RegionStore.cpp revision bea2753da897ede723e70bcd17023d050b0603d0
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/GRStateTrait.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Direct = 0x0, Default = 0x1 };
43private:
44  llvm ::PointerIntPair<const MemRegion*, 1> P;
45  uint64_t Offset;
46
47  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
48    : P(r, (unsigned) k), Offset(offset) {}
49public:
50
51  bool isDirect() const { return P.getInt() == Direct; }
52
53  const MemRegion *getRegion() const { return P.getPointer(); }
54  uint64_t getOffset() const { return Offset; }
55
56  void Profile(llvm::FoldingSetNodeID& ID) const {
57    ID.AddPointer(P.getOpaqueValue());
58    ID.AddInteger(Offset);
59  }
60
61  static BindingKey Make(const MemRegion *R, Kind k);
62
63  bool operator<(const BindingKey &X) const {
64    if (P.getOpaqueValue() < X.P.getOpaqueValue())
65      return true;
66    if (P.getOpaqueValue() > X.P.getOpaqueValue())
67      return false;
68    return Offset < X.Offset;
69  }
70
71  bool operator==(const BindingKey &X) const {
72    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
73           Offset == X.Offset;
74  }
75
76  bool isValid() const {
77    return getRegion() != NULL;
78  }
79};
80} // end anonymous namespace
81
82BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
83  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
84    const RegionRawOffset &O = ER->getAsArrayOffset();
85
86    // FIXME: There are some ElementRegions for which we cannot compute
87    // raw offsets yet, including regions with symbolic offsets. These will be
88    // ignored by the store.
89    return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
90  }
91
92  return BindingKey(R, 0, k);
93}
94
95namespace llvm {
96  static inline
97  raw_ostream& operator<<(raw_ostream& os, BindingKey K) {
98    os << '(' << K.getRegion() << ',' << K.getOffset()
99       << ',' << (K.isDirect() ? "direct" : "default")
100       << ')';
101    return os;
102  }
103} // end llvm namespace
104
105//===----------------------------------------------------------------------===//
106// Actual Store type.
107//===----------------------------------------------------------------------===//
108
109typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
110
111//===----------------------------------------------------------------------===//
112// Fine-grained control of RegionStoreManager.
113//===----------------------------------------------------------------------===//
114
115namespace {
116struct minimal_features_tag {};
117struct maximal_features_tag {};
118
119class RegionStoreFeatures {
120  bool SupportsFields;
121public:
122  RegionStoreFeatures(minimal_features_tag) :
123    SupportsFields(false) {}
124
125  RegionStoreFeatures(maximal_features_tag) :
126    SupportsFields(true) {}
127
128  void enableFields(bool t) { SupportsFields = t; }
129
130  bool supportsFields() const { return SupportsFields; }
131};
132}
133
134//===----------------------------------------------------------------------===//
135// Main RegionStore logic.
136//===----------------------------------------------------------------------===//
137
138namespace {
139
140class RegionStoreSubRegionMap : public SubRegionMap {
141public:
142  typedef llvm::ImmutableSet<const MemRegion*> Set;
143  typedef llvm::DenseMap<const MemRegion*, Set> Map;
144private:
145  Set::Factory F;
146  Map M;
147public:
148  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
149    Map::iterator I = M.find(Parent);
150
151    if (I == M.end()) {
152      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
153      return true;
154    }
155
156    I->second = F.add(I->second, SubRegion);
157    return false;
158  }
159
160  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
161
162  ~RegionStoreSubRegionMap() {}
163
164  const Set *getSubRegions(const MemRegion *Parent) const {
165    Map::const_iterator I = M.find(Parent);
166    return I == M.end() ? NULL : &I->second;
167  }
168
169  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
170    Map::const_iterator I = M.find(Parent);
171
172    if (I == M.end())
173      return true;
174
175    Set S = I->second;
176    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
177      if (!V.Visit(Parent, *SI))
178        return false;
179    }
180
181    return true;
182  }
183};
184
185void
186RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
187                                 const SubRegion *R) {
188  const MemRegion *superR = R->getSuperRegion();
189  if (add(superR, R))
190    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
191      WL.push_back(sr);
192}
193
194class RegionStoreManager : public StoreManager {
195  const RegionStoreFeatures Features;
196  RegionBindings::Factory RBFactory;
197
198public:
199  RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
200    : StoreManager(mgr),
201      Features(f),
202      RBFactory(mgr.getAllocator()) {}
203
204  SubRegionMap *getSubRegionMap(Store store) {
205    return getRegionStoreSubRegionMap(store);
206  }
207
208  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
209
210  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
211  /// getDefaultBinding - Returns an SVal* representing an optional default
212  ///  binding associated with a region and its subregions.
213  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
214
215  /// setImplicitDefaultValue - Set the default binding for the provided
216  ///  MemRegion to the value implicitly defined for compound literals when
217  ///  the value is not specified.
218  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
219
220  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
221  ///  type.  'Array' represents the lvalue of the array being decayed
222  ///  to a pointer, and the returned SVal represents the decayed
223  ///  version of that lvalue (i.e., a pointer to the first element of
224  ///  the array).  This is called by ExprEngine when evaluating
225  ///  casts from arrays to pointers.
226  SVal ArrayToPointer(Loc Array);
227
228  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
229  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
230
231  StoreRef getInitialStore(const LocationContext *InitLoc) {
232    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
233  }
234
235  //===-------------------------------------------------------------------===//
236  // Binding values to regions.
237  //===-------------------------------------------------------------------===//
238
239  StoreRef invalidateRegions(Store store,
240                             const MemRegion * const *Begin,
241                             const MemRegion * const *End,
242                             const Expr *E, unsigned Count,
243                             InvalidatedSymbols &IS,
244                             bool invalidateGlobals,
245                             InvalidatedRegions *Regions);
246
247public:   // Made public for helper classes.
248
249  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
250                               RegionStoreSubRegionMap &M);
251
252  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
253
254  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
255                     BindingKey::Kind k, SVal V);
256
257  const SVal *lookup(RegionBindings B, BindingKey K);
258  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
259
260  RegionBindings removeBinding(RegionBindings B, BindingKey K);
261  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
262                        BindingKey::Kind k);
263
264  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
265    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
266                        BindingKey::Default);
267  }
268
269public: // Part of public interface to class.
270
271  StoreRef Bind(Store store, Loc LV, SVal V);
272
273  // BindDefault is only used to initialize a region with a default value.
274  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
275    RegionBindings B = GetRegionBindings(store);
276    assert(!lookup(B, R, BindingKey::Default));
277    assert(!lookup(B, R, BindingKey::Direct));
278    return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
279  }
280
281  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
282                               const LocationContext *LC, SVal V);
283
284  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
285
286  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
287    return StoreRef(store, *this);
288  }
289
290  /// BindStruct - Bind a compound value to a structure.
291  StoreRef BindStruct(Store store, const TypedRegion* R, SVal V);
292
293  StoreRef BindArray(Store store, const TypedRegion* R, SVal V);
294
295  /// KillStruct - Set the entire struct to unknown.
296  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
297
298  StoreRef Remove(Store store, Loc LV);
299
300  void incrementReferenceCount(Store store) {
301    GetRegionBindings(store).manualRetain();
302  }
303
304  /// If the StoreManager supports it, decrement the reference count of
305  /// the specified Store object.  If the reference count hits 0, the memory
306  /// associated with the object is recycled.
307  void decrementReferenceCount(Store store) {
308    GetRegionBindings(store).manualRelease();
309  }
310
311  bool includedInBindings(Store store, const MemRegion *region) const;
312
313  //===------------------------------------------------------------------===//
314  // Loading values from regions.
315  //===------------------------------------------------------------------===//
316
317  /// The high level logic for this method is this:
318  /// Retrieve (L)
319  ///   if L has binding
320  ///     return L's binding
321  ///   else if L is in killset
322  ///     return unknown
323  ///   else
324  ///     if L is on stack or heap
325  ///       return undefined
326  ///     else
327  ///       return symbolic
328  SVal Retrieve(Store store, Loc L, QualType T = QualType());
329
330  SVal RetrieveElement(Store store, const ElementRegion *R);
331
332  SVal RetrieveField(Store store, const FieldRegion *R);
333
334  SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
335
336  SVal RetrieveVar(Store store, const VarRegion *R);
337
338  SVal RetrieveLazySymbol(const TypedRegion *R);
339
340  SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
341                                    QualType Ty, const MemRegion *superR);
342
343  SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
344                           Store lazyBindingStore);
345
346  /// Retrieve the values in a struct and return a CompoundVal, used when doing
347  /// struct copy:
348  /// struct s x, y;
349  /// x = y;
350  /// y's value is retrieved by this method.
351  SVal RetrieveStruct(Store store, const TypedRegion* R);
352
353  SVal RetrieveArray(Store store, const TypedRegion* R);
354
355  /// Used to lazily generate derived symbols for bindings that are defined
356  ///  implicitly by default bindings in a super region.
357  Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
358                                             const MemRegion *superR,
359                                             const TypedRegion *R, QualType Ty);
360
361  /// Get the state and region whose binding this region R corresponds to.
362  std::pair<Store, const MemRegion*>
363  GetLazyBinding(RegionBindings B, const MemRegion *R,
364                 const MemRegion *originalRegion);
365
366  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
367                            const TypedRegion *R);
368
369  //===------------------------------------------------------------------===//
370  // State pruning.
371  //===------------------------------------------------------------------===//
372
373  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
374  ///  It returns a new Store with these values removed.
375  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
376                              SymbolReaper& SymReaper);
377
378  StoreRef enterStackFrame(const GRState *state,
379                           const StackFrameContext *frame);
380
381  //===------------------------------------------------------------------===//
382  // Region "extents".
383  //===------------------------------------------------------------------===//
384
385  // FIXME: This method will soon be eliminated; see the note in Store.h.
386  DefinedOrUnknownSVal getSizeInElements(const GRState *state,
387                                         const MemRegion* R, QualType EleTy);
388
389  //===------------------------------------------------------------------===//
390  // Utility methods.
391  //===------------------------------------------------------------------===//
392
393  static inline RegionBindings GetRegionBindings(Store store) {
394    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
395  }
396
397  void print(Store store, raw_ostream& Out, const char* nl,
398             const char *sep);
399
400  void iterBindings(Store store, BindingsHandler& f) {
401    RegionBindings B = GetRegionBindings(store);
402    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
403      const BindingKey &K = I.getKey();
404      if (!K.isDirect())
405        continue;
406      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
407        // FIXME: Possibly incorporate the offset?
408        if (!f.HandleBinding(*this, store, R, I.getData()))
409          return;
410      }
411    }
412  }
413};
414
415} // end anonymous namespace
416
417//===----------------------------------------------------------------------===//
418// RegionStore creation.
419//===----------------------------------------------------------------------===//
420
421StoreManager *ento::CreateRegionStoreManager(GRStateManager& StMgr) {
422  RegionStoreFeatures F = maximal_features_tag();
423  return new RegionStoreManager(StMgr, F);
424}
425
426StoreManager *ento::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
427  RegionStoreFeatures F = minimal_features_tag();
428  F.enableFields(true);
429  return new RegionStoreManager(StMgr, F);
430}
431
432
433RegionStoreSubRegionMap*
434RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
435  RegionBindings B = GetRegionBindings(store);
436  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
437
438  SmallVector<const SubRegion*, 10> WL;
439
440  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
441    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
442      M->process(WL, R);
443
444  // We also need to record in the subregion map "intermediate" regions that
445  // don't have direct bindings but are super regions of those that do.
446  while (!WL.empty()) {
447    const SubRegion *R = WL.back();
448    WL.pop_back();
449    M->process(WL, R);
450  }
451
452  return M;
453}
454
455//===----------------------------------------------------------------------===//
456// Region Cluster analysis.
457//===----------------------------------------------------------------------===//
458
459namespace {
460template <typename DERIVED>
461class ClusterAnalysis  {
462protected:
463  typedef BumpVector<BindingKey> RegionCluster;
464  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
465  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
466  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
467    WorkList;
468
469  BumpVectorContext BVC;
470  ClusterMap ClusterM;
471  WorkList WL;
472
473  RegionStoreManager &RM;
474  ASTContext &Ctx;
475  SValBuilder &svalBuilder;
476
477  RegionBindings B;
478
479  const bool includeGlobals;
480
481public:
482  ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr,
483                  RegionBindings b, const bool includeGlobals)
484    : RM(rm), Ctx(StateMgr.getContext()),
485      svalBuilder(StateMgr.getSValBuilder()),
486      B(b), includeGlobals(includeGlobals) {}
487
488  RegionBindings getRegionBindings() const { return B; }
489
490  RegionCluster &AddToCluster(BindingKey K) {
491    const MemRegion *R = K.getRegion();
492    const MemRegion *baseR = R->getBaseRegion();
493    RegionCluster &C = getCluster(baseR);
494    C.push_back(K, BVC);
495    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
496    return C;
497  }
498
499  bool isVisited(const MemRegion *R) {
500    return (bool) Visited[&getCluster(R->getBaseRegion())];
501  }
502
503  RegionCluster& getCluster(const MemRegion *R) {
504    RegionCluster *&CRef = ClusterM[R];
505    if (!CRef) {
506      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
507      CRef = new (Mem) RegionCluster(BVC, 10);
508    }
509    return *CRef;
510  }
511
512  void GenerateClusters() {
513      // Scan the entire set of bindings and make the region clusters.
514    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
515      RegionCluster &C = AddToCluster(RI.getKey());
516      if (const MemRegion *R = RI.getData().getAsRegion()) {
517        // Generate a cluster, but don't add the region to the cluster
518        // if there aren't any bindings.
519        getCluster(R->getBaseRegion());
520      }
521      if (includeGlobals) {
522        const MemRegion *R = RI.getKey().getRegion();
523        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
524          AddToWorkList(R, C);
525      }
526    }
527  }
528
529  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
530    if (unsigned &visited = Visited[&C])
531      return false;
532    else
533      visited = 1;
534
535    WL.push_back(std::make_pair(R, &C));
536    return true;
537  }
538
539  bool AddToWorkList(BindingKey K) {
540    return AddToWorkList(K.getRegion());
541  }
542
543  bool AddToWorkList(const MemRegion *R) {
544    const MemRegion *baseR = R->getBaseRegion();
545    return AddToWorkList(baseR, getCluster(baseR));
546  }
547
548  void RunWorkList() {
549    while (!WL.empty()) {
550      const MemRegion *baseR;
551      RegionCluster *C;
552      llvm::tie(baseR, C) = WL.back();
553      WL.pop_back();
554
555        // First visit the cluster.
556      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
557
558        // Next, visit the base region.
559      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
560    }
561  }
562
563public:
564  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
565  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
566  void VisitBaseRegion(const MemRegion *baseR) {}
567};
568}
569
570//===----------------------------------------------------------------------===//
571// Binding invalidation.
572//===----------------------------------------------------------------------===//
573
574void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
575                                                 const MemRegion *R,
576                                                 RegionStoreSubRegionMap &M) {
577
578  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
579    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
580         I != E; ++I)
581      RemoveSubRegionBindings(B, *I, M);
582
583  B = removeBinding(B, R);
584}
585
586namespace {
587class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
588{
589  const Expr *Ex;
590  unsigned Count;
591  StoreManager::InvalidatedSymbols &IS;
592  StoreManager::InvalidatedRegions *Regions;
593public:
594  invalidateRegionsWorker(RegionStoreManager &rm,
595                          GRStateManager &stateMgr,
596                          RegionBindings b,
597                          const Expr *ex, unsigned count,
598                          StoreManager::InvalidatedSymbols &is,
599                          StoreManager::InvalidatedRegions *r,
600                          bool includeGlobals)
601    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
602      Ex(ex), Count(count), IS(is), Regions(r) {}
603
604  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
605  void VisitBaseRegion(const MemRegion *baseR);
606
607private:
608  void VisitBinding(SVal V);
609};
610}
611
612void invalidateRegionsWorker::VisitBinding(SVal V) {
613  // A symbol?  Mark it touched by the invalidation.
614  if (SymbolRef Sym = V.getAsSymbol())
615    IS.insert(Sym);
616
617  if (const MemRegion *R = V.getAsRegion()) {
618    AddToWorkList(R);
619    return;
620  }
621
622  // Is it a LazyCompoundVal?  All references get invalidated as well.
623  if (const nonloc::LazyCompoundVal *LCS =
624        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
625
626    const MemRegion *LazyR = LCS->getRegion();
627    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
628
629    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
630      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
631      if (baseR && baseR->isSubRegionOf(LazyR))
632        VisitBinding(RI.getData());
633    }
634
635    return;
636  }
637}
638
639void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
640                                           BindingKey *I, BindingKey *E) {
641  for ( ; I != E; ++I) {
642    // Get the old binding.  Is it a region?  If so, add it to the worklist.
643    const BindingKey &K = *I;
644    if (const SVal *V = RM.lookup(B, K))
645      VisitBinding(*V);
646
647    B = RM.removeBinding(B, K);
648  }
649}
650
651void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
652  // Symbolic region?  Mark that symbol touched by the invalidation.
653  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
654    IS.insert(SR->getSymbol());
655
656  // BlockDataRegion?  If so, invalidate captured variables that are passed
657  // by reference.
658  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
659    for (BlockDataRegion::referenced_vars_iterator
660         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
661         BI != BE; ++BI) {
662      const VarRegion *VR = *BI;
663      const VarDecl *VD = VR->getDecl();
664      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
665        AddToWorkList(VR);
666    }
667    return;
668  }
669
670  // Otherwise, we have a normal data region. Record that we touched the region.
671  if (Regions)
672    Regions->push_back(baseR);
673
674  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
675    // Invalidate the region by setting its default value to
676    // conjured symbol. The type of the symbol is irrelavant.
677    DefinedOrUnknownSVal V =
678      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
679    B = RM.addBinding(B, baseR, BindingKey::Default, V);
680    return;
681  }
682
683  if (!baseR->isBoundable())
684    return;
685
686  const TypedRegion *TR = cast<TypedRegion>(baseR);
687  QualType T = TR->getValueType();
688
689    // Invalidate the binding.
690  if (T->isStructureOrClassType()) {
691    // Invalidate the region by setting its default value to
692    // conjured symbol. The type of the symbol is irrelavant.
693    DefinedOrUnknownSVal V =
694      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
695    B = RM.addBinding(B, baseR, BindingKey::Default, V);
696    return;
697  }
698
699  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
700      // Set the default value of the array to conjured symbol.
701    DefinedOrUnknownSVal V =
702    svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
703    B = RM.addBinding(B, baseR, BindingKey::Default, V);
704    return;
705  }
706
707  if (includeGlobals &&
708      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
709    // If the region is a global and we are invalidating all globals,
710    // just erase the entry.  This causes all globals to be lazily
711    // symbolicated from the same base symbol.
712    B = RM.removeBinding(B, baseR);
713    return;
714  }
715
716
717  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
718  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
719  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
720}
721
722StoreRef RegionStoreManager::invalidateRegions(Store store,
723                                               const MemRegion * const *I,
724                                               const MemRegion * const *E,
725                                               const Expr *Ex, unsigned Count,
726                                               InvalidatedSymbols &IS,
727                                               bool invalidateGlobals,
728                                               InvalidatedRegions *Regions) {
729  invalidateRegionsWorker W(*this, StateMgr,
730                            RegionStoreManager::GetRegionBindings(store),
731                            Ex, Count, IS, Regions, invalidateGlobals);
732
733  // Scan the bindings and generate the clusters.
734  W.GenerateClusters();
735
736  // Add I .. E to the worklist.
737  for ( ; I != E; ++I)
738    W.AddToWorkList(*I);
739
740  W.RunWorkList();
741
742  // Return the new bindings.
743  RegionBindings B = W.getRegionBindings();
744
745  if (invalidateGlobals) {
746    // Bind the non-static globals memory space to a new symbol that we will
747    // use to derive the bindings for all non-static globals.
748    const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
749    SVal V =
750      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
751                                  /* symbol type, doesn't matter */ Ctx.IntTy,
752                                  Count);
753    B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
754
755    // Even if there are no bindings in the global scope, we still need to
756    // record that we touched it.
757    if (Regions)
758      Regions->push_back(GS);
759  }
760
761  return StoreRef(B.getRootWithoutRetain(), *this);
762}
763
764//===----------------------------------------------------------------------===//
765// Extents for regions.
766//===----------------------------------------------------------------------===//
767
768DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
769                                                           const MemRegion *R,
770                                                           QualType EleTy) {
771  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
772  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
773  if (!SizeInt)
774    return UnknownVal();
775
776  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
777
778  if (Ctx.getAsVariableArrayType(EleTy)) {
779    // FIXME: We need to track extra state to properly record the size
780    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
781    // we don't have a divide-by-zero below.
782    return UnknownVal();
783  }
784
785  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
786
787  // If a variable is reinterpreted as a type that doesn't fit into a larger
788  // type evenly, round it down.
789  // This is a signed value, since it's used in arithmetic with signed indices.
790  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
791}
792
793//===----------------------------------------------------------------------===//
794// Location and region casting.
795//===----------------------------------------------------------------------===//
796
797/// ArrayToPointer - Emulates the "decay" of an array to a pointer
798///  type.  'Array' represents the lvalue of the array being decayed
799///  to a pointer, and the returned SVal represents the decayed
800///  version of that lvalue (i.e., a pointer to the first element of
801///  the array).  This is called by ExprEngine when evaluating casts
802///  from arrays to pointers.
803SVal RegionStoreManager::ArrayToPointer(Loc Array) {
804  if (!isa<loc::MemRegionVal>(Array))
805    return UnknownVal();
806
807  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
808  const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
809
810  if (!ArrayR)
811    return UnknownVal();
812
813  // Strip off typedefs from the ArrayRegion's ValueType.
814  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
815  const ArrayType *AT = cast<ArrayType>(T);
816  T = AT->getElementType();
817
818  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
819  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
820}
821
822SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
823  const CXXRecordDecl *baseDecl;
824  if (baseType->isPointerType())
825    baseDecl = baseType->getCXXRecordDeclForPointerType();
826  else
827    baseDecl = baseType->getAsCXXRecordDecl();
828
829  assert(baseDecl && "not a CXXRecordDecl?");
830
831  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
832  if (!derivedRegVal)
833    return derived;
834
835  const MemRegion *baseReg =
836    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
837
838  return loc::MemRegionVal(baseReg);
839}
840
841//===----------------------------------------------------------------------===//
842// Loading values from regions.
843//===----------------------------------------------------------------------===//
844
845Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
846                                                    const MemRegion *R) {
847
848  if (const SVal *V = lookup(B, R, BindingKey::Direct))
849    return *V;
850
851  return Optional<SVal>();
852}
853
854Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
855                                                     const MemRegion *R) {
856  if (R->isBoundable())
857    if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
858      if (TR->getValueType()->isUnionType())
859        return UnknownVal();
860
861  if (const SVal *V = lookup(B, R, BindingKey::Default))
862    return *V;
863
864  return Optional<SVal>();
865}
866
867SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
868  assert(!isa<UnknownVal>(L) && "location unknown");
869  assert(!isa<UndefinedVal>(L) && "location undefined");
870
871  // For access to concrete addresses, return UnknownVal.  Checks
872  // for null dereferences (and similar errors) are done by checkers, not
873  // the Store.
874  // FIXME: We can consider lazily symbolicating such memory, but we really
875  // should defer this when we can reason easily about symbolicating arrays
876  // of bytes.
877  if (isa<loc::ConcreteInt>(L)) {
878    return UnknownVal();
879  }
880  if (!isa<loc::MemRegionVal>(L)) {
881    return UnknownVal();
882  }
883
884  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
885
886  if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
887    if (T.isNull()) {
888      const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
889      T = SR->getSymbol()->getType(Ctx);
890    }
891    MR = GetElementZeroRegion(MR, T);
892  }
893
894  if (isa<CodeTextRegion>(MR)) {
895    assert(0 && "Why load from a code text region?");
896    return UnknownVal();
897  }
898
899  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
900  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
901  const TypedRegion *R = cast<TypedRegion>(MR);
902  QualType RTy = R->getValueType();
903
904  // FIXME: We should eventually handle funny addressing.  e.g.:
905  //
906  //   int x = ...;
907  //   int *p = &x;
908  //   char *q = (char*) p;
909  //   char c = *q;  // returns the first byte of 'x'.
910  //
911  // Such funny addressing will occur due to layering of regions.
912
913  if (RTy->isStructureOrClassType())
914    return RetrieveStruct(store, R);
915
916  // FIXME: Handle unions.
917  if (RTy->isUnionType())
918    return UnknownVal();
919
920  if (RTy->isArrayType())
921    return RetrieveArray(store, R);
922
923  // FIXME: handle Vector types.
924  if (RTy->isVectorType())
925    return UnknownVal();
926
927  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
928    return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
929
930  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
931    // FIXME: Here we actually perform an implicit conversion from the loaded
932    // value to the element type.  Eventually we want to compose these values
933    // more intelligently.  For example, an 'element' can encompass multiple
934    // bound regions (e.g., several bound bytes), or could be a subset of
935    // a larger value.
936    return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
937  }
938
939  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
940    // FIXME: Here we actually perform an implicit conversion from the loaded
941    // value to the ivar type.  What we should model is stores to ivars
942    // that blow past the extent of the ivar.  If the address of the ivar is
943    // reinterpretted, it is possible we stored a different value that could
944    // fit within the ivar.  Either we need to cast these when storing them
945    // or reinterpret them lazily (as we do here).
946    return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
947  }
948
949  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
950    // FIXME: Here we actually perform an implicit conversion from the loaded
951    // value to the variable type.  What we should model is stores to variables
952    // that blow past the extent of the variable.  If the address of the
953    // variable is reinterpretted, it is possible we stored a different value
954    // that could fit within the variable.  Either we need to cast these when
955    // storing them or reinterpret them lazily (as we do here).
956    return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
957  }
958
959  RegionBindings B = GetRegionBindings(store);
960  const SVal *V = lookup(B, R, BindingKey::Direct);
961
962  // Check if the region has a binding.
963  if (V)
964    return *V;
965
966  // The location does not have a bound value.  This means that it has
967  // the value it had upon its creation and/or entry to the analyzed
968  // function/method.  These are either symbolic values or 'undefined'.
969  if (R->hasStackNonParametersStorage()) {
970    // All stack variables are considered to have undefined values
971    // upon creation.  All heap allocated blocks are considered to
972    // have undefined values as well unless they are explicitly bound
973    // to specific values.
974    return UndefinedVal();
975  }
976
977  // All other values are symbolic.
978  return svalBuilder.getRegionValueSymbolVal(R);
979}
980
981std::pair<Store, const MemRegion *>
982RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
983                                   const MemRegion *originalRegion) {
984
985  if (originalRegion != R) {
986    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
987      if (const nonloc::LazyCompoundVal *V =
988          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
989        return std::make_pair(V->getStore(), V->getRegion());
990    }
991  }
992
993  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
994    const std::pair<Store, const MemRegion *> &X =
995      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
996
997    if (X.second)
998      return std::make_pair(X.first,
999                            MRMgr.getElementRegionWithSuper(ER, X.second));
1000  }
1001  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1002    const std::pair<Store, const MemRegion *> &X =
1003      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1004
1005    if (X.second)
1006      return std::make_pair(X.first,
1007                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1008  }
1009  // C++ base object region is another kind of region that we should blast
1010  // through to look for lazy compound value. It is like a field region.
1011  else if (const CXXBaseObjectRegion *baseReg =
1012                            dyn_cast<CXXBaseObjectRegion>(R)) {
1013    const std::pair<Store, const MemRegion *> &X =
1014      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1015
1016    if (X.second)
1017      return std::make_pair(X.first,
1018                     MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1019  }
1020
1021  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1022  // possible for a valid lazy binding.
1023  return std::make_pair((Store) 0, (const MemRegion *) 0);
1024}
1025
1026SVal RegionStoreManager::RetrieveElement(Store store,
1027                                         const ElementRegion* R) {
1028  // Check if the region has a binding.
1029  RegionBindings B = GetRegionBindings(store);
1030  if (const Optional<SVal> &V = getDirectBinding(B, R))
1031    return *V;
1032
1033  const MemRegion* superR = R->getSuperRegion();
1034
1035  // Check if the region is an element region of a string literal.
1036  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1037    // FIXME: Handle loads from strings where the literal is treated as
1038    // an integer, e.g., *((unsigned int*)"hello")
1039    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1040    if (T != Ctx.getCanonicalType(R->getElementType()))
1041      return UnknownVal();
1042
1043    const StringLiteral *Str = StrR->getStringLiteral();
1044    SVal Idx = R->getIndex();
1045    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1046      int64_t i = CI->getValue().getSExtValue();
1047      // Abort on string underrun.  This can be possible by arbitrary
1048      // clients of RetrieveElement().
1049      if (i < 0)
1050        return UndefinedVal();
1051      int64_t byteLength = Str->getByteLength();
1052      // Technically, only i == byteLength is guaranteed to be null.
1053      // However, such overflows should be caught before reaching this point;
1054      // the only time such an access would be made is if a string literal was
1055      // used to initialize a larger array.
1056      char c = (i >= byteLength) ? '\0' : Str->getString()[i];
1057      return svalBuilder.makeIntVal(c, T);
1058    }
1059  }
1060
1061  // Check for loads from a code text region.  For such loads, just give up.
1062  if (isa<CodeTextRegion>(superR))
1063    return UnknownVal();
1064
1065  // Handle the case where we are indexing into a larger scalar object.
1066  // For example, this handles:
1067  //   int x = ...
1068  //   char *y = &x;
1069  //   return *y;
1070  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1071  const RegionRawOffset &O = R->getAsArrayOffset();
1072
1073  // If we cannot reason about the offset, return an unknown value.
1074  if (!O.getRegion())
1075    return UnknownVal();
1076
1077  if (const TypedRegion *baseR = dyn_cast_or_null<TypedRegion>(O.getRegion())) {
1078    QualType baseT = baseR->getValueType();
1079    if (baseT->isScalarType()) {
1080      QualType elemT = R->getElementType();
1081      if (elemT->isScalarType()) {
1082        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1083          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1084            if (SymbolRef parentSym = V->getAsSymbol())
1085              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1086
1087            if (V->isUnknownOrUndef())
1088              return *V;
1089            // Other cases: give up.  We are indexing into a larger object
1090            // that has some value, but we don't know how to handle that yet.
1091            return UnknownVal();
1092          }
1093        }
1094      }
1095    }
1096  }
1097  return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1098}
1099
1100SVal RegionStoreManager::RetrieveField(Store store,
1101                                       const FieldRegion* R) {
1102
1103  // Check if the region has a binding.
1104  RegionBindings B = GetRegionBindings(store);
1105  if (const Optional<SVal> &V = getDirectBinding(B, R))
1106    return *V;
1107
1108  QualType Ty = R->getValueType();
1109  return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1110}
1111
1112Optional<SVal>
1113RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1114                                                const MemRegion *superR,
1115                                                const TypedRegion *R,
1116                                                QualType Ty) {
1117
1118  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1119    const SVal &val = D.getValue();
1120    if (SymbolRef parentSym = val.getAsSymbol())
1121      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1122
1123    if (val.isZeroConstant())
1124      return svalBuilder.makeZeroVal(Ty);
1125
1126    if (val.isUnknownOrUndef())
1127      return val;
1128
1129    // Lazy bindings are handled later.
1130    if (isa<nonloc::LazyCompoundVal>(val))
1131      return Optional<SVal>();
1132
1133    assert(0 && "Unknown default value");
1134  }
1135
1136  return Optional<SVal>();
1137}
1138
1139SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
1140                                             Store lazyBindingStore) {
1141  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1142    return RetrieveElement(lazyBindingStore, ER);
1143
1144  return RetrieveField(lazyBindingStore,
1145                       cast<FieldRegion>(lazyBindingRegion));
1146}
1147
1148SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1149                                                      const TypedRegion *R,
1150                                                      QualType Ty,
1151                                                      const MemRegion *superR) {
1152
1153  // At this point we have already checked in either RetrieveElement or
1154  // RetrieveField if 'R' has a direct binding.
1155
1156  RegionBindings B = GetRegionBindings(store);
1157
1158  while (superR) {
1159    if (const Optional<SVal> &D =
1160        RetrieveDerivedDefaultValue(B, superR, R, Ty))
1161      return *D;
1162
1163    // If our super region is a field or element itself, walk up the region
1164    // hierarchy to see if there is a default value installed in an ancestor.
1165    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1166      superR = SR->getSuperRegion();
1167      continue;
1168    }
1169    break;
1170  }
1171
1172  // Lazy binding?
1173  Store lazyBindingStore = NULL;
1174  const MemRegion *lazyBindingRegion = NULL;
1175  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1176
1177  if (lazyBindingRegion)
1178    return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
1179
1180  if (R->hasStackNonParametersStorage()) {
1181    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1182      // Currently we don't reason specially about Clang-style vectors.  Check
1183      // if superR is a vector and if so return Unknown.
1184      if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
1185        if (typedSuperR->getValueType()->isVectorType())
1186          return UnknownVal();
1187      }
1188
1189      // FIXME: We also need to take ElementRegions with symbolic indexes into
1190      // account.
1191      if (!ER->getIndex().isConstant())
1192        return UnknownVal();
1193    }
1194
1195    return UndefinedVal();
1196  }
1197
1198  // All other values are symbolic.
1199  return svalBuilder.getRegionValueSymbolVal(R);
1200}
1201
1202SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1203
1204    // Check if the region has a binding.
1205  RegionBindings B = GetRegionBindings(store);
1206
1207  if (const Optional<SVal> &V = getDirectBinding(B, R))
1208    return *V;
1209
1210  const MemRegion *superR = R->getSuperRegion();
1211
1212  // Check if the super region has a default binding.
1213  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1214    if (SymbolRef parentSym = V->getAsSymbol())
1215      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1216
1217    // Other cases: give up.
1218    return UnknownVal();
1219  }
1220
1221  return RetrieveLazySymbol(R);
1222}
1223
1224SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1225
1226  // Check if the region has a binding.
1227  RegionBindings B = GetRegionBindings(store);
1228
1229  if (const Optional<SVal> &V = getDirectBinding(B, R))
1230    return *V;
1231
1232  // Lazily derive a value for the VarRegion.
1233  const VarDecl *VD = R->getDecl();
1234  QualType T = VD->getType();
1235  const MemSpaceRegion *MS = R->getMemorySpace();
1236
1237  if (isa<UnknownSpaceRegion>(MS) ||
1238      isa<StackArgumentsSpaceRegion>(MS))
1239    return svalBuilder.getRegionValueSymbolVal(R);
1240
1241  if (isa<GlobalsSpaceRegion>(MS)) {
1242    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1243      // Is 'VD' declared constant?  If so, retrieve the constant value.
1244      QualType CT = Ctx.getCanonicalType(T);
1245      if (CT.isConstQualified()) {
1246        const Expr *Init = VD->getInit();
1247        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1248        if (Init)
1249          if (const IntegerLiteral *IL =
1250              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1251            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1252            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1253          }
1254      }
1255
1256      if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1257        return V.getValue();
1258
1259      return svalBuilder.getRegionValueSymbolVal(R);
1260    }
1261
1262    if (T->isIntegerType())
1263      return svalBuilder.makeIntVal(0, T);
1264    if (T->isPointerType())
1265      return svalBuilder.makeNull();
1266
1267    return UnknownVal();
1268  }
1269
1270  return UndefinedVal();
1271}
1272
1273SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {
1274  // All other values are symbolic.
1275  return svalBuilder.getRegionValueSymbolVal(R);
1276}
1277
1278SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
1279  QualType T = R->getValueType();
1280  assert(T->isStructureOrClassType());
1281  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1282}
1283
1284SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
1285  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1286  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1287}
1288
1289bool RegionStoreManager::includedInBindings(Store store,
1290                                            const MemRegion *region) const {
1291  RegionBindings B = GetRegionBindings(store);
1292  region = region->getBaseRegion();
1293
1294  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1295    const BindingKey &K = it.getKey();
1296    if (region == K.getRegion())
1297      return true;
1298    const SVal &D = it.getData();
1299    if (const MemRegion *r = D.getAsRegion())
1300      if (r == region)
1301        return true;
1302  }
1303  return false;
1304}
1305
1306//===----------------------------------------------------------------------===//
1307// Binding values to regions.
1308//===----------------------------------------------------------------------===//
1309
1310StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1311  if (isa<loc::MemRegionVal>(L))
1312    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1313      return StoreRef(removeBinding(GetRegionBindings(store),
1314                                    R).getRootWithoutRetain(),
1315                      *this);
1316
1317  return StoreRef(store, *this);
1318}
1319
1320StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1321  if (isa<loc::ConcreteInt>(L))
1322    return StoreRef(store, *this);
1323
1324  // If we get here, the location should be a region.
1325  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1326
1327  // Check if the region is a struct region.
1328  if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
1329    if (TR->getValueType()->isStructureOrClassType())
1330      return BindStruct(store, TR, V);
1331
1332  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1333    if (ER->getIndex().isZeroConstant()) {
1334      if (const TypedRegion *superR =
1335            dyn_cast<TypedRegion>(ER->getSuperRegion())) {
1336        QualType superTy = superR->getValueType();
1337        // For now, just invalidate the fields of the struct/union/class.
1338        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1339        // FIXME: Precisely handle the fields of the record.
1340        if (superTy->isStructureOrClassType())
1341          return KillStruct(store, superR, UnknownVal());
1342      }
1343    }
1344  }
1345  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1346    // Binding directly to a symbolic region should be treated as binding
1347    // to element 0.
1348    QualType T = SR->getSymbol()->getType(Ctx);
1349
1350    // FIXME: Is this the right way to handle symbols that are references?
1351    if (const PointerType *PT = T->getAs<PointerType>())
1352      T = PT->getPointeeType();
1353    else
1354      T = T->getAs<ReferenceType>()->getPointeeType();
1355
1356    R = GetElementZeroRegion(SR, T);
1357  }
1358
1359  // Perform the binding.
1360  RegionBindings B = GetRegionBindings(store);
1361  return StoreRef(addBinding(B, R, BindingKey::Direct,
1362                             V).getRootWithoutRetain(), *this);
1363}
1364
1365StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1366                                      SVal InitVal) {
1367
1368  QualType T = VR->getDecl()->getType();
1369
1370  if (T->isArrayType())
1371    return BindArray(store, VR, InitVal);
1372  if (T->isStructureOrClassType())
1373    return BindStruct(store, VR, InitVal);
1374
1375  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1376}
1377
1378// FIXME: this method should be merged into Bind().
1379StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1380                                                 const CompoundLiteralExpr *CL,
1381                                                 const LocationContext *LC,
1382                                                 SVal V) {
1383  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1384              V);
1385}
1386
1387StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1388                                                     const MemRegion *R,
1389                                                     QualType T) {
1390  RegionBindings B = GetRegionBindings(store);
1391  SVal V;
1392
1393  if (Loc::isLocType(T))
1394    V = svalBuilder.makeNull();
1395  else if (T->isIntegerType())
1396    V = svalBuilder.makeZeroVal(T);
1397  else if (T->isStructureOrClassType() || T->isArrayType()) {
1398    // Set the default value to a zero constant when it is a structure
1399    // or array.  The type doesn't really matter.
1400    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1401  }
1402  else {
1403    // We can't represent values of this type, but we still need to set a value
1404    // to record that the region has been initialized.
1405    // If this assertion ever fires, a new case should be added above -- we
1406    // should know how to default-initialize any value we can symbolicate.
1407    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1408    V = UnknownVal();
1409  }
1410
1411  return StoreRef(addBinding(B, R, BindingKey::Default,
1412                             V).getRootWithoutRetain(), *this);
1413}
1414
1415StoreRef RegionStoreManager::BindArray(Store store, const TypedRegion* R,
1416                                       SVal Init) {
1417
1418  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1419  QualType ElementTy = AT->getElementType();
1420  Optional<uint64_t> Size;
1421
1422  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1423    Size = CAT->getSize().getZExtValue();
1424
1425  // Check if the init expr is a string literal.
1426  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1427    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1428
1429    // Treat the string as a lazy compound value.
1430    nonloc::LazyCompoundVal LCV =
1431      cast<nonloc::LazyCompoundVal>(svalBuilder.
1432                                makeLazyCompoundVal(StoreRef(store, *this), S));
1433    return CopyLazyBindings(LCV, store, R);
1434  }
1435
1436  // Handle lazy compound values.
1437  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1438    return CopyLazyBindings(*LCV, store, R);
1439
1440  // Remaining case: explicit compound values.
1441
1442  if (Init.isUnknown())
1443    return setImplicitDefaultValue(store, R, ElementTy);
1444
1445  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1446  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1447  uint64_t i = 0;
1448
1449  StoreRef newStore(store, *this);
1450  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1451    // The init list might be shorter than the array length.
1452    if (VI == VE)
1453      break;
1454
1455    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1456    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1457
1458    if (ElementTy->isStructureOrClassType())
1459      newStore = BindStruct(newStore.getStore(), ER, *VI);
1460    else if (ElementTy->isArrayType())
1461      newStore = BindArray(newStore.getStore(), ER, *VI);
1462    else
1463      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1464  }
1465
1466  // If the init list is shorter than the array length, set the
1467  // array default value.
1468  if (Size.hasValue() && i < Size.getValue())
1469    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1470
1471  return newStore;
1472}
1473
1474StoreRef RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
1475                                        SVal V) {
1476
1477  if (!Features.supportsFields())
1478    return StoreRef(store, *this);
1479
1480  QualType T = R->getValueType();
1481  assert(T->isStructureOrClassType());
1482
1483  const RecordType* RT = T->getAs<RecordType>();
1484  RecordDecl* RD = RT->getDecl();
1485
1486  if (!RD->isDefinition())
1487    return StoreRef(store, *this);
1488
1489  // Handle lazy compound values.
1490  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1491    return CopyLazyBindings(*LCV, store, R);
1492
1493  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1494  // that we are binding symbolic struct value. Kill the field values, and if
1495  // the value is symbolic go and bind it as a "default" binding.
1496  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1497    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1498    return KillStruct(store, R, SV);
1499  }
1500
1501  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1502  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1503
1504  RecordDecl::field_iterator FI, FE;
1505  StoreRef newStore(store, *this);
1506
1507  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
1508
1509    if (VI == VE)
1510      break;
1511
1512    QualType FTy = (*FI)->getType();
1513    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1514
1515    if (FTy->isArrayType())
1516      newStore = BindArray(newStore.getStore(), FR, *VI);
1517    else if (FTy->isStructureOrClassType())
1518      newStore = BindStruct(newStore.getStore(), FR, *VI);
1519    else
1520      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1521  }
1522
1523  // There may be fewer values in the initialize list than the fields of struct.
1524  if (FI != FE) {
1525    RegionBindings B = GetRegionBindings(newStore.getStore());
1526    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1527    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1528  }
1529
1530  return newStore;
1531}
1532
1533StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1534                                     SVal DefaultVal) {
1535  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1536
1537  // The BindingKey may be "invalid" if we cannot handle the region binding
1538  // explicitly.  One example is something like array[index], where index
1539  // is a symbolic value.  In such cases, we want to invalidate the entire
1540  // array, as the index assignment could have been to any element.  In
1541  // the case of nested symbolic indices, we need to march up the region
1542  // hierarchy untile we reach a region whose binding we can reason about.
1543  const SubRegion *subReg = R;
1544
1545  while (!key.isValid()) {
1546    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1547      subReg = tmp;
1548      key = BindingKey::Make(tmp, BindingKey::Default);
1549    }
1550    else
1551      break;
1552  }
1553
1554  // Remove the old bindings, using 'subReg' as the root of all regions
1555  // we will invalidate.
1556  RegionBindings B = GetRegionBindings(store);
1557  llvm::OwningPtr<RegionStoreSubRegionMap>
1558    SubRegions(getRegionStoreSubRegionMap(store));
1559  RemoveSubRegionBindings(B, subReg, *SubRegions);
1560
1561  // Set the default value of the struct region to "unknown".
1562  if (!key.isValid())
1563    return StoreRef(B.getRootWithoutRetain(), *this);
1564
1565  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1566}
1567
1568StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1569                                              Store store,
1570                                              const TypedRegion *R) {
1571
1572  // Nuke the old bindings stemming from R.
1573  RegionBindings B = GetRegionBindings(store);
1574
1575  llvm::OwningPtr<RegionStoreSubRegionMap>
1576    SubRegions(getRegionStoreSubRegionMap(store));
1577
1578  // B and DVM are updated after the call to RemoveSubRegionBindings.
1579  RemoveSubRegionBindings(B, R, *SubRegions.get());
1580
1581  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1582  // results in a zero-copy algorithm.
1583  return StoreRef(addBinding(B, R, BindingKey::Default,
1584                             V).getRootWithoutRetain(), *this);
1585}
1586
1587//===----------------------------------------------------------------------===//
1588// "Raw" retrievals and bindings.
1589//===----------------------------------------------------------------------===//
1590
1591
1592RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1593                                              SVal V) {
1594  if (!K.isValid())
1595    return B;
1596  return RBFactory.add(B, K, V);
1597}
1598
1599RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1600                                              const MemRegion *R,
1601                                              BindingKey::Kind k, SVal V) {
1602  return addBinding(B, BindingKey::Make(R, k), V);
1603}
1604
1605const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1606  if (!K.isValid())
1607    return NULL;
1608  return B.lookup(K);
1609}
1610
1611const SVal *RegionStoreManager::lookup(RegionBindings B,
1612                                       const MemRegion *R,
1613                                       BindingKey::Kind k) {
1614  return lookup(B, BindingKey::Make(R, k));
1615}
1616
1617RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1618                                                 BindingKey K) {
1619  if (!K.isValid())
1620    return B;
1621  return RBFactory.remove(B, K);
1622}
1623
1624RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1625                                                 const MemRegion *R,
1626                                                BindingKey::Kind k){
1627  return removeBinding(B, BindingKey::Make(R, k));
1628}
1629
1630//===----------------------------------------------------------------------===//
1631// State pruning.
1632//===----------------------------------------------------------------------===//
1633
1634namespace {
1635class removeDeadBindingsWorker :
1636  public ClusterAnalysis<removeDeadBindingsWorker> {
1637  SmallVector<const SymbolicRegion*, 12> Postponed;
1638  SymbolReaper &SymReaper;
1639  const StackFrameContext *CurrentLCtx;
1640
1641public:
1642  removeDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr,
1643                           RegionBindings b, SymbolReaper &symReaper,
1644                           const StackFrameContext *LCtx)
1645    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1646                                                /* includeGlobals = */ false),
1647      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1648
1649  // Called by ClusterAnalysis.
1650  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1651  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1652
1653  void VisitBindingKey(BindingKey K);
1654  bool UpdatePostponed();
1655  void VisitBinding(SVal V);
1656};
1657}
1658
1659void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1660                                                   RegionCluster &C) {
1661
1662  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1663    if (SymReaper.isLive(VR))
1664      AddToWorkList(baseR, C);
1665
1666    return;
1667  }
1668
1669  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1670    if (SymReaper.isLive(SR->getSymbol()))
1671      AddToWorkList(SR, C);
1672    else
1673      Postponed.push_back(SR);
1674
1675    return;
1676  }
1677
1678  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1679    AddToWorkList(baseR, C);
1680    return;
1681  }
1682
1683  // CXXThisRegion in the current or parent location context is live.
1684  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1685    const StackArgumentsSpaceRegion *StackReg =
1686      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1687    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1688    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1689      AddToWorkList(TR, C);
1690  }
1691}
1692
1693void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1694                                            BindingKey *I, BindingKey *E) {
1695  for ( ; I != E; ++I)
1696    VisitBindingKey(*I);
1697}
1698
1699void removeDeadBindingsWorker::VisitBinding(SVal V) {
1700  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1701  if (const nonloc::LazyCompoundVal *LCS =
1702      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1703
1704    const MemRegion *LazyR = LCS->getRegion();
1705    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1706    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1707      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1708      if (baseR && baseR->isSubRegionOf(LazyR))
1709        VisitBinding(RI.getData());
1710    }
1711    return;
1712  }
1713
1714  // If V is a region, then add it to the worklist.
1715  if (const MemRegion *R = V.getAsRegion())
1716    AddToWorkList(R);
1717
1718    // Update the set of live symbols.
1719  for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
1720       SI!=SE;++SI)
1721    SymReaper.markLive(*SI);
1722}
1723
1724void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1725  const MemRegion *R = K.getRegion();
1726
1727  // Mark this region "live" by adding it to the worklist.  This will cause
1728  // use to visit all regions in the cluster (if we haven't visited them
1729  // already).
1730  if (AddToWorkList(R)) {
1731    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1732    // should continue to track that symbol.
1733    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1734      SymReaper.markLive(SymR->getSymbol());
1735
1736    // For BlockDataRegions, enqueue the VarRegions for variables marked
1737    // with __block (passed-by-reference).
1738    // via BlockDeclRefExprs.
1739    if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1740      for (BlockDataRegion::referenced_vars_iterator
1741           RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1742           RI != RE; ++RI) {
1743        if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1744          AddToWorkList(*RI);
1745      }
1746
1747      // No possible data bindings on a BlockDataRegion.
1748      return;
1749    }
1750  }
1751
1752  // Visit the data binding for K.
1753  if (const SVal *V = RM.lookup(B, K))
1754    VisitBinding(*V);
1755}
1756
1757bool removeDeadBindingsWorker::UpdatePostponed() {
1758  // See if any postponed SymbolicRegions are actually live now, after
1759  // having done a scan.
1760  bool changed = false;
1761
1762  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1763        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1764    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1765      if (SymReaper.isLive(SR->getSymbol())) {
1766        changed |= AddToWorkList(SR);
1767        *I = NULL;
1768      }
1769    }
1770  }
1771
1772  return changed;
1773}
1774
1775StoreRef RegionStoreManager::removeDeadBindings(Store store,
1776                                                const StackFrameContext *LCtx,
1777                                                SymbolReaper& SymReaper) {
1778  RegionBindings B = GetRegionBindings(store);
1779  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1780  W.GenerateClusters();
1781
1782  // Enqueue the region roots onto the worklist.
1783  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1784       E = SymReaper.region_end(); I != E; ++I) {
1785    W.AddToWorkList(*I);
1786  }
1787
1788  do W.RunWorkList(); while (W.UpdatePostponed());
1789
1790  // We have now scanned the store, marking reachable regions and symbols
1791  // as live.  We now remove all the regions that are dead from the store
1792  // as well as update DSymbols with the set symbols that are now dead.
1793  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1794    const BindingKey &K = I.getKey();
1795
1796    // If the cluster has been visited, we know the region has been marked.
1797    if (W.isVisited(K.getRegion()))
1798      continue;
1799
1800    // Remove the dead entry.
1801    B = removeBinding(B, K);
1802
1803    // Mark all non-live symbols that this binding references as dead.
1804    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1805      SymReaper.maybeDead(SymR->getSymbol());
1806
1807    SVal X = I.getData();
1808    SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1809    for (; SI != SE; ++SI)
1810      SymReaper.maybeDead(*SI);
1811  }
1812
1813  return StoreRef(B.getRootWithoutRetain(), *this);
1814}
1815
1816
1817StoreRef RegionStoreManager::enterStackFrame(const GRState *state,
1818                                             const StackFrameContext *frame) {
1819  FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1820  FunctionDecl::param_const_iterator PI = FD->param_begin(),
1821                                     PE = FD->param_end();
1822  StoreRef store = StoreRef(state->getStore(), *this);
1823
1824  if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1825    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1826
1827    // Copy the arg expression value to the arg variables.  We check that
1828    // PI != PE because the actual number of arguments may be different than
1829    // the function declaration.
1830    for (; AI != AE && PI != PE; ++AI, ++PI) {
1831      SVal ArgVal = state->getSVal(*AI);
1832      store = Bind(store.getStore(),
1833                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1834    }
1835  } else if (const CXXConstructExpr *CE =
1836               dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1837    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1838      AE = CE->arg_end();
1839
1840    // Copy the arg expression value to the arg variables.
1841    for (; AI != AE; ++AI, ++PI) {
1842      SVal ArgVal = state->getSVal(*AI);
1843      store = Bind(store.getStore(),
1844                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1845    }
1846  } else
1847    assert(isa<CXXDestructorDecl>(frame->getDecl()));
1848
1849  return store;
1850}
1851
1852//===----------------------------------------------------------------------===//
1853// Utility methods.
1854//===----------------------------------------------------------------------===//
1855
1856void RegionStoreManager::print(Store store, raw_ostream& OS,
1857                               const char* nl, const char *sep) {
1858  RegionBindings B = GetRegionBindings(store);
1859  OS << "Store (direct and default bindings):" << nl;
1860
1861  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1862    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1863}
1864