RegionStore.cpp revision d764e20189dbb42b38ada383a0a159f6adc0d56c
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/Analysis/Analyses/LiveVariables.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33
34//===----------------------------------------------------------------------===//
35// Representation of binding keys.
36//===----------------------------------------------------------------------===//
37
38namespace {
39class BindingKey {
40public:
41  enum Kind { Default = 0x0, Direct = 0x1 };
42private:
43  enum { Symbolic = 0x2 };
44
45  llvm::PointerIntPair<const MemRegion *, 2> P;
46  uint64_t Data;
47
48  /// Create a key for a binding to region \p r, which has a symbolic offset
49  /// from region \p Base.
50  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
51    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
52    assert(r && Base && "Must have known regions.");
53    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
54  }
55
56  /// Create a key for a binding at \p offset from base region \p r.
57  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
58    : P(r, k), Data(offset) {
59    assert(r && "Must have known regions.");
60    assert(getOffset() == offset && "Failed to store offset");
61    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
62  }
63public:
64
65  bool isDirect() const { return P.getInt() & Direct; }
66  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
67
68  const MemRegion *getRegion() const { return P.getPointer(); }
69  uint64_t getOffset() const {
70    assert(!hasSymbolicOffset());
71    return Data;
72  }
73
74  const SubRegion *getConcreteOffsetRegion() const {
75    assert(hasSymbolicOffset());
76    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
77  }
78
79  const MemRegion *getBaseRegion() const {
80    if (hasSymbolicOffset())
81      return getConcreteOffsetRegion()->getBaseRegion();
82    return getRegion()->getBaseRegion();
83  }
84
85  void Profile(llvm::FoldingSetNodeID& ID) const {
86    ID.AddPointer(P.getOpaqueValue());
87    ID.AddInteger(Data);
88  }
89
90  static BindingKey Make(const MemRegion *R, Kind k);
91
92  bool operator<(const BindingKey &X) const {
93    if (P.getOpaqueValue() < X.P.getOpaqueValue())
94      return true;
95    if (P.getOpaqueValue() > X.P.getOpaqueValue())
96      return false;
97    return Data < X.Data;
98  }
99
100  bool operator==(const BindingKey &X) const {
101    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
102           Data == X.Data;
103  }
104
105  LLVM_ATTRIBUTE_USED void dump() const;
106};
107} // end anonymous namespace
108
109BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
110  const RegionOffset &RO = R->getAsOffset();
111  if (RO.hasSymbolicOffset())
112    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
113
114  return BindingKey(RO.getRegion(), RO.getOffset(), k);
115}
116
117namespace llvm {
118  static inline
119  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
120    os << '(' << K.getRegion();
121    if (!K.hasSymbolicOffset())
122      os << ',' << K.getOffset();
123    os << ',' << (K.isDirect() ? "direct" : "default")
124       << ')';
125    return os;
126  }
127
128  template <typename T> struct isPodLike;
129  template <> struct isPodLike<BindingKey> {
130    static const bool value = true;
131  };
132} // end llvm namespace
133
134void BindingKey::dump() const {
135  llvm::errs() << *this;
136}
137
138//===----------------------------------------------------------------------===//
139// Actual Store type.
140//===----------------------------------------------------------------------===//
141
142typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
143typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
144typedef std::pair<BindingKey, SVal> BindingPair;
145
146typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
147        RegionBindings;
148
149namespace {
150class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
151                                 ClusterBindings> {
152 ClusterBindings::Factory &CBFactory;
153public:
154  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
155          ParentTy;
156
157  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
158                    const RegionBindings::TreeTy *T,
159                    RegionBindings::TreeTy::Factory *F)
160    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
161      CBFactory(CBFactory) {}
162
163  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
164    : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
165      CBFactory(CBFactory) {}
166
167  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
168    return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
169                             CBFactory);
170  }
171
172  RegionBindingsRef remove(key_type_ref K) const {
173    return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
174                             CBFactory);
175  }
176
177  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
178
179  RegionBindingsRef addBinding(const MemRegion *R,
180                               BindingKey::Kind k, SVal V) const;
181
182  RegionBindingsRef &operator=(const RegionBindingsRef &X) {
183    *static_cast<ParentTy*>(this) = X;
184    return *this;
185  }
186
187  const SVal *lookup(BindingKey K) const;
188  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
189  const ClusterBindings *lookup(const MemRegion *R) const {
190    return static_cast<const ParentTy*>(this)->lookup(R);
191  }
192
193  RegionBindingsRef removeBinding(BindingKey K);
194
195  RegionBindingsRef removeBinding(const MemRegion *R,
196                                  BindingKey::Kind k);
197
198  RegionBindingsRef removeBinding(const MemRegion *R) {
199    return removeBinding(R, BindingKey::Direct).
200           removeBinding(R, BindingKey::Default);
201  }
202
203  Optional<SVal> getDirectBinding(const MemRegion *R) const;
204
205  /// getDefaultBinding - Returns an SVal* representing an optional default
206  ///  binding associated with a region and its subregions.
207  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
208
209  /// Return the internal tree as a Store.
210  Store asStore() const {
211    return asImmutableMap().getRootWithoutRetain();
212  }
213
214  void dump(raw_ostream &OS, const char *nl) const {
215   for (iterator I = begin(), E = end(); I != E; ++I) {
216     const ClusterBindings &Cluster = I.getData();
217     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
218          CI != CE; ++CI) {
219       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
220     }
221     OS << nl;
222   }
223  }
224
225  LLVM_ATTRIBUTE_USED void dump() const {
226    dump(llvm::errs(), "\n");
227  }
228};
229} // end anonymous namespace
230
231typedef const RegionBindingsRef& RegionBindingsConstRef;
232
233Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
234  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
235}
236
237Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
238  if (R->isBoundable())
239    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
240      if (TR->getValueType()->isUnionType())
241        return UnknownVal();
242
243  return Optional<SVal>::create(lookup(R, BindingKey::Default));
244}
245
246RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
247  const MemRegion *Base = K.getBaseRegion();
248
249  const ClusterBindings *ExistingCluster = lookup(Base);
250  ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
251                             : CBFactory.getEmptyMap());
252
253  ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
254  return add(Base, NewCluster);
255}
256
257
258RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
259                                                BindingKey::Kind k,
260                                                SVal V) const {
261  return addBinding(BindingKey::Make(R, k), V);
262}
263
264const SVal *RegionBindingsRef::lookup(BindingKey K) const {
265  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
266  if (!Cluster)
267    return 0;
268  return Cluster->lookup(K);
269}
270
271const SVal *RegionBindingsRef::lookup(const MemRegion *R,
272                                      BindingKey::Kind k) const {
273  return lookup(BindingKey::Make(R, k));
274}
275
276RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
277  const MemRegion *Base = K.getBaseRegion();
278  const ClusterBindings *Cluster = lookup(Base);
279  if (!Cluster)
280    return *this;
281
282  ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
283  if (NewCluster.isEmpty())
284    return remove(Base);
285  return add(Base, NewCluster);
286}
287
288RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
289                                                BindingKey::Kind k){
290  return removeBinding(BindingKey::Make(R, k));
291}
292
293//===----------------------------------------------------------------------===//
294// Fine-grained control of RegionStoreManager.
295//===----------------------------------------------------------------------===//
296
297namespace {
298struct minimal_features_tag {};
299struct maximal_features_tag {};
300
301class RegionStoreFeatures {
302  bool SupportsFields;
303public:
304  RegionStoreFeatures(minimal_features_tag) :
305    SupportsFields(false) {}
306
307  RegionStoreFeatures(maximal_features_tag) :
308    SupportsFields(true) {}
309
310  void enableFields(bool t) { SupportsFields = t; }
311
312  bool supportsFields() const { return SupportsFields; }
313};
314}
315
316//===----------------------------------------------------------------------===//
317// Main RegionStore logic.
318//===----------------------------------------------------------------------===//
319
320namespace {
321
322class RegionStoreManager : public StoreManager {
323public:
324  const RegionStoreFeatures Features;
325  RegionBindings::Factory RBFactory;
326  mutable ClusterBindings::Factory CBFactory;
327
328  typedef std::vector<SVal> SValListTy;
329private:
330  typedef llvm::DenseMap<const LazyCompoundValData *,
331                         SValListTy> LazyBindingsMapTy;
332  LazyBindingsMapTy LazyBindingsMap;
333
334public:
335  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
336    : StoreManager(mgr), Features(f),
337      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
338
339
340  /// setImplicitDefaultValue - Set the default binding for the provided
341  ///  MemRegion to the value implicitly defined for compound literals when
342  ///  the value is not specified.
343  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
344                                            const MemRegion *R, QualType T);
345
346  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
347  ///  type.  'Array' represents the lvalue of the array being decayed
348  ///  to a pointer, and the returned SVal represents the decayed
349  ///  version of that lvalue (i.e., a pointer to the first element of
350  ///  the array).  This is called by ExprEngine when evaluating
351  ///  casts from arrays to pointers.
352  SVal ArrayToPointer(Loc Array);
353
354  StoreRef getInitialStore(const LocationContext *InitLoc) {
355    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
356  }
357
358  //===-------------------------------------------------------------------===//
359  // Binding values to regions.
360  //===-------------------------------------------------------------------===//
361  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
362                                           const Expr *Ex,
363                                           unsigned Count,
364                                           const LocationContext *LCtx,
365                                           RegionBindingsRef B,
366                                           InvalidatedRegions *Invalidated);
367
368  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
369                             const Expr *E, unsigned Count,
370                             const LocationContext *LCtx,
371                             InvalidatedSymbols &IS,
372                             const CallEvent *Call,
373                             InvalidatedRegions *Invalidated);
374
375  bool scanReachableSymbols(Store S, const MemRegion *R,
376                            ScanReachableSymbols &Callbacks);
377
378  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
379                                            const SubRegion *R);
380
381public: // Part of public interface to class.
382
383  virtual StoreRef Bind(Store store, Loc LV, SVal V) {
384    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
385  }
386
387  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
388
389  // BindDefault is only used to initialize a region with a default value.
390  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
391    RegionBindingsRef B = getRegionBindings(store);
392    assert(!B.lookup(R, BindingKey::Default));
393    assert(!B.lookup(R, BindingKey::Direct));
394    return StoreRef(B.addBinding(R, BindingKey::Default, V)
395                     .asImmutableMap()
396                     .getRootWithoutRetain(), *this);
397  }
398
399  /// \brief Create a new store that binds a value to a compound literal.
400  ///
401  /// \param ST The original store whose bindings are the basis for the new
402  ///        store.
403  ///
404  /// \param CL The compound literal to bind (the binding key).
405  ///
406  /// \param LC The LocationContext for the binding.
407  ///
408  /// \param V The value to bind to the compound literal.
409  StoreRef bindCompoundLiteral(Store ST,
410                               const CompoundLiteralExpr *CL,
411                               const LocationContext *LC, SVal V);
412
413  /// BindStruct - Bind a compound value to a structure.
414  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
415                               const TypedValueRegion* R, SVal V);
416
417  /// BindVector - Bind a compound value to a vector.
418  RegionBindingsRef bindVector(RegionBindingsConstRef B,
419                               const TypedValueRegion* R, SVal V);
420
421  RegionBindingsRef bindArray(RegionBindingsConstRef B,
422                              const TypedValueRegion* R,
423                              SVal V);
424
425  /// Clears out all bindings in the given region and assigns a new value
426  /// as a Default binding.
427  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
428                                  const TypedRegion *R,
429                                  SVal DefaultVal);
430
431  /// \brief Create a new store with the specified binding removed.
432  /// \param ST the original store, that is the basis for the new store.
433  /// \param L the location whose binding should be removed.
434  virtual StoreRef killBinding(Store ST, Loc L);
435
436  void incrementReferenceCount(Store store) {
437    getRegionBindings(store).manualRetain();
438  }
439
440  /// If the StoreManager supports it, decrement the reference count of
441  /// the specified Store object.  If the reference count hits 0, the memory
442  /// associated with the object is recycled.
443  void decrementReferenceCount(Store store) {
444    getRegionBindings(store).manualRelease();
445  }
446
447  bool includedInBindings(Store store, const MemRegion *region) const;
448
449  /// \brief Return the value bound to specified location in a given state.
450  ///
451  /// The high level logic for this method is this:
452  /// getBinding (L)
453  ///   if L has binding
454  ///     return L's binding
455  ///   else if L is in killset
456  ///     return unknown
457  ///   else
458  ///     if L is on stack or heap
459  ///       return undefined
460  ///     else
461  ///       return symbolic
462  virtual SVal getBinding(Store S, Loc L, QualType T) {
463    return getBinding(getRegionBindings(S), L, T);
464  }
465
466  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
467
468  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
469
470  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
471
472  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
473
474  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
475
476  SVal getBindingForLazySymbol(const TypedValueRegion *R);
477
478  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
479                                         const TypedValueRegion *R,
480                                         QualType Ty,
481                                         const MemRegion *superR);
482
483  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
484                      RegionBindingsRef LazyBinding);
485
486  /// Get bindings for the values in a struct and return a CompoundVal, used
487  /// when doing struct copy:
488  /// struct s x, y;
489  /// x = y;
490  /// y's value is retrieved by this method.
491  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
492  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
493  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
494
495  /// Used to lazily generate derived symbols for bindings that are defined
496  /// implicitly by default bindings in a super region.
497  ///
498  /// Note that callers may need to specially handle LazyCompoundVals, which
499  /// are returned as is in case the caller needs to treat them differently.
500  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
501                                                  const MemRegion *superR,
502                                                  const TypedValueRegion *R,
503                                                  QualType Ty);
504
505  /// Get the state and region whose binding this region \p R corresponds to.
506  ///
507  /// If there is no lazy binding for \p R, the returned value will have a null
508  /// \c second. Note that a null pointer can represents a valid Store.
509  std::pair<Store, const SubRegion *>
510  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
511                  const SubRegion *originalRegion);
512
513  /// Returns the cached set of interesting SVals contained within a lazy
514  /// binding.
515  ///
516  /// The precise value of "interesting" is determined for the purposes of
517  /// RegionStore's internal analysis. It must always contain all regions and
518  /// symbols, but may omit constants and other kinds of SVal.
519  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
520
521  //===------------------------------------------------------------------===//
522  // State pruning.
523  //===------------------------------------------------------------------===//
524
525  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
526  ///  It returns a new Store with these values removed.
527  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
528                              SymbolReaper& SymReaper);
529
530  //===------------------------------------------------------------------===//
531  // Region "extents".
532  //===------------------------------------------------------------------===//
533
534  // FIXME: This method will soon be eliminated; see the note in Store.h.
535  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
536                                         const MemRegion* R, QualType EleTy);
537
538  //===------------------------------------------------------------------===//
539  // Utility methods.
540  //===------------------------------------------------------------------===//
541
542  RegionBindingsRef getRegionBindings(Store store) const {
543    return RegionBindingsRef(CBFactory,
544                             static_cast<const RegionBindings::TreeTy*>(store),
545                             RBFactory.getTreeFactory());
546  }
547
548  void print(Store store, raw_ostream &Out, const char* nl,
549             const char *sep);
550
551  void iterBindings(Store store, BindingsHandler& f) {
552    RegionBindingsRef B = getRegionBindings(store);
553    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
554      const ClusterBindings &Cluster = I.getData();
555      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
556           CI != CE; ++CI) {
557        const BindingKey &K = CI.getKey();
558        if (!K.isDirect())
559          continue;
560        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
561          // FIXME: Possibly incorporate the offset?
562          if (!f.HandleBinding(*this, store, R, CI.getData()))
563            return;
564        }
565      }
566    }
567  }
568};
569
570} // end anonymous namespace
571
572//===----------------------------------------------------------------------===//
573// RegionStore creation.
574//===----------------------------------------------------------------------===//
575
576StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
577  RegionStoreFeatures F = maximal_features_tag();
578  return new RegionStoreManager(StMgr, F);
579}
580
581StoreManager *
582ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
583  RegionStoreFeatures F = minimal_features_tag();
584  F.enableFields(true);
585  return new RegionStoreManager(StMgr, F);
586}
587
588
589//===----------------------------------------------------------------------===//
590// Region Cluster analysis.
591//===----------------------------------------------------------------------===//
592
593namespace {
594template <typename DERIVED>
595class ClusterAnalysis  {
596protected:
597  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
598  typedef SmallVector<const MemRegion *, 10> WorkList;
599
600  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
601
602  WorkList WL;
603
604  RegionStoreManager &RM;
605  ASTContext &Ctx;
606  SValBuilder &svalBuilder;
607
608  RegionBindingsRef B;
609
610  const bool includeGlobals;
611
612  const ClusterBindings *getCluster(const MemRegion *R) {
613    return B.lookup(R);
614  }
615
616public:
617  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
618                  RegionBindingsRef b, const bool includeGlobals)
619    : RM(rm), Ctx(StateMgr.getContext()),
620      svalBuilder(StateMgr.getSValBuilder()),
621      B(b), includeGlobals(includeGlobals) {}
622
623  RegionBindingsRef getRegionBindings() const { return B; }
624
625  bool isVisited(const MemRegion *R) {
626    return Visited.count(getCluster(R));
627  }
628
629  void GenerateClusters() {
630    // Scan the entire set of bindings and record the region clusters.
631    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
632         RI != RE; ++RI){
633      const MemRegion *Base = RI.getKey();
634
635      const ClusterBindings &Cluster = RI.getData();
636      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
637      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
638
639      if (includeGlobals)
640        if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
641          AddToWorkList(Base, &Cluster);
642    }
643  }
644
645  bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
646    if (C && !Visited.insert(C))
647      return false;
648    WL.push_back(R);
649    return true;
650  }
651
652  bool AddToWorkList(const MemRegion *R) {
653    const MemRegion *baseR = R->getBaseRegion();
654    return AddToWorkList(baseR, getCluster(baseR));
655  }
656
657  void RunWorkList() {
658    while (!WL.empty()) {
659      const MemRegion *baseR = WL.pop_back_val();
660
661      // First visit the cluster.
662      if (const ClusterBindings *Cluster = getCluster(baseR))
663        static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
664
665      // Next, visit the base region.
666      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
667    }
668  }
669
670public:
671  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
672  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
673  void VisitBaseRegion(const MemRegion *baseR) {}
674};
675}
676
677//===----------------------------------------------------------------------===//
678// Binding invalidation.
679//===----------------------------------------------------------------------===//
680
681bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
682                                              ScanReachableSymbols &Callbacks) {
683  assert(R == R->getBaseRegion() && "Should only be called for base regions");
684  RegionBindingsRef B = getRegionBindings(S);
685  const ClusterBindings *Cluster = B.lookup(R);
686
687  if (!Cluster)
688    return true;
689
690  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
691       RI != RE; ++RI) {
692    if (!Callbacks.scan(RI.getData()))
693      return false;
694  }
695
696  return true;
697}
698
699static inline bool isUnionField(const FieldRegion *FR) {
700  return FR->getDecl()->getParent()->isUnion();
701}
702
703typedef SmallVector<const FieldDecl *, 8> FieldVector;
704
705void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
706  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
707
708  const MemRegion *Base = K.getConcreteOffsetRegion();
709  const MemRegion *R = K.getRegion();
710
711  while (R != Base) {
712    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
713      if (!isUnionField(FR))
714        Fields.push_back(FR->getDecl());
715
716    R = cast<SubRegion>(R)->getSuperRegion();
717  }
718}
719
720static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
721  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
722
723  if (Fields.empty())
724    return true;
725
726  FieldVector FieldsInBindingKey;
727  getSymbolicOffsetFields(K, FieldsInBindingKey);
728
729  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
730  if (Delta >= 0)
731    return std::equal(FieldsInBindingKey.begin() + Delta,
732                      FieldsInBindingKey.end(),
733                      Fields.begin());
734  else
735    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
736                      Fields.begin() - Delta);
737}
738
739/// Collects all bindings in \p Cluster that may refer to bindings within
740/// \p Top.
741///
742/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
743/// \c second is the value (an SVal).
744///
745/// The \p IncludeAllDefaultBindings parameter specifies whether to include
746/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
747/// an aggregate within a larger aggregate with a default binding.
748static void
749collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
750                         SValBuilder &SVB, const ClusterBindings &Cluster,
751                         const SubRegion *Top, BindingKey TopKey,
752                         bool IncludeAllDefaultBindings) {
753  FieldVector FieldsInSymbolicSubregions;
754  if (TopKey.hasSymbolicOffset()) {
755    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
756    Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
757    TopKey = BindingKey::Make(Top, BindingKey::Default);
758  }
759
760  // Find the length (in bits) of the region being invalidated.
761  uint64_t Length = UINT64_MAX;
762  SVal Extent = Top->getExtent(SVB);
763  if (Optional<nonloc::ConcreteInt> ExtentCI =
764          Extent.getAs<nonloc::ConcreteInt>()) {
765    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
766    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
767    // Extents are in bytes but region offsets are in bits. Be careful!
768    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
769  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
770    if (FR->getDecl()->isBitField())
771      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
772  }
773
774  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
775       I != E; ++I) {
776    BindingKey NextKey = I.getKey();
777    if (NextKey.getRegion() == TopKey.getRegion()) {
778      // FIXME: This doesn't catch the case where we're really invalidating a
779      // region with a symbolic offset. Example:
780      //      R: points[i].y
781      //   Next: points[0].x
782
783      if (NextKey.getOffset() > TopKey.getOffset() &&
784          NextKey.getOffset() - TopKey.getOffset() < Length) {
785        // Case 1: The next binding is inside the region we're invalidating.
786        // Include it.
787        Bindings.push_back(*I);
788
789      } else if (NextKey.getOffset() == TopKey.getOffset()) {
790        // Case 2: The next binding is at the same offset as the region we're
791        // invalidating. In this case, we need to leave default bindings alone,
792        // since they may be providing a default value for a regions beyond what
793        // we're invalidating.
794        // FIXME: This is probably incorrect; consider invalidating an outer
795        // struct whose first field is bound to a LazyCompoundVal.
796        if (IncludeAllDefaultBindings || NextKey.isDirect())
797          Bindings.push_back(*I);
798      }
799
800    } else if (NextKey.hasSymbolicOffset()) {
801      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
802      if (Top->isSubRegionOf(Base)) {
803        // Case 3: The next key is symbolic and we just changed something within
804        // its concrete region. We don't know if the binding is still valid, so
805        // we'll be conservative and include it.
806        if (IncludeAllDefaultBindings || NextKey.isDirect())
807          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
808            Bindings.push_back(*I);
809      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
810        // Case 4: The next key is symbolic, but we changed a known
811        // super-region. In this case the binding is certainly included.
812        if (Top == Base || BaseSR->isSubRegionOf(Top))
813          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
814            Bindings.push_back(*I);
815      }
816    }
817  }
818}
819
820static void
821collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
822                         SValBuilder &SVB, const ClusterBindings &Cluster,
823                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
824  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
825                           BindingKey::Make(Top, BindingKey::Default),
826                           IncludeAllDefaultBindings);
827}
828
829RegionBindingsRef
830RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
831                                            const SubRegion *Top) {
832  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
833  const MemRegion *ClusterHead = TopKey.getBaseRegion();
834  if (Top == ClusterHead) {
835    // We can remove an entire cluster's bindings all in one go.
836    return B.remove(Top);
837  }
838
839  const ClusterBindings *Cluster = B.lookup(ClusterHead);
840  if (!Cluster)
841    return B;
842
843  SmallVector<BindingPair, 32> Bindings;
844  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
845                           /*IncludeAllDefaultBindings=*/false);
846
847  ClusterBindingsRef Result(*Cluster, CBFactory);
848  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
849                                                    E = Bindings.end();
850       I != E; ++I)
851    Result = Result.remove(I->first);
852
853  // If we're invalidating a region with a symbolic offset, we need to make sure
854  // we don't treat the base region as uninitialized anymore.
855  // FIXME: This isn't very precise; see the example in the loop.
856  if (TopKey.hasSymbolicOffset()) {
857    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
858    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
859                        UnknownVal());
860  }
861
862  if (Result.isEmpty())
863    return B.remove(ClusterHead);
864  return B.add(ClusterHead, Result.asImmutableMap());
865}
866
867namespace {
868class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
869{
870  const Expr *Ex;
871  unsigned Count;
872  const LocationContext *LCtx;
873  InvalidatedSymbols &IS;
874  StoreManager::InvalidatedRegions *Regions;
875public:
876  invalidateRegionsWorker(RegionStoreManager &rm,
877                          ProgramStateManager &stateMgr,
878                          RegionBindingsRef b,
879                          const Expr *ex, unsigned count,
880                          const LocationContext *lctx,
881                          InvalidatedSymbols &is,
882                          StoreManager::InvalidatedRegions *r,
883                          bool includeGlobals)
884    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
885      Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
886
887  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
888  void VisitBaseRegion(const MemRegion *baseR);
889
890private:
891  void VisitBinding(SVal V);
892};
893}
894
895void invalidateRegionsWorker::VisitBinding(SVal V) {
896  // A symbol?  Mark it touched by the invalidation.
897  if (SymbolRef Sym = V.getAsSymbol())
898    IS.insert(Sym);
899
900  if (const MemRegion *R = V.getAsRegion()) {
901    AddToWorkList(R);
902    return;
903  }
904
905  // Is it a LazyCompoundVal?  All references get invalidated as well.
906  if (Optional<nonloc::LazyCompoundVal> LCS =
907          V.getAs<nonloc::LazyCompoundVal>()) {
908
909    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
910
911    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
912                                                        E = Vals.end();
913         I != E; ++I)
914      VisitBinding(*I);
915
916    return;
917  }
918}
919
920void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
921                                           const ClusterBindings &C) {
922  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
923    VisitBinding(I.getData());
924
925  B = B.remove(BaseR);
926}
927
928void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
929  // Symbolic region?  Mark that symbol touched by the invalidation.
930  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
931    IS.insert(SR->getSymbol());
932
933  // BlockDataRegion?  If so, invalidate captured variables that are passed
934  // by reference.
935  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
936    for (BlockDataRegion::referenced_vars_iterator
937         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
938         BI != BE; ++BI) {
939      const VarRegion *VR = BI.getCapturedRegion();
940      const VarDecl *VD = VR->getDecl();
941      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
942        AddToWorkList(VR);
943      }
944      else if (Loc::isLocType(VR->getValueType())) {
945        // Map the current bindings to a Store to retrieve the value
946        // of the binding.  If that binding itself is a region, we should
947        // invalidate that region.  This is because a block may capture
948        // a pointer value, but the thing pointed by that pointer may
949        // get invalidated.
950        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
951        if (Optional<Loc> L = V.getAs<Loc>()) {
952          if (const MemRegion *LR = L->getAsRegion())
953            AddToWorkList(LR);
954        }
955      }
956    }
957    return;
958  }
959
960  // Otherwise, we have a normal data region. Record that we touched the region.
961  if (Regions)
962    Regions->push_back(baseR);
963
964  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
965    // Invalidate the region by setting its default value to
966    // conjured symbol. The type of the symbol is irrelavant.
967    DefinedOrUnknownSVal V =
968      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
969    B = B.addBinding(baseR, BindingKey::Default, V);
970    return;
971  }
972
973  if (!baseR->isBoundable())
974    return;
975
976  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
977  QualType T = TR->getValueType();
978
979    // Invalidate the binding.
980  if (T->isStructureOrClassType()) {
981    // Invalidate the region by setting its default value to
982    // conjured symbol. The type of the symbol is irrelavant.
983    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
984                                                          Ctx.IntTy, Count);
985    B = B.addBinding(baseR, BindingKey::Default, V);
986    return;
987  }
988
989  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
990      // Set the default value of the array to conjured symbol.
991    DefinedOrUnknownSVal V =
992    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
993                                     AT->getElementType(), Count);
994    B = B.addBinding(baseR, BindingKey::Default, V);
995    return;
996  }
997
998  if (includeGlobals &&
999      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
1000    // If the region is a global and we are invalidating all globals,
1001    // just erase the entry.  This causes all globals to be lazily
1002    // symbolicated from the same base symbol.
1003    B = B.removeBinding(baseR);
1004    return;
1005  }
1006
1007
1008  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1009                                                        T,Count);
1010  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1011  B = B.addBinding(baseR, BindingKey::Direct, V);
1012}
1013
1014RegionBindingsRef
1015RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1016                                           const Expr *Ex,
1017                                           unsigned Count,
1018                                           const LocationContext *LCtx,
1019                                           RegionBindingsRef B,
1020                                           InvalidatedRegions *Invalidated) {
1021  // Bind the globals memory space to a new symbol that we will use to derive
1022  // the bindings for all globals.
1023  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1024  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1025                                        /* type does not matter */ Ctx.IntTy,
1026                                        Count);
1027
1028  B = B.removeBinding(GS)
1029       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1030
1031  // Even if there are no bindings in the global scope, we still need to
1032  // record that we touched it.
1033  if (Invalidated)
1034    Invalidated->push_back(GS);
1035
1036  return B;
1037}
1038
1039StoreRef
1040RegionStoreManager::invalidateRegions(Store store,
1041                                      ArrayRef<const MemRegion *> Regions,
1042                                      const Expr *Ex, unsigned Count,
1043                                      const LocationContext *LCtx,
1044                                      InvalidatedSymbols &IS,
1045                                      const CallEvent *Call,
1046                                      InvalidatedRegions *Invalidated) {
1047  invalidateRegionsWorker W(*this, StateMgr,
1048                            RegionStoreManager::getRegionBindings(store),
1049                            Ex, Count, LCtx, IS, Invalidated, false);
1050
1051  // Scan the bindings and generate the clusters.
1052  W.GenerateClusters();
1053
1054  // Add the regions to the worklist.
1055  for (ArrayRef<const MemRegion *>::iterator
1056       I = Regions.begin(), E = Regions.end(); I != E; ++I)
1057    W.AddToWorkList(*I);
1058
1059  W.RunWorkList();
1060
1061  // Return the new bindings.
1062  RegionBindingsRef B = W.getRegionBindings();
1063
1064  // For all globals which are not static nor immutable: determine which global
1065  // regions should be invalidated and invalidate them.
1066  // TODO: This could possibly be more precise with modules.
1067  //
1068  // System calls invalidate only system globals.
1069  if (Call && Call->isInSystemHeader()) {
1070    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1071                               Ex, Count, LCtx, B, Invalidated);
1072  // Internal calls might invalidate both system and internal globals.
1073  } else {
1074    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1075                               Ex, Count, LCtx, B, Invalidated);
1076    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1077                               Ex, Count, LCtx, B, Invalidated);
1078  }
1079
1080  return StoreRef(B.asStore(), *this);
1081}
1082
1083//===----------------------------------------------------------------------===//
1084// Extents for regions.
1085//===----------------------------------------------------------------------===//
1086
1087DefinedOrUnknownSVal
1088RegionStoreManager::getSizeInElements(ProgramStateRef state,
1089                                      const MemRegion *R,
1090                                      QualType EleTy) {
1091  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1092  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1093  if (!SizeInt)
1094    return UnknownVal();
1095
1096  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1097
1098  if (Ctx.getAsVariableArrayType(EleTy)) {
1099    // FIXME: We need to track extra state to properly record the size
1100    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1101    // we don't have a divide-by-zero below.
1102    return UnknownVal();
1103  }
1104
1105  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1106
1107  // If a variable is reinterpreted as a type that doesn't fit into a larger
1108  // type evenly, round it down.
1109  // This is a signed value, since it's used in arithmetic with signed indices.
1110  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1111}
1112
1113//===----------------------------------------------------------------------===//
1114// Location and region casting.
1115//===----------------------------------------------------------------------===//
1116
1117/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1118///  type.  'Array' represents the lvalue of the array being decayed
1119///  to a pointer, and the returned SVal represents the decayed
1120///  version of that lvalue (i.e., a pointer to the first element of
1121///  the array).  This is called by ExprEngine when evaluating casts
1122///  from arrays to pointers.
1123SVal RegionStoreManager::ArrayToPointer(Loc Array) {
1124  if (!Array.getAs<loc::MemRegionVal>())
1125    return UnknownVal();
1126
1127  const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1128  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
1129
1130  if (!ArrayR)
1131    return UnknownVal();
1132
1133  // Strip off typedefs from the ArrayRegion's ValueType.
1134  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
1135  const ArrayType *AT = cast<ArrayType>(T);
1136  T = AT->getElementType();
1137
1138  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1139  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
1140}
1141
1142//===----------------------------------------------------------------------===//
1143// Loading values from regions.
1144//===----------------------------------------------------------------------===//
1145
1146SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1147  assert(!L.getAs<UnknownVal>() && "location unknown");
1148  assert(!L.getAs<UndefinedVal>() && "location undefined");
1149
1150  // For access to concrete addresses, return UnknownVal.  Checks
1151  // for null dereferences (and similar errors) are done by checkers, not
1152  // the Store.
1153  // FIXME: We can consider lazily symbolicating such memory, but we really
1154  // should defer this when we can reason easily about symbolicating arrays
1155  // of bytes.
1156  if (L.getAs<loc::ConcreteInt>()) {
1157    return UnknownVal();
1158  }
1159  if (!L.getAs<loc::MemRegionVal>()) {
1160    return UnknownVal();
1161  }
1162
1163  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1164
1165  if (isa<AllocaRegion>(MR) ||
1166      isa<SymbolicRegion>(MR) ||
1167      isa<CodeTextRegion>(MR)) {
1168    if (T.isNull()) {
1169      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1170        T = TR->getLocationType();
1171      else {
1172        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1173        T = SR->getSymbol()->getType();
1174      }
1175    }
1176    MR = GetElementZeroRegion(MR, T);
1177  }
1178
1179  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1180  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1181  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1182  QualType RTy = R->getValueType();
1183
1184  // FIXME: we do not yet model the parts of a complex type, so treat the
1185  // whole thing as "unknown".
1186  if (RTy->isAnyComplexType())
1187    return UnknownVal();
1188
1189  // FIXME: We should eventually handle funny addressing.  e.g.:
1190  //
1191  //   int x = ...;
1192  //   int *p = &x;
1193  //   char *q = (char*) p;
1194  //   char c = *q;  // returns the first byte of 'x'.
1195  //
1196  // Such funny addressing will occur due to layering of regions.
1197  if (RTy->isStructureOrClassType())
1198    return getBindingForStruct(B, R);
1199
1200  // FIXME: Handle unions.
1201  if (RTy->isUnionType())
1202    return UnknownVal();
1203
1204  if (RTy->isArrayType()) {
1205    if (RTy->isConstantArrayType())
1206      return getBindingForArray(B, R);
1207    else
1208      return UnknownVal();
1209  }
1210
1211  // FIXME: handle Vector types.
1212  if (RTy->isVectorType())
1213    return UnknownVal();
1214
1215  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1216    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1217
1218  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1219    // FIXME: Here we actually perform an implicit conversion from the loaded
1220    // value to the element type.  Eventually we want to compose these values
1221    // more intelligently.  For example, an 'element' can encompass multiple
1222    // bound regions (e.g., several bound bytes), or could be a subset of
1223    // a larger value.
1224    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1225  }
1226
1227  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1228    // FIXME: Here we actually perform an implicit conversion from the loaded
1229    // value to the ivar type.  What we should model is stores to ivars
1230    // that blow past the extent of the ivar.  If the address of the ivar is
1231    // reinterpretted, it is possible we stored a different value that could
1232    // fit within the ivar.  Either we need to cast these when storing them
1233    // or reinterpret them lazily (as we do here).
1234    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1235  }
1236
1237  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1238    // FIXME: Here we actually perform an implicit conversion from the loaded
1239    // value to the variable type.  What we should model is stores to variables
1240    // that blow past the extent of the variable.  If the address of the
1241    // variable is reinterpretted, it is possible we stored a different value
1242    // that could fit within the variable.  Either we need to cast these when
1243    // storing them or reinterpret them lazily (as we do here).
1244    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1245  }
1246
1247  const SVal *V = B.lookup(R, BindingKey::Direct);
1248
1249  // Check if the region has a binding.
1250  if (V)
1251    return *V;
1252
1253  // The location does not have a bound value.  This means that it has
1254  // the value it had upon its creation and/or entry to the analyzed
1255  // function/method.  These are either symbolic values or 'undefined'.
1256  if (R->hasStackNonParametersStorage()) {
1257    // All stack variables are considered to have undefined values
1258    // upon creation.  All heap allocated blocks are considered to
1259    // have undefined values as well unless they are explicitly bound
1260    // to specific values.
1261    return UndefinedVal();
1262  }
1263
1264  // All other values are symbolic.
1265  return svalBuilder.getRegionValueSymbolVal(R);
1266}
1267
1268/// Checks to see if store \p B has a lazy binding for region \p R.
1269///
1270/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1271/// if there are additional bindings within \p R.
1272///
1273/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1274/// for lazy bindings for super-regions of \p R.
1275static Optional<nonloc::LazyCompoundVal>
1276getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1277                       const SubRegion *R, bool AllowSubregionBindings) {
1278  Optional<SVal> V = B.getDefaultBinding(R);
1279  if (!V)
1280    return None;
1281
1282  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1283  if (!LCV)
1284    return None;
1285
1286  // If the LCV is for a subregion, the types won't match, and we shouldn't
1287  // reuse the binding. Unfortuately we can only check this if the destination
1288  // region is a TypedValueRegion.
1289  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) {
1290    QualType RegionTy = TVR->getValueType();
1291    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1292    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1293      return None;
1294  }
1295
1296  if (!AllowSubregionBindings) {
1297    // If there are any other bindings within this region, we shouldn't reuse
1298    // the top-level binding.
1299    SmallVector<BindingPair, 16> Bindings;
1300    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1301                             /*IncludeAllDefaultBindings=*/true);
1302    if (Bindings.size() > 1)
1303      return None;
1304  }
1305
1306  return *LCV;
1307}
1308
1309
1310std::pair<Store, const SubRegion *>
1311RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1312                                   const SubRegion *R,
1313                                   const SubRegion *originalRegion) {
1314  if (originalRegion != R) {
1315    if (Optional<nonloc::LazyCompoundVal> V =
1316          getExistingLazyBinding(svalBuilder, B, R, true))
1317      return std::make_pair(V->getStore(), V->getRegion());
1318  }
1319
1320  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1321  StoreRegionPair Result = StoreRegionPair();
1322
1323  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1324    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1325                             originalRegion);
1326
1327    if (Result.second)
1328      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1329
1330  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1331    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1332                                       originalRegion);
1333
1334    if (Result.second)
1335      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1336
1337  } else if (const CXXBaseObjectRegion *BaseReg =
1338               dyn_cast<CXXBaseObjectRegion>(R)) {
1339    // C++ base object region is another kind of region that we should blast
1340    // through to look for lazy compound value. It is like a field region.
1341    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1342                             originalRegion);
1343
1344    if (Result.second)
1345      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1346                                                            Result.second);
1347  }
1348
1349  return Result;
1350}
1351
1352SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1353                                              const ElementRegion* R) {
1354  // We do not currently model bindings of the CompoundLiteralregion.
1355  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1356    return UnknownVal();
1357
1358  // Check if the region has a binding.
1359  if (const Optional<SVal> &V = B.getDirectBinding(R))
1360    return *V;
1361
1362  const MemRegion* superR = R->getSuperRegion();
1363
1364  // Check if the region is an element region of a string literal.
1365  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1366    // FIXME: Handle loads from strings where the literal is treated as
1367    // an integer, e.g., *((unsigned int*)"hello")
1368    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1369    if (T != Ctx.getCanonicalType(R->getElementType()))
1370      return UnknownVal();
1371
1372    const StringLiteral *Str = StrR->getStringLiteral();
1373    SVal Idx = R->getIndex();
1374    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1375      int64_t i = CI->getValue().getSExtValue();
1376      // Abort on string underrun.  This can be possible by arbitrary
1377      // clients of getBindingForElement().
1378      if (i < 0)
1379        return UndefinedVal();
1380      int64_t length = Str->getLength();
1381      // Technically, only i == length is guaranteed to be null.
1382      // However, such overflows should be caught before reaching this point;
1383      // the only time such an access would be made is if a string literal was
1384      // used to initialize a larger array.
1385      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1386      return svalBuilder.makeIntVal(c, T);
1387    }
1388  }
1389
1390  // Check for loads from a code text region.  For such loads, just give up.
1391  if (isa<CodeTextRegion>(superR))
1392    return UnknownVal();
1393
1394  // Handle the case where we are indexing into a larger scalar object.
1395  // For example, this handles:
1396  //   int x = ...
1397  //   char *y = &x;
1398  //   return *y;
1399  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1400  const RegionRawOffset &O = R->getAsArrayOffset();
1401
1402  // If we cannot reason about the offset, return an unknown value.
1403  if (!O.getRegion())
1404    return UnknownVal();
1405
1406  if (const TypedValueRegion *baseR =
1407        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1408    QualType baseT = baseR->getValueType();
1409    if (baseT->isScalarType()) {
1410      QualType elemT = R->getElementType();
1411      if (elemT->isScalarType()) {
1412        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1413          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1414            if (SymbolRef parentSym = V->getAsSymbol())
1415              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1416
1417            if (V->isUnknownOrUndef())
1418              return *V;
1419            // Other cases: give up.  We are indexing into a larger object
1420            // that has some value, but we don't know how to handle that yet.
1421            return UnknownVal();
1422          }
1423        }
1424      }
1425    }
1426  }
1427  return getBindingForFieldOrElementCommon(B, R, R->getElementType(),
1428                                           superR);
1429}
1430
1431SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1432                                            const FieldRegion* R) {
1433
1434  // Check if the region has a binding.
1435  if (const Optional<SVal> &V = B.getDirectBinding(R))
1436    return *V;
1437
1438  QualType Ty = R->getValueType();
1439  return getBindingForFieldOrElementCommon(B, R, Ty, R->getSuperRegion());
1440}
1441
1442Optional<SVal>
1443RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1444                                                     const MemRegion *superR,
1445                                                     const TypedValueRegion *R,
1446                                                     QualType Ty) {
1447
1448  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1449    const SVal &val = D.getValue();
1450    if (SymbolRef parentSym = val.getAsSymbol())
1451      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1452
1453    if (val.isZeroConstant())
1454      return svalBuilder.makeZeroVal(Ty);
1455
1456    if (val.isUnknownOrUndef())
1457      return val;
1458
1459    // Lazy bindings are usually handled through getExistingLazyBinding().
1460    // We should unify these two code paths at some point.
1461    if (val.getAs<nonloc::LazyCompoundVal>())
1462      return val;
1463
1464    llvm_unreachable("Unknown default value");
1465  }
1466
1467  return None;
1468}
1469
1470SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1471                                        RegionBindingsRef LazyBinding) {
1472  SVal Result;
1473  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1474    Result = getBindingForElement(LazyBinding, ER);
1475  else
1476    Result = getBindingForField(LazyBinding,
1477                                cast<FieldRegion>(LazyBindingRegion));
1478
1479  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1480  // default value for /part/ of an aggregate from a default value for the
1481  // /entire/ aggregate. The most common case of this is when struct Outer
1482  // has as its first member a struct Inner, which is copied in from a stack
1483  // variable. In this case, even if the Outer's default value is symbolic, 0,
1484  // or unknown, it gets overridden by the Inner's default value of undefined.
1485  //
1486  // This is a general problem -- if the Inner is zero-initialized, the Outer
1487  // will now look zero-initialized. The proper way to solve this is with a
1488  // new version of RegionStore that tracks the extent of a binding as well
1489  // as the offset.
1490  //
1491  // This hack only takes care of the undefined case because that can very
1492  // quickly result in a warning.
1493  if (Result.isUndef())
1494    Result = UnknownVal();
1495
1496  return Result;
1497}
1498
1499SVal
1500RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1501                                                      const TypedValueRegion *R,
1502                                                      QualType Ty,
1503                                                      const MemRegion *superR) {
1504
1505  // At this point we have already checked in either getBindingForElement or
1506  // getBindingForField if 'R' has a direct binding.
1507
1508  // Lazy binding?
1509  Store lazyBindingStore = NULL;
1510  const SubRegion *lazyBindingRegion = NULL;
1511  llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1512  if (lazyBindingRegion)
1513    return getLazyBinding(lazyBindingRegion,
1514                          getRegionBindings(lazyBindingStore));
1515
1516  // Record whether or not we see a symbolic index.  That can completely
1517  // be out of scope of our lookup.
1518  bool hasSymbolicIndex = false;
1519
1520  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1521  // default value for /part/ of an aggregate from a default value for the
1522  // /entire/ aggregate. The most common case of this is when struct Outer
1523  // has as its first member a struct Inner, which is copied in from a stack
1524  // variable. In this case, even if the Outer's default value is symbolic, 0,
1525  // or unknown, it gets overridden by the Inner's default value of undefined.
1526  //
1527  // This is a general problem -- if the Inner is zero-initialized, the Outer
1528  // will now look zero-initialized. The proper way to solve this is with a
1529  // new version of RegionStore that tracks the extent of a binding as well
1530  // as the offset.
1531  //
1532  // This hack only takes care of the undefined case because that can very
1533  // quickly result in a warning.
1534  bool hasPartialLazyBinding = false;
1535
1536  const SubRegion *Base = dyn_cast<SubRegion>(superR);
1537  while (Base) {
1538    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1539      if (D->getAs<nonloc::LazyCompoundVal>()) {
1540        hasPartialLazyBinding = true;
1541        break;
1542      }
1543
1544      return *D;
1545    }
1546
1547    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1548      NonLoc index = ER->getIndex();
1549      if (!index.isConstant())
1550        hasSymbolicIndex = true;
1551    }
1552
1553    // If our super region is a field or element itself, walk up the region
1554    // hierarchy to see if there is a default value installed in an ancestor.
1555    Base = dyn_cast<SubRegion>(Base->getSuperRegion());
1556  }
1557
1558  if (R->hasStackNonParametersStorage()) {
1559    if (isa<ElementRegion>(R)) {
1560      // Currently we don't reason specially about Clang-style vectors.  Check
1561      // if superR is a vector and if so return Unknown.
1562      if (const TypedValueRegion *typedSuperR =
1563            dyn_cast<TypedValueRegion>(superR)) {
1564        if (typedSuperR->getValueType()->isVectorType())
1565          return UnknownVal();
1566      }
1567    }
1568
1569    // FIXME: We also need to take ElementRegions with symbolic indexes into
1570    // account.  This case handles both directly accessing an ElementRegion
1571    // with a symbolic offset, but also fields within an element with
1572    // a symbolic offset.
1573    if (hasSymbolicIndex)
1574      return UnknownVal();
1575
1576    if (!hasPartialLazyBinding)
1577      return UndefinedVal();
1578  }
1579
1580  // All other values are symbolic.
1581  return svalBuilder.getRegionValueSymbolVal(R);
1582}
1583
1584SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1585                                               const ObjCIvarRegion* R) {
1586  // Check if the region has a binding.
1587  if (const Optional<SVal> &V = B.getDirectBinding(R))
1588    return *V;
1589
1590  const MemRegion *superR = R->getSuperRegion();
1591
1592  // Check if the super region has a default binding.
1593  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1594    if (SymbolRef parentSym = V->getAsSymbol())
1595      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1596
1597    // Other cases: give up.
1598    return UnknownVal();
1599  }
1600
1601  return getBindingForLazySymbol(R);
1602}
1603
1604static Optional<SVal> getConstValue(SValBuilder &SVB, const VarDecl *VD) {
1605  ASTContext &Ctx = SVB.getContext();
1606  if (!VD->getType().isConstQualified())
1607    return None;
1608
1609  const Expr *Init = VD->getInit();
1610  if (!Init)
1611    return None;
1612
1613  llvm::APSInt Result;
1614  if (!Init->isGLValue() && Init->EvaluateAsInt(Result, Ctx))
1615    return SVB.makeIntVal(Result);
1616
1617  if (Init->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
1618    return SVB.makeNull();
1619
1620  // FIXME: Handle other possible constant expressions.
1621  return None;
1622}
1623
1624SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1625                                          const VarRegion *R) {
1626
1627  // Check if the region has a binding.
1628  if (const Optional<SVal> &V = B.getDirectBinding(R))
1629    return *V;
1630
1631  // Lazily derive a value for the VarRegion.
1632  const VarDecl *VD = R->getDecl();
1633  const MemSpaceRegion *MS = R->getMemorySpace();
1634
1635  // Arguments are always symbolic.
1636  if (isa<StackArgumentsSpaceRegion>(MS))
1637    return svalBuilder.getRegionValueSymbolVal(R);
1638
1639  // Is 'VD' declared constant?  If so, retrieve the constant value.
1640  if (Optional<SVal> V = getConstValue(svalBuilder, VD))
1641    return *V;
1642
1643  // This must come after the check for constants because closure-captured
1644  // constant variables may appear in UnknownSpaceRegion.
1645  if (isa<UnknownSpaceRegion>(MS))
1646    return svalBuilder.getRegionValueSymbolVal(R);
1647
1648  if (isa<GlobalsSpaceRegion>(MS)) {
1649    QualType T = VD->getType();
1650
1651    // Function-scoped static variables are default-initialized to 0; if they
1652    // have an initializer, it would have been processed by now.
1653    if (isa<StaticGlobalSpaceRegion>(MS))
1654      return svalBuilder.makeZeroVal(T);
1655
1656    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1657      assert(!V->getAs<nonloc::LazyCompoundVal>());
1658      return V.getValue();
1659    }
1660
1661    return svalBuilder.getRegionValueSymbolVal(R);
1662  }
1663
1664  return UndefinedVal();
1665}
1666
1667SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1668  // All other values are symbolic.
1669  return svalBuilder.getRegionValueSymbolVal(R);
1670}
1671
1672const RegionStoreManager::SValListTy &
1673RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1674  // First, check the cache.
1675  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1676  if (I != LazyBindingsMap.end())
1677    return I->second;
1678
1679  // If we don't have a list of values cached, start constructing it.
1680  SValListTy List;
1681
1682  const SubRegion *LazyR = LCV.getRegion();
1683  RegionBindingsRef B = getRegionBindings(LCV.getStore());
1684
1685  // If this region had /no/ bindings at the time, there are no interesting
1686  // values to return.
1687  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1688  if (!Cluster)
1689    return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1690
1691  SmallVector<BindingPair, 32> Bindings;
1692  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1693                           /*IncludeAllDefaultBindings=*/true);
1694  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1695                                                    E = Bindings.end();
1696       I != E; ++I) {
1697    SVal V = I->second;
1698    if (V.isUnknownOrUndef() || V.isConstant())
1699      continue;
1700
1701    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1702            V.getAs<nonloc::LazyCompoundVal>()) {
1703      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1704      List.insert(List.end(), InnerList.begin(), InnerList.end());
1705      continue;
1706    }
1707
1708    List.push_back(V);
1709  }
1710
1711  return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1712}
1713
1714NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1715                                             const TypedValueRegion *R) {
1716  if (Optional<nonloc::LazyCompoundVal> V =
1717        getExistingLazyBinding(svalBuilder, B, R, false))
1718    return *V;
1719
1720  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1721}
1722
1723SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1724                                             const TypedValueRegion *R) {
1725  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1726  if (RD->field_empty())
1727    return UnknownVal();
1728
1729  return createLazyBinding(B, R);
1730}
1731
1732SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1733                                            const TypedValueRegion *R) {
1734  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1735         "Only constant array types can have compound bindings.");
1736
1737  return createLazyBinding(B, R);
1738}
1739
1740bool RegionStoreManager::includedInBindings(Store store,
1741                                            const MemRegion *region) const {
1742  RegionBindingsRef B = getRegionBindings(store);
1743  region = region->getBaseRegion();
1744
1745  // Quick path: if the base is the head of a cluster, the region is live.
1746  if (B.lookup(region))
1747    return true;
1748
1749  // Slow path: if the region is the VALUE of any binding, it is live.
1750  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1751    const ClusterBindings &Cluster = RI.getData();
1752    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1753         CI != CE; ++CI) {
1754      const SVal &D = CI.getData();
1755      if (const MemRegion *R = D.getAsRegion())
1756        if (R->getBaseRegion() == region)
1757          return true;
1758    }
1759  }
1760
1761  return false;
1762}
1763
1764//===----------------------------------------------------------------------===//
1765// Binding values to regions.
1766//===----------------------------------------------------------------------===//
1767
1768StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1769  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1770    if (const MemRegion* R = LV->getRegion())
1771      return StoreRef(getRegionBindings(ST).removeBinding(R)
1772                                           .asImmutableMap()
1773                                           .getRootWithoutRetain(),
1774                      *this);
1775
1776  return StoreRef(ST, *this);
1777}
1778
1779RegionBindingsRef
1780RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1781  if (L.getAs<loc::ConcreteInt>())
1782    return B;
1783
1784  // If we get here, the location should be a region.
1785  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1786
1787  // Check if the region is a struct region.
1788  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1789    QualType Ty = TR->getValueType();
1790    if (Ty->isArrayType())
1791      return bindArray(B, TR, V);
1792    if (Ty->isStructureOrClassType())
1793      return bindStruct(B, TR, V);
1794    if (Ty->isVectorType())
1795      return bindVector(B, TR, V);
1796  }
1797
1798  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1799    // Binding directly to a symbolic region should be treated as binding
1800    // to element 0.
1801    QualType T = SR->getSymbol()->getType();
1802    if (T->isAnyPointerType() || T->isReferenceType())
1803      T = T->getPointeeType();
1804
1805    R = GetElementZeroRegion(SR, T);
1806  }
1807
1808  // Clear out bindings that may overlap with this binding.
1809  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1810  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1811}
1812
1813// FIXME: this method should be merged into Bind().
1814StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
1815                                                 const CompoundLiteralExpr *CL,
1816                                                 const LocationContext *LC,
1817                                                 SVal V) {
1818  return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
1819}
1820
1821RegionBindingsRef
1822RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1823                                            const MemRegion *R,
1824                                            QualType T) {
1825  SVal V;
1826
1827  if (Loc::isLocType(T))
1828    V = svalBuilder.makeNull();
1829  else if (T->isIntegerType())
1830    V = svalBuilder.makeZeroVal(T);
1831  else if (T->isStructureOrClassType() || T->isArrayType()) {
1832    // Set the default value to a zero constant when it is a structure
1833    // or array.  The type doesn't really matter.
1834    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1835  }
1836  else {
1837    // We can't represent values of this type, but we still need to set a value
1838    // to record that the region has been initialized.
1839    // If this assertion ever fires, a new case should be added above -- we
1840    // should know how to default-initialize any value we can symbolicate.
1841    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1842    V = UnknownVal();
1843  }
1844
1845  return B.addBinding(R, BindingKey::Default, V);
1846}
1847
1848RegionBindingsRef
1849RegionStoreManager::bindArray(RegionBindingsConstRef B,
1850                              const TypedValueRegion* R,
1851                              SVal Init) {
1852
1853  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1854  QualType ElementTy = AT->getElementType();
1855  Optional<uint64_t> Size;
1856
1857  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1858    Size = CAT->getSize().getZExtValue();
1859
1860  // Check if the init expr is a string literal.
1861  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
1862    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1863
1864    // Treat the string as a lazy compound value.
1865    StoreRef store(B.asStore(), *this);
1866    nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
1867        .castAs<nonloc::LazyCompoundVal>();
1868    return bindAggregate(B, R, LCV);
1869  }
1870
1871  // Handle lazy compound values.
1872  if (Init.getAs<nonloc::LazyCompoundVal>())
1873    return bindAggregate(B, R, Init);
1874
1875  // Remaining case: explicit compound values.
1876
1877  if (Init.isUnknown())
1878    return setImplicitDefaultValue(B, R, ElementTy);
1879
1880  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
1881  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1882  uint64_t i = 0;
1883
1884  RegionBindingsRef NewB(B);
1885
1886  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1887    // The init list might be shorter than the array length.
1888    if (VI == VE)
1889      break;
1890
1891    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1892    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1893
1894    if (ElementTy->isStructureOrClassType())
1895      NewB = bindStruct(NewB, ER, *VI);
1896    else if (ElementTy->isArrayType())
1897      NewB = bindArray(NewB, ER, *VI);
1898    else
1899      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1900  }
1901
1902  // If the init list is shorter than the array length, set the
1903  // array default value.
1904  if (Size.hasValue() && i < Size.getValue())
1905    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
1906
1907  return NewB;
1908}
1909
1910RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
1911                                                 const TypedValueRegion* R,
1912                                                 SVal V) {
1913  QualType T = R->getValueType();
1914  assert(T->isVectorType());
1915  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1916
1917  // Handle lazy compound values and symbolic values.
1918  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
1919    return bindAggregate(B, R, V);
1920
1921  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1922  // that we are binding symbolic struct value. Kill the field values, and if
1923  // the value is symbolic go and bind it as a "default" binding.
1924  if (!V.getAs<nonloc::CompoundVal>()) {
1925    return bindAggregate(B, R, UnknownVal());
1926  }
1927
1928  QualType ElemType = VT->getElementType();
1929  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
1930  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1931  unsigned index = 0, numElements = VT->getNumElements();
1932  RegionBindingsRef NewB(B);
1933
1934  for ( ; index != numElements ; ++index) {
1935    if (VI == VE)
1936      break;
1937
1938    NonLoc Idx = svalBuilder.makeArrayIndex(index);
1939    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1940
1941    if (ElemType->isArrayType())
1942      NewB = bindArray(NewB, ER, *VI);
1943    else if (ElemType->isStructureOrClassType())
1944      NewB = bindStruct(NewB, ER, *VI);
1945    else
1946      NewB = bind(NewB, svalBuilder.makeLoc(ER), *VI);
1947  }
1948  return NewB;
1949}
1950
1951RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
1952                                                 const TypedValueRegion* R,
1953                                                 SVal V) {
1954  if (!Features.supportsFields())
1955    return B;
1956
1957  QualType T = R->getValueType();
1958  assert(T->isStructureOrClassType());
1959
1960  const RecordType* RT = T->getAs<RecordType>();
1961  RecordDecl *RD = RT->getDecl();
1962
1963  if (!RD->isCompleteDefinition())
1964    return B;
1965
1966  // Handle lazy compound values and symbolic values.
1967  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
1968    return bindAggregate(B, R, V);
1969
1970  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1971  // that we are binding symbolic struct value. Kill the field values, and if
1972  // the value is symbolic go and bind it as a "default" binding.
1973  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
1974    return bindAggregate(B, R, UnknownVal());
1975
1976  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
1977  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1978
1979  RecordDecl::field_iterator FI, FE;
1980  RegionBindingsRef NewB(B);
1981
1982  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1983
1984    if (VI == VE)
1985      break;
1986
1987    // Skip any unnamed bitfields to stay in sync with the initializers.
1988    if (FI->isUnnamedBitfield())
1989      continue;
1990
1991    QualType FTy = FI->getType();
1992    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1993
1994    if (FTy->isArrayType())
1995      NewB = bindArray(NewB, FR, *VI);
1996    else if (FTy->isStructureOrClassType())
1997      NewB = bindStruct(NewB, FR, *VI);
1998    else
1999      NewB = bind(NewB, svalBuilder.makeLoc(FR), *VI);
2000    ++VI;
2001  }
2002
2003  // There may be fewer values in the initialize list than the fields of struct.
2004  if (FI != FE) {
2005    NewB = NewB.addBinding(R, BindingKey::Default,
2006                           svalBuilder.makeIntVal(0, false));
2007  }
2008
2009  return NewB;
2010}
2011
2012RegionBindingsRef
2013RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2014                                  const TypedRegion *R,
2015                                  SVal Val) {
2016  // Remove the old bindings, using 'R' as the root of all regions
2017  // we will invalidate. Then add the new binding.
2018  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2019}
2020
2021//===----------------------------------------------------------------------===//
2022// State pruning.
2023//===----------------------------------------------------------------------===//
2024
2025namespace {
2026class removeDeadBindingsWorker :
2027  public ClusterAnalysis<removeDeadBindingsWorker> {
2028  SmallVector<const SymbolicRegion*, 12> Postponed;
2029  SymbolReaper &SymReaper;
2030  const StackFrameContext *CurrentLCtx;
2031
2032public:
2033  removeDeadBindingsWorker(RegionStoreManager &rm,
2034                           ProgramStateManager &stateMgr,
2035                           RegionBindingsRef b, SymbolReaper &symReaper,
2036                           const StackFrameContext *LCtx)
2037    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
2038                                                /* includeGlobals = */ false),
2039      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2040
2041  // Called by ClusterAnalysis.
2042  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2043  void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
2044
2045  bool UpdatePostponed();
2046  void VisitBinding(SVal V);
2047};
2048}
2049
2050void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2051                                                   const ClusterBindings &C) {
2052
2053  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2054    if (SymReaper.isLive(VR))
2055      AddToWorkList(baseR, &C);
2056
2057    return;
2058  }
2059
2060  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2061    if (SymReaper.isLive(SR->getSymbol()))
2062      AddToWorkList(SR, &C);
2063    else
2064      Postponed.push_back(SR);
2065
2066    return;
2067  }
2068
2069  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2070    AddToWorkList(baseR, &C);
2071    return;
2072  }
2073
2074  // CXXThisRegion in the current or parent location context is live.
2075  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2076    const StackArgumentsSpaceRegion *StackReg =
2077      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2078    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2079    if (CurrentLCtx &&
2080        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2081      AddToWorkList(TR, &C);
2082  }
2083}
2084
2085void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2086                                            const ClusterBindings &C) {
2087  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2088  // This means we should continue to track that symbol.
2089  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2090    SymReaper.markLive(SymR->getSymbol());
2091
2092  for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
2093    VisitBinding(I.getData());
2094}
2095
2096void removeDeadBindingsWorker::VisitBinding(SVal V) {
2097  // Is it a LazyCompoundVal?  All referenced regions are live as well.
2098  if (Optional<nonloc::LazyCompoundVal> LCS =
2099          V.getAs<nonloc::LazyCompoundVal>()) {
2100
2101    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2102
2103    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2104                                                        E = Vals.end();
2105         I != E; ++I)
2106      VisitBinding(*I);
2107
2108    return;
2109  }
2110
2111  // If V is a region, then add it to the worklist.
2112  if (const MemRegion *R = V.getAsRegion()) {
2113    AddToWorkList(R);
2114
2115    // All regions captured by a block are also live.
2116    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2117      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2118                                                E = BR->referenced_vars_end();
2119      for ( ; I != E; ++I)
2120        AddToWorkList(I.getCapturedRegion());
2121    }
2122  }
2123
2124
2125  // Update the set of live symbols.
2126  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2127       SI!=SE; ++SI)
2128    SymReaper.markLive(*SI);
2129}
2130
2131bool removeDeadBindingsWorker::UpdatePostponed() {
2132  // See if any postponed SymbolicRegions are actually live now, after
2133  // having done a scan.
2134  bool changed = false;
2135
2136  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2137        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2138    if (const SymbolicRegion *SR = *I) {
2139      if (SymReaper.isLive(SR->getSymbol())) {
2140        changed |= AddToWorkList(SR);
2141        *I = NULL;
2142      }
2143    }
2144  }
2145
2146  return changed;
2147}
2148
2149StoreRef RegionStoreManager::removeDeadBindings(Store store,
2150                                                const StackFrameContext *LCtx,
2151                                                SymbolReaper& SymReaper) {
2152  RegionBindingsRef B = getRegionBindings(store);
2153  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2154  W.GenerateClusters();
2155
2156  // Enqueue the region roots onto the worklist.
2157  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2158       E = SymReaper.region_end(); I != E; ++I) {
2159    W.AddToWorkList(*I);
2160  }
2161
2162  do W.RunWorkList(); while (W.UpdatePostponed());
2163
2164  // We have now scanned the store, marking reachable regions and symbols
2165  // as live.  We now remove all the regions that are dead from the store
2166  // as well as update DSymbols with the set symbols that are now dead.
2167  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2168    const MemRegion *Base = I.getKey();
2169
2170    // If the cluster has been visited, we know the region has been marked.
2171    if (W.isVisited(Base))
2172      continue;
2173
2174    // Remove the dead entry.
2175    B = B.remove(Base);
2176
2177    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2178      SymReaper.maybeDead(SymR->getSymbol());
2179
2180    // Mark all non-live symbols that this binding references as dead.
2181    const ClusterBindings &Cluster = I.getData();
2182    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2183         CI != CE; ++CI) {
2184      SVal X = CI.getData();
2185      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2186      for (; SI != SE; ++SI)
2187        SymReaper.maybeDead(*SI);
2188    }
2189  }
2190
2191  return StoreRef(B.asStore(), *this);
2192}
2193
2194//===----------------------------------------------------------------------===//
2195// Utility methods.
2196//===----------------------------------------------------------------------===//
2197
2198void RegionStoreManager::print(Store store, raw_ostream &OS,
2199                               const char* nl, const char *sep) {
2200  RegionBindingsRef B = getRegionBindings(store);
2201  OS << "Store (direct and default bindings), "
2202     << B.asStore()
2203     << " :" << nl;
2204  B.dump(OS, nl);
2205}
2206