  // System calls invalidate only system globals.
1021  if (Call && Call->isInSystemHeader()) {
1022    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1023                               Ex, Count, LCtx, B, Invalidated);
1024  // Internal calls might invalidate both system and internal globals.
1025  } else {
1026    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1027                               Ex, Count, LCtx, B, Invalidated);
1028    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1029                               Ex, Count, LCtx, B, Invalidated);
1030  }
1031
1032  return StoreRef(B.asStore(), *this);
1033}
1034
1035//===----------------------------------------------------------------------===//
1036// Extents for regions.
1037//===----------------------------------------------------------------------===//
1038
1039DefinedOrUnknownSVal
1040RegionStoreManager::getSizeInElements(ProgramStateRef state,
1041                                      const MemRegion *R,
1042                                      QualType EleTy) {
1043  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1044  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1045  if (!SizeInt)
1046    return UnknownVal();
1047
1048  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1049
1050  if (Ctx.getAsVariableArrayType(EleTy)) {
1051    // FIXME: We need to track extra state to properly record the size
1052    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1053    // we don't have a divide-by-zero below.
1054    return UnknownVal();
1055  }
1056
1057  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1058
1059  // If a variable is reinterpreted as a type that doesn't fit into a larger
1060  // type evenly, round it down.
1061  // This is a signed value, since it's used in arithmetic with signed indices.
1062  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1063}
1064
1065//===----------------------------------------------------------------------===//
1066// Location and region casting.
1067//===----------------------------------------------------------------------===//
1068
1069/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1070///  type.  'Array' represents the lvalue of the array being decayed
1071///  to a pointer, and the returned SVal represents the decayed
1072///  version of that lvalue (i.e., a pointer to the first element of
1073///  the array).  This is called by ExprEngine when evaluating casts
1074///  from arrays to pointers.
1075SVal RegionStoreManager::ArrayToPointer(Loc Array) {
1076  if (!isa<loc::MemRegionVal>(Array))
1077    return UnknownVal();
1078
1079  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
1080  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
1081
1082  if (!ArrayR)
1083    return UnknownVal();
1084
1085  // Strip off typedefs from the ArrayRegion's ValueType.
1086  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
1087  const ArrayType *AT = cast<ArrayType>(T);
1088  T = AT->getElementType();
1089
1090  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1091  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
1092}
1093
1094//===----------------------------------------------------------------------===//
1095// Loading values from regions.
1096//===----------------------------------------------------------------------===//
1097
1098SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1099  assert(!isa<UnknownVal>(L) && "location unknown");
1100  assert(!isa<UndefinedVal>(L) && "location undefined");
1101
1102  // For access to concrete addresses, return UnknownVal.  Checks
1103  // for null dereferences (and similar errors) are done by checkers, not
1104  // the Store.
1105  // FIXME: We can consider lazily symbolicating such memory, but we really
1106  // should defer this when we can reason easily about symbolicating arrays
1107  // of bytes.
1108  if (isa<loc::ConcreteInt>(L)) {
1109    return UnknownVal();
1110  }
1111  if (!isa<loc::MemRegionVal>(L)) {
1112    return UnknownVal();
1113  }
1114
1115  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1116
1117  if (isa<AllocaRegion>(MR) ||
1118      isa<SymbolicRegion>(MR) ||
1119      isa<CodeTextRegion>(MR)) {
1120    if (T.isNull()) {
1121      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1122        T = TR->getLocationType();
1123      else {
1124        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1125        T = SR->getSymbol()->getType();
1126      }
1127    }
1128    MR = GetElementZeroRegion(MR, T);
1129  }
1130
1131  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1132  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1133  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1134  QualType RTy = R->getValueType();
1135
1136  // FIXME: We should eventually handle funny addressing.  e.g.:
1137  //
1138  //   int x = ...;
1139  //   int *p = &x;
1140  //   char *q = (char*) p;
1141  //   char c = *q;  // returns the first byte of 'x'.
1142  //
1143  // Such funny addressing will occur due to layering of regions.
1144  if (RTy->isStructureOrClassType())
1145    return getBindingForStruct(B, R);
1146
1147  // FIXME: Handle unions.
1148  if (RTy->isUnionType())
1149    return UnknownVal();
1150
1151  if (RTy->isArrayType()) {
1152    if (RTy->isConstantArrayType())
1153      return getBindingForArray(B, R);
1154    else
1155      return UnknownVal();
1156  }
1157
1158  // FIXME: handle Vector types.
1159  if (RTy->isVectorType())
1160    return UnknownVal();
1161
1162  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1163    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1164
1165  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1166    // FIXME: Here we actually perform an implicit conversion from the loaded
1167    // value to the element type.  Eventually we want to compose these values
1168    // more intelligently.  For example, an 'element' can encompass multiple
1169    // bound regions (e.g., several bound bytes), or could be a subset of
1170    // a larger value.
1171    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1172  }
1173
1174  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1175    // FIXME: Here we actually perform an implicit conversion from the loaded
1176    // value to the ivar type.  What we should model is stores to ivars
1177    // that blow past the extent of the ivar.  If the address of the ivar is
1178    // reinterpretted, it is possible we stored a different value that could
1179    // fit within the ivar.  Either we need to cast these when storing them
1180    // or reinterpret them lazily (as we do here).
1181    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1182  }
1183
1184  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1185    // FIXME: Here we actually perform an implicit conversion from the loaded
1186    // value to the variable type.  What we should model is stores to variables
1187    // that blow past the extent of the variable.  If the address of the
1188    // variable is reinterpretted, it is possible we stored a different value
1189    // that could fit within the variable.  Either we need to cast these when
1190    // storing them or reinterpret them lazily (as we do here).
1191    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1192  }
1193
1194  const SVal *V = B.lookup(R, BindingKey::Direct);
1195
1196  // Check if the region has a binding.
1197  if (V)
1198    return *V;
1199
1200  // The location does not have a bound value.  This means that it has
1201  // the value it had upon its creation and/or entry to the analyzed
1202  // function/method.  These are either symbolic values or 'undefined'.
1203  if (R->hasStackNonParametersStorage()) {
1204    // All stack variables are considered to have undefined values
1205    // upon creation.  All heap allocated blocks are considered to
1206    // have undefined values as well unless they are explicitly bound
1207    // to specific values.
1208    return UndefinedVal();
1209  }
1210
1211  // All other values are symbolic.
1212  return svalBuilder.getRegionValueSymbolVal(R);
1213}
1214
1215std::pair<Store, const MemRegion *>
1216RegionStoreManager::getLazyBinding(RegionBindingsConstRef B,
1217                                   const MemRegion *R,
1218                                   const MemRegion *originalRegion,
1219                                   bool includeSuffix) {
1220
1221  if (originalRegion != R) {
1222    if (Optional<SVal> OV = B.getDefaultBinding(R)) {
1223      if (const nonloc::LazyCompoundVal *V =
1224          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1225        return std::make_pair(V->getStore(), V->getRegion());
1226    }
1227  }
1228
1229  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1230    const std::pair<Store, const MemRegion *> &X =
1231      getLazyBinding(B, ER->getSuperRegion(), originalRegion);
1232
1233    if (X.second)
1234      return std::make_pair(X.first,
1235                            MRMgr.getElementRegionWithSuper(ER, X.second));
1236  }
1237  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1238    const std::pair<Store, const MemRegion *> &X =
1239      getLazyBinding(B, FR->getSuperRegion(), originalRegion);
1240
1241    if (X.second) {
1242      if (includeSuffix)
1243        return std::make_pair(X.first,
1244                              MRMgr.getFieldRegionWithSuper(FR, X.second));
1245      return X;
1246    }
1247
1248  }
1249  // C++ base object region is another kind of region that we should blast
1250  // through to look for lazy compound value. It is like a field region.
1251  else if (const CXXBaseObjectRegion *baseReg =
1252            dyn_cast<CXXBaseObjectRegion>(R)) {
1253    const std::pair<Store, const MemRegion *> &X =
1254      getLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1255
1256    if (X.second) {
1257      if (includeSuffix)
1258        return std::make_pair(X.first,
1259                              MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1260                                                                    X.second));
1261      return X;
1262    }
1263  }
1264
1265  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1266  // possible for a valid lazy binding.
1267  return std::make_pair((Store) 0, (const MemRegion *) 0);
1268}
1269
1270SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1271                                              const ElementRegion* R) {
1272  // We do not currently model bindings of the CompoundLiteralregion.
1273  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1274    return UnknownVal();
1275
1276  // Check if the region has a binding.
1277  if (const Optional<SVal> &V = B.getDirectBinding(R))
1278    return *V;
1279
1280  const MemRegion* superR = R->getSuperRegion();
1281
1282  // Check if the region is an element region of a string literal.
1283  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1284    // FIXME: Handle loads from strings where the literal is treated as
1285    // an integer, e.g., *((unsigned int*)"hello")
1286    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1287    if (T != Ctx.getCanonicalType(R->getElementType()))
1288      return UnknownVal();
1289
1290    const StringLiteral *Str = StrR->getStringLiteral();
1291    SVal Idx = R->getIndex();
1292    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1293      int64_t i = CI->getValue().getSExtValue();
1294      // Abort on string underrun.  This can be possible by arbitrary
1295      // clients of getBindingForElement().
1296      if (i < 0)
1297        return UndefinedVal();
1298      int64_t length = Str->getLength();
1299      // Technically, only i == length is guaranteed to be null.
1300      // However, such overflows should be caught before reaching this point;
1301      // the only time such an access would be made is if a string literal was
1302      // used to initialize a larger array.
1303      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1304      return svalBuilder.makeIntVal(c, T);
1305    }
1306  }
1307
1308  // Check for loads from a code text region.  For such loads, just give up.
1309  if (isa<CodeTextRegion>(superR))
1310    return UnknownVal();
1311
1312  // Handle the case where we are indexing into a larger scalar object.
1313  // For example, this handles:
1314  //   int x = ...
1315  //   char *y = &x;
1316  //   return *y;
1317  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1318  const RegionRawOffset &O = R->getAsArrayOffset();
1319
1320  // If we cannot reason about the offset, return an unknown value.
1321  if (!O.getRegion())
1322    return UnknownVal();
1323
1324  if (const TypedValueRegion *baseR =
1325        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1326    QualType baseT = baseR->getValueType();
1327    if (baseT->isScalarType()) {
1328      QualType elemT = R->getElementType();
1329      if (elemT->isScalarType()) {
1330        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1331          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1332            if (SymbolRef parentSym = V->getAsSymbol())
1333              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1334
1335            if (V->isUnknownOrUndef())
1336              return *V;
1337            // Other cases: give up.  We are indexing into a larger object
1338            // that has some value, but we don't know how to handle that yet.
1339            return UnknownVal();
1340          }
1341        }
1342      }
1343    }
1344  }
1345  return getBindingForFieldOrElementCommon(B, R, R->getElementType(),
1346                                           superR);
1347}
1348
1349SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1350                                            const FieldRegion* R) {
1351
1352  // Check if the region has a binding.
1353  if (const Optional<SVal> &V = B.getDirectBinding(R))
1354    return *V;
1355
1356  QualType Ty = R->getValueType();
1357  return getBindingForFieldOrElementCommon(B, R, Ty, R->getSuperRegion());
1358}
1359
1360Optional<SVal>
1361RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1362                                                     const MemRegion *superR,
1363                                                     const TypedValueRegion *R,
1364                                                     QualType Ty) {
1365
1366  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1367    const SVal &val = D.getValue();
1368    if (SymbolRef parentSym = val.getAsSymbol())
1369      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1370
1371    if (val.isZeroConstant())
1372      return svalBuilder.makeZeroVal(Ty);
1373
1374    if (val.isUnknownOrUndef())
1375      return val;
1376
1377    // Lazy bindings are handled later.
1378    if (isa<nonloc::LazyCompoundVal>(val))
1379      return Optional<SVal>();
1380
1381    llvm_unreachable("Unknown default value");
1382  }
1383
1384  return Optional<SVal>();
1385}
1386
1387SVal RegionStoreManager::getLazyBinding(const MemRegion *LazyBindingRegion,
1388                                        RegionBindingsRef LazyBinding) {
1389  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1390    return getBindingForElement(LazyBinding, ER);
1391  return getBindingForField(LazyBinding, cast<FieldRegion>(LazyBindingRegion));
1392}
1393
1394SVal
1395RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1396                                                      const TypedValueRegion *R,
1397                                                      QualType Ty,
1398                                                      const MemRegion *superR) {
1399
1400  // At this point we have already checked in either getBindingForElement or
1401  // getBindingForField if 'R' has a direct binding.
1402
1403  // Lazy binding?
1404  Store lazyBindingStore = NULL;
1405  const MemRegion *lazyBindingRegion = NULL;
1406  llvm::tie(lazyBindingStore, lazyBindingRegion) = getLazyBinding(B, R, R,
1407                                                                  true);
1408  if (lazyBindingRegion)
1409    return getLazyBinding(lazyBindingRegion,
1410                          getRegionBindings(lazyBindingStore));
1411
1412  // Record whether or not we see a symbolic index.  That can completely
1413  // be out of scope of our lookup.
1414  bool hasSymbolicIndex = false;
1415
1416  while (superR) {
1417    if (const Optional<SVal> &D =
1418        getBindingForDerivedDefaultValue(B, superR, R, Ty))
1419      return *D;
1420
1421    if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1422      NonLoc index = ER->getIndex();
1423      if (!index.isConstant())
1424        hasSymbolicIndex = true;
1425    }
1426
1427    // If our super region is a field or element itself, walk up the region
1428    // hierarchy to see if there is a default value installed in an ancestor.
1429    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1430      superR = SR->getSuperRegion();
1431      continue;
1432    }
1433    break;
1434  }
1435
1436  if (R->hasStackNonParametersStorage()) {
1437    if (isa<ElementRegion>(R)) {
1438      // Currently we don't reason specially about Clang-style vectors.  Check
1439      // if superR is a vector and if so return Unknown.
1440      if (const TypedValueRegion *typedSuperR =
1441            dyn_cast<TypedValueRegion>(superR)) {
1442        if (typedSuperR->getValueType()->isVectorType())
1443          return UnknownVal();
1444      }
1445    }
1446
1447    // FIXME: We also need to take ElementRegions with symbolic indexes into
1448    // account.  This case handles both directly accessing an ElementRegion
1449    // with a symbolic offset, but also fields within an element with
1450    // a symbolic offset.
1451    if (hasSymbolicIndex)
1452      return UnknownVal();
1453
1454    return UndefinedVal();
1455  }
1456
1457  // All other values are symbolic.
1458  return svalBuilder.getRegionValueSymbolVal(R);
1459}
1460
1461SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1462                                               const ObjCIvarRegion* R) {
1463  // Check if the region has a binding.
1464  if (const Optional<SVal> &V = B.getDirectBinding(R))
1465    return *V;
1466
1467  const MemRegion *superR = R->getSuperRegion();
1468
1469  // Check if the super region has a default binding.
1470  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1471    if (SymbolRef parentSym = V->getAsSymbol())
1472      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1473
1474    // Other cases: give up.
1475    return UnknownVal();
1476  }
1477
1478  return getBindingForLazySymbol(R);
1479}
1480
1481SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1482                                          const VarRegion *R) {
1483
1484  // Check if the region has a binding.
1485  if (const Optional<SVal> &V = B.getDirectBinding(R))
1486    return *V;
1487
1488  // Lazily derive a value for the VarRegion.
1489  const VarDecl *VD = R->getDecl();
1490  QualType T = VD->getType();
1491  const MemSpaceRegion *MS = R->getMemorySpace();
1492
1493  if (isa<UnknownSpaceRegion>(MS) ||
1494      isa<StackArgumentsSpaceRegion>(MS))
1495    return svalBuilder.getRegionValueSymbolVal(R);
1496
1497  if (isa<GlobalsSpaceRegion>(MS)) {
1498    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1499      // Is 'VD' declared constant?  If so, retrieve the constant value.
1500      QualType CT = Ctx.getCanonicalType(T);
1501      if (CT.isConstQualified()) {
1502        const Expr *Init = VD->getInit();
1503        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1504        if (Init)
1505          if (const IntegerLiteral *IL =
1506              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1507            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1508            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1509          }
1510      }
1511
1512      if (const Optional<SVal> &V
1513            = getBindingForDerivedDefaultValue(B, MS, R, CT))
1514        return V.getValue();
1515
1516      return svalBuilder.getRegionValueSymbolVal(R);
1517    }
1518
1519    if (T->isIntegerType())
1520      return svalBuilder.makeIntVal(0, T);
1521    if (T->isPointerType())
1522      return svalBuilder.makeNull();
1523
1524    return UnknownVal();
1525  }
1526
1527  return UndefinedVal();
1528}
1529
1530SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1531  // All other values are symbolic.
1532  return svalBuilder.getRegionValueSymbolVal(R);
1533}
1534
1535static bool mayHaveLazyBinding(QualType Ty) {
1536  return Ty->isArrayType() || Ty->isStructureOrClassType();
1537}
1538
1539SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1540                                             const TypedValueRegion* R) {
1541  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1542  if (RD->field_empty())
1543    return UnknownVal();
1544
1545  // If we already have a lazy binding, don't create a new one,
1546  // unless the first field might have a lazy binding of its own.
1547  // (Right now we can't tell the difference.)
1548  QualType FirstFieldType = RD->field_begin()->getType();
1549  if (!mayHaveLazyBinding(FirstFieldType)) {
1550    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1551    if (const nonloc::LazyCompoundVal *V =
1552          dyn_cast_or_null<nonloc::LazyCompoundVal>(B.lookup(K))) {
1553      return *V;
1554    }
1555  }
1556
1557  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1558}
1559
1560SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1561                                            const TypedValueRegion * R) {
1562  const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
1563  assert(Ty && "Only constant array types can have compound bindings.");
1564
1565  // If we already have a lazy binding, don't create a new one,
1566  // unless the first element might have a lazy binding of its own.
1567  // (Right now we can't tell the difference.)
1568  if (!mayHaveLazyBinding(Ty->getElementType())) {
1569    BindingKey K = BindingKey::Make(R, BindingKey::Default);
1570    if (const nonloc::LazyCompoundVal *V =
1571        dyn_cast_or_null<nonloc::LazyCompoundVal>(B.lookup(K))) {
1572      return *V;
1573    }
1574  }
1575
1576  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1577}
1578
1579bool RegionStoreManager::includedInBindings(Store store,
1580                                            const MemRegion *region) const {
1581  RegionBindingsRef B = getRegionBindings(store);
1582  region = region->getBaseRegion();
1583
1584  // Quick path: if the base is the head of a cluster, the region is live.
1585  if (B.lookup(region))
1586    return true;
1587
1588  // Slow path: if the region is the VALUE of any binding, it is live.
1589  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1590    const ClusterBindings &Cluster = RI.getData();
1591    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1592         CI != CE; ++CI) {
1593      const SVal &D = CI.getData();
1594      if (const MemRegion *R = D.getAsRegion())
1595        if (R->getBaseRegion() == region)
1596          return true;
1597    }
1598  }
1599
1600  return false;
1601}
1602
1603//===----------------------------------------------------------------------===//
1604// Binding values to regions.
1605//===----------------------------------------------------------------------===//
1606
1607StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1608  if (isa<loc::MemRegionVal>(L))
1609    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1610      return StoreRef(getRegionBindings(ST).removeBinding(R)
1611                                           .asImmutableMap()
1612                                           .getRootWithoutRetain(),
1613                      *this);
1614
1615  return StoreRef(ST, *this);
1616}
1617
1618RegionBindingsRef
1619RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1620  if (isa<loc::ConcreteInt>(L))
1621    return B;
1622
1623  // If we get here, the location should be a region.
1624  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1625
1626  // Check if the region is a struct region.
1627  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1628    QualType Ty = TR->getValueType();
1629    if (Ty->isArrayType())
1630      return bindArray(B, TR, V);
1631    if (Ty->isStructureOrClassType())
1632      return bindStruct(B, TR, V);
1633    if (Ty->isVectorType())
1634      return bindVector(B, TR, V);
1635  }
1636
1637  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1638    // Binding directly to a symbolic region should be treated as binding
1639    // to element 0.
1640    QualType T = SR->getSymbol()->getType();
1641    if (T->isAnyPointerType() || T->isReferenceType())
1642      T = T->getPointeeType();
1643
1644    R = GetElementZeroRegion(SR, T);
1645  }
1646
1647  // Clear out bindings that may overlap with this binding.
1648  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1649  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1650}
1651
1652// FIXME: this method should be merged into Bind().
1653StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
1654                                                 const CompoundLiteralExpr *CL,
1655                                                 const LocationContext *LC,
1656                                                 SVal V) {
1657  return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
1658}
1659
1660RegionBindingsRef
1661RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1662                                            const MemRegion *R,
1663                                            QualType T) {
1664  SVal V;
1665
1666  if (Loc::isLocType(T))
1667    V = svalBuilder.makeNull();
1668  else if (T->isIntegerType())
1669    V = svalBuilder.makeZeroVal(T);
1670  else if (T->isStructureOrClassType() || T->isArrayType()) {
1671    // Set the default value to a zero constant when it is a structure
1672    // or array.  The type doesn't really matter.
1673    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1674  }
1675  else {
1676    // We can't represent values of this type, but we still need to set a value
1677    // to record that the region has been initialized.
1678    // If this assertion ever fires, a new case should be added above -- we
1679    // should know how to default-initialize any value we can symbolicate.
1680    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1681    V = UnknownVal();
1682  }
1683
1684  return B.addBinding(R, BindingKey::Default, V);
1685}
1686
1687RegionBindingsRef
1688RegionStoreManager::bindArray(RegionBindingsConstRef B,
1689                              const TypedValueRegion* R,
1690                              SVal Init) {
1691
1692  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1693  QualType ElementTy = AT->getElementType();
1694  Optional<uint64_t> Size;
1695
1696  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1697    Size = CAT->getSize().getZExtValue();
1698
1699  // Check if the init expr is a string literal.
1700  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1701    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1702
1703    // Treat the string as a lazy compound value.
1704    StoreRef store(B.asStore(), *this);
1705    nonloc::LazyCompoundVal LCV =
1706      cast<nonloc::LazyCompoundVal>(svalBuilder.makeLazyCompoundVal(store, S));
1707    return bindAggregate(B, R, LCV);
1708  }
1709
1710  // Handle lazy compound values.
1711  if (isa<nonloc::LazyCompoundVal>(Init))
1712    return bindAggregate(B, R, Init);
1713
1714  // Remaining case: explicit compound values.
1715
1716  if (Init.isUnknown())
1717    return setImplicitDefaultValue(B, R, ElementTy);
1718
1719  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1720  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1721  uint64_t i = 0;
1722
1723  RegionBindingsRef NewB(B);
1724
1725  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1726    // The init list might be shorter than the array length.
1727    if (VI == VE)
1728      break;
1729
1730    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1731    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1732
1733    if (ElementTy->isStructureOrClassType())
1734      NewB = bindStruct(NewB, ER, *VI);
1735    else if (ElementTy->isArrayType())
1736      NewB = bindArray(NewB, ER, *VI);
1737    else
1738      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1739  }
1740
1741  // If the init list is shorter than the array length, set the
1742  // array default value.
1743  if (Size.hasValue() && i < Size.getValue())
1744    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
1745
1746  return NewB;
1747}
1748
1749RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
1750                                                 const TypedValueRegion* R,
1751                                                 SVal V) {
1752  QualType T = R->getValueType();
1753  assert(T->isVectorType());
1754  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1755
1756  // Handle lazy compound values and symbolic values.
1757  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1758    return bindAggregate(B, R, V);
1759
1760  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1761  // that we are binding symbolic struct value. Kill the field values, and if
1762  // the value is symbolic go and bind it as a "default" binding.
1763  if (!isa<nonloc::CompoundVal>(V)) {
1764    return bindAggregate(B, R, UnknownVal());
1765  }
1766
1767  QualType ElemType = VT->getElementType();
1768  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1769  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1770  unsigned index = 0, numElements = VT->getNumElements();
1771  RegionBindingsRef NewB(B);
1772
1773  for ( ; index != numElements ; ++index) {
1774    if (VI == VE)
1775      break;
1776
1777    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1778    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1779
1780    if (ElemType->isArrayType())
1781      NewB = bindArray(NewB, ER, *VI);
1782    else if (ElemType->isStructureOrClassType())
1783      NewB = bindStruct(NewB, ER, *VI);
1784    else
1785      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1786  }
1787  return NewB;
1788}
1789
1790RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
1791                                                 const TypedValueRegion* R,
1792                                                 SVal V) {
1793  if (!Features.supportsFields())
1794    return B;
1795
1796  QualType T = R->getValueType();
1797  assert(T->isStructureOrClassType());
1798
1799  const RecordType* RT = T->getAs<RecordType>();
1800  RecordDecl *RD = RT->getDecl();
1801
1802  if (!RD->isCompleteDefinition())
1803    return B;
1804
1805  // Handle lazy compound values and symbolic values.
1806  if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
1807    return bindAggregate(B, R, V);
1808
1809  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1810  // that we are binding symbolic struct value. Kill the field values, and if
1811  // the value is symbolic go and bind it as a "default" binding.
1812  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
1813    return bindAggregate(B, R, UnknownVal());
1814
1815  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1816  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1817
1818  RecordDecl::field_iterator FI, FE;
1819  RegionBindingsRef NewB(B);
1820
1821  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1822
1823    if (VI == VE)
1824      break;
1825
1826    // Skip any unnamed bitfields to stay in sync with the initializers.
1827    if (FI->isUnnamedBitfield())
1828      continue;
1829
1830    QualType FTy = FI->getType();
1831    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1832
1833    if (FTy->isArrayType())
1834      NewB = bindArray(NewB, FR, *VI);
1835    else if (FTy->isStructureOrClassType())
1836      NewB = bindStruct(NewB, FR, *VI);
1837    else
1838      NewB = bind(NewB, svalBuilder.makeLoc(FR), *VI);
1839    ++VI;
1840  }
1841
1842  // There may be fewer values in the initialize list than the fields of struct.
1843  if (FI != FE) {
1844    NewB = NewB.addBinding(R, BindingKey::Default,
1845                           svalBuilder.makeIntVal(0, false));
1846  }
1847
1848  return NewB;
1849}
1850
1851RegionBindingsRef
1852RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
1853                                  const TypedRegion *R,
1854                                  SVal Val) {
1855  // Remove the old bindings, using 'R' as the root of all regions
1856  // we will invalidate. Then add the new binding.
1857  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
1858}
1859
1860//===----------------------------------------------------------------------===//
1861// State pruning.
1862//===----------------------------------------------------------------------===//
1863
1864namespace {
1865class removeDeadBindingsWorker :
1866  public ClusterAnalysis<removeDeadBindingsWorker> {
1867  SmallVector<const SymbolicRegion*, 12> Postponed;
1868  SymbolReaper &SymReaper;
1869  const StackFrameContext *CurrentLCtx;
1870
1871public:
1872  removeDeadBindingsWorker(RegionStoreManager &rm,
1873                           ProgramStateManager &stateMgr,
1874                           RegionBindingsRef b, SymbolReaper &symReaper,
1875                           const StackFrameContext *LCtx)
1876    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1877                                                /* includeGlobals = */ false),
1878      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1879
1880  // Called by ClusterAnalysis.
1881  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
1882  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
1883
1884  bool UpdatePostponed();
1885  void VisitBinding(SVal V);
1886};
1887}
1888
1889void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1890                                                   const ClusterBindings &C) {
1891
1892  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1893    if (SymReaper.isLive(VR))
1894      AddToWorkList(baseR, &C);
1895
1896    return;
1897  }
1898
1899  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1900    if (SymReaper.isLive(SR->getSymbol()))
1901      AddToWorkList(SR, &C);
1902    else
1903      Postponed.push_back(SR);
1904
1905    return;
1906  }
1907
1908  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1909    AddToWorkList(baseR, &C);
1910    return;
1911  }
1912
1913  // CXXThisRegion in the current or parent location context is live.
1914  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1915    const StackArgumentsSpaceRegion *StackReg =
1916      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1917    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1918    if (CurrentLCtx &&
1919        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
1920      AddToWorkList(TR, &C);
1921  }
1922}
1923
1924void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1925                                            const ClusterBindings &C) {
1926  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
1927  // This means we should continue to track that symbol.
1928  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
1929    SymReaper.markLive(SymR->getSymbol());
1930
1931  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
1932    VisitBinding(I.getData());
1933}
1934
1935void removeDeadBindingsWorker::VisitBinding(SVal V) {
1936  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1937  if (const nonloc::LazyCompoundVal *LCS =
1938        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1939
1940    const MemRegion *LazyR = LCS->getRegion();
1941    RegionBindingsRef B = RM.getRegionBindings(LCS->getStore());
1942
1943    // FIXME: This should not have to walk all bindings in the old store.
1944    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
1945         RI != RE; ++RI){
1946      const ClusterBindings &Cluster = RI.getData();
1947      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1948           CI != CE; ++CI) {
1949        BindingKey K = CI.getKey();
1950        if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
1951          if (BaseR == LazyR)
1952            VisitBinding(CI.getData());
1953          else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
1954            VisitBinding(CI.getData());
1955        }
1956      }
1957    }
1958
1959    return;
1960  }
1961
1962  // If V is a region, then add it to the worklist.
1963  if (const MemRegion *R = V.getAsRegion()) {
1964    AddToWorkList(R);
1965
1966    // All regions captured by a block are also live.
1967    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1968      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1969                                                E = BR->referenced_vars_end();
1970      for ( ; I != E; ++I)
1971        AddToWorkList(I.getCapturedRegion());
1972    }
1973  }
1974
1975
1976  // Update the set of live symbols.
1977  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1978       SI!=SE; ++SI)
1979    SymReaper.markLive(*SI);
1980}
1981
1982bool removeDeadBindingsWorker::UpdatePostponed() {
1983  // See if any postponed SymbolicRegions are actually live now, after
1984  // having done a scan.
1985  bool changed = false;
1986
1987  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1988        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1989    if (const SymbolicRegion *SR = *I) {
1990      if (SymReaper.isLive(SR->getSymbol())) {
1991        changed |= AddToWorkList(SR);
1992        *I = NULL;
1993      }
1994    }
1995  }
1996
1997  return changed;
1998}
1999
2000StoreRef RegionStoreManager::removeDeadBindings(Store store,
2001                                                const StackFrameContext *LCtx,
2002                                                SymbolReaper& SymReaper) {
2003  RegionBindingsRef B = getRegionBindings(store);
2004  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2005  W.GenerateClusters();
2006
2007  // Enqueue the region roots onto the worklist.
2008  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2009       E = SymReaper.region_end(); I != E; ++I) {
2010    W.AddToWorkList(*I);
2011  }
2012
2013  do W.RunWorkList(); while (W.UpdatePostponed());
2014
2015  // We have now scanned the store, marking reachable regions and symbols
2016  // as live.  We now remove all the regions that are dead from the store
2017  // as well as update DSymbols with the set symbols that are now dead.
2018  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2019    const MemRegion *Base = I.getKey();
2020
2021    // If the cluster has been visited, we know the region has been marked.
2022    if (W.isVisited(Base))
2023      continue;
2024
2025    // Remove the dead entry.
2026    B = B.remove(Base);
2027
2028    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2029      SymReaper.maybeDead(SymR->getSymbol());
2030
2031    // Mark all non-live symbols that this binding references as dead.
2032    const ClusterBindings &Cluster = I.getData();
2033    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2034         CI != CE; ++CI) {
2035      SVal X = CI.getData();
2036      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2037      for (; SI != SE; ++SI)
2038        SymReaper.maybeDead(*SI);
2039    }
2040  }
2041
2042  return StoreRef(B.asStore(), *this);
2043}
2044
2045//===----------------------------------------------------------------------===//
2046// Utility methods.
2047//===----------------------------------------------------------------------===//
2048
2049void RegionStoreManager::print(Store store, raw_ostream &OS,
2050                               const char* nl, const char *sep) {
2051  RegionBindingsRef B = getRegionBindings(store);
2052  OS << "Store (direct and default bindings), "
2053     << B.asStore()
2054     << " :" << nl;
2055  B.dump(OS, nl);
2056}
2057