SValBuilder.cpp revision baeaa9ad120f60b1c5b6f1a84286b507dbe2b55d
1// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SValBuilder, the base class for all (complete) SValBuilder
11//  implementations.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ExprCXX.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
21
22using namespace clang;
23using namespace ento;
24
25//===----------------------------------------------------------------------===//
26// Basic SVal creation.
27//===----------------------------------------------------------------------===//
28
29void SValBuilder::anchor() { }
30
31DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
32  if (Loc::isLocType(type))
33    return makeNull();
34
35  if (type->isIntegerType())
36    return makeIntVal(0, type);
37
38  // FIXME: Handle floats.
39  // FIXME: Handle structs.
40  return UnknownVal();
41}
42
43NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
44                                const llvm::APSInt& rhs, QualType type) {
45  // The Environment ensures we always get a persistent APSInt in
46  // BasicValueFactory, so we don't need to get the APSInt from
47  // BasicValueFactory again.
48  assert(lhs);
49  assert(!Loc::isLocType(type));
50  return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
51}
52
53NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
54                               BinaryOperator::Opcode op, const SymExpr *rhs,
55                               QualType type) {
56  assert(rhs);
57  assert(!Loc::isLocType(type));
58  return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
59}
60
61NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
62                               const SymExpr *rhs, QualType type) {
63  assert(lhs && rhs);
64  assert(haveSameType(lhs->getType(Context), rhs->getType(Context)) == true);
65  assert(!Loc::isLocType(type));
66  return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67}
68
69NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70                               QualType fromTy, QualType toTy) {
71  assert(operand);
72  assert(!Loc::isLocType(toTy));
73  return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74}
75
76SVal SValBuilder::convertToArrayIndex(SVal val) {
77  if (val.isUnknownOrUndef())
78    return val;
79
80  // Common case: we have an appropriately sized integer.
81  if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) {
82    const llvm::APSInt& I = CI->getValue();
83    if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84      return val;
85  }
86
87  return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy);
88}
89
90nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91  return makeTruthVal(boolean->getValue());
92}
93
94DefinedOrUnknownSVal
95SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96  QualType T = region->getValueType();
97
98  if (!SymbolManager::canSymbolicate(T))
99    return UnknownVal();
100
101  SymbolRef sym = SymMgr.getRegionValueSymbol(region);
102
103  if (Loc::isLocType(T))
104    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
105
106  return nonloc::SymbolVal(sym);
107}
108
109DefinedOrUnknownSVal
110SValBuilder::getConjuredSymbolVal(const void *symbolTag,
111                                  const Expr *expr,
112                                  const LocationContext *LCtx,
113                                  unsigned count) {
114  QualType T = expr->getType();
115  return getConjuredSymbolVal(symbolTag, expr, LCtx, T, count);
116}
117
118DefinedOrUnknownSVal
119SValBuilder::getConjuredSymbolVal(const void *symbolTag,
120                                  const Expr *expr,
121                                  const LocationContext *LCtx,
122                                  QualType type,
123                                  unsigned count) {
124  if (!SymbolManager::canSymbolicate(type))
125    return UnknownVal();
126
127  SymbolRef sym = SymMgr.getConjuredSymbol(expr, LCtx, type, count, symbolTag);
128
129  if (Loc::isLocType(type))
130    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
131
132  return nonloc::SymbolVal(sym);
133}
134
135
136DefinedOrUnknownSVal
137SValBuilder::getConjuredSymbolVal(const Stmt *stmt,
138                                  const LocationContext *LCtx,
139                                  QualType type,
140                                  unsigned visitCount) {
141  if (!SymbolManager::canSymbolicate(type))
142    return UnknownVal();
143
144  SymbolRef sym = SymMgr.getConjuredSymbol(stmt, LCtx, type, visitCount);
145
146  if (Loc::isLocType(type))
147    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
148
149  return nonloc::SymbolVal(sym);
150}
151
152DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
153                                              const MemRegion *region,
154                                              const Expr *expr, QualType type,
155                                              unsigned count) {
156  assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
157
158  SymbolRef sym =
159      SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
160
161  if (Loc::isLocType(type))
162    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
163
164  return nonloc::SymbolVal(sym);
165}
166
167DefinedOrUnknownSVal
168SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
169                                             const TypedValueRegion *region) {
170  QualType T = region->getValueType();
171
172  if (!SymbolManager::canSymbolicate(T))
173    return UnknownVal();
174
175  SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
176
177  if (Loc::isLocType(T))
178    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
179
180  return nonloc::SymbolVal(sym);
181}
182
183DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
184  return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
185}
186
187DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
188                                         CanQualType locTy,
189                                         const LocationContext *locContext) {
190  const BlockTextRegion *BC =
191    MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
192  const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
193  return loc::MemRegionVal(BD);
194}
195
196//===----------------------------------------------------------------------===//
197
198SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
199                                   BinaryOperator::Opcode Op,
200                                   NonLoc LHS, NonLoc RHS,
201                                   QualType ResultTy) {
202  if (!State->isTainted(RHS) && !State->isTainted(LHS))
203    return UnknownVal();
204
205  const SymExpr *symLHS = LHS.getAsSymExpr();
206  const SymExpr *symRHS = RHS.getAsSymExpr();
207  // TODO: When the Max Complexity is reached, we should conjure a symbol
208  // instead of generating an Unknown value and propagate the taint info to it.
209  const unsigned MaxComp = 10000; // 100000 28X
210
211  if (symLHS && symRHS &&
212      (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
213    return makeNonLoc(symLHS, Op, symRHS, ResultTy);
214
215  if (symLHS && symLHS->computeComplexity() < MaxComp)
216    if (const nonloc::ConcreteInt *rInt = dyn_cast<nonloc::ConcreteInt>(&RHS))
217      return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
218
219  if (symRHS && symRHS->computeComplexity() < MaxComp)
220    if (const nonloc::ConcreteInt *lInt = dyn_cast<nonloc::ConcreteInt>(&LHS))
221      return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
222
223  return UnknownVal();
224}
225
226
227SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
228                            SVal lhs, SVal rhs, QualType type) {
229
230  if (lhs.isUndef() || rhs.isUndef())
231    return UndefinedVal();
232
233  if (lhs.isUnknown() || rhs.isUnknown())
234    return UnknownVal();
235
236  if (isa<Loc>(lhs)) {
237    if (isa<Loc>(rhs))
238      return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type);
239
240    return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type);
241  }
242
243  if (isa<Loc>(rhs)) {
244    // Support pointer arithmetic where the addend is on the left
245    // and the pointer on the right.
246    assert(op == BO_Add);
247
248    // Commute the operands.
249    return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type);
250  }
251
252  return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type);
253}
254
255DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
256                                         DefinedOrUnknownSVal lhs,
257                                         DefinedOrUnknownSVal rhs) {
258  return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs,
259                                              Context.IntTy));
260}
261
262/// Recursively check if the pointer types are equal modulo const, volatile,
263/// and restrict qualifiers. Assumes the input types are canonical.
264/// TODO: This is based off of code in SemaCast; can we reuse it.
265static bool haveSimilarTypes(ASTContext &Context, QualType T1,
266                                                  QualType T2) {
267  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
268    Qualifiers Quals1, Quals2;
269    T1 = Context.getUnqualifiedArrayType(T1, Quals1);
270    T2 = Context.getUnqualifiedArrayType(T2, Quals2);
271
272    // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
273    // spaces) are identical.
274    Quals1.removeCVRQualifiers();
275    Quals2.removeCVRQualifiers();
276    if (Quals1 != Quals2)
277      return false;
278  }
279
280  if (T1 != T2)
281    return false;
282
283  return true;
284}
285
286// FIXME: should rewrite according to the cast kind.
287SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
288  castTy = Context.getCanonicalType(castTy);
289  originalTy = Context.getCanonicalType(originalTy);
290  if (val.isUnknownOrUndef() || castTy == originalTy)
291    return val;
292
293  // For const casts, just propagate the value.
294  if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
295    if (haveSimilarTypes(Context, Context.getPointerType(castTy),
296                                  Context.getPointerType(originalTy)))
297      return val;
298
299  // Check for casts from pointers to integers.
300  if (castTy->isIntegerType() && Loc::isLocType(originalTy))
301    return evalCastFromLoc(cast<Loc>(val), castTy);
302
303  // Check for casts from integers to pointers.
304  if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
305    if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
306      if (const MemRegion *R = LV->getLoc().getAsRegion()) {
307        StoreManager &storeMgr = StateMgr.getStoreManager();
308        R = storeMgr.castRegion(R, castTy);
309        return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
310      }
311      return LV->getLoc();
312    }
313    return dispatchCast(val, castTy);
314  }
315
316  // Just pass through function and block pointers.
317  if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
318    assert(Loc::isLocType(castTy));
319    return val;
320  }
321
322  // Check for casts from array type to another type.
323  if (originalTy->isArrayType()) {
324    // We will always decay to a pointer.
325    val = StateMgr.ArrayToPointer(cast<Loc>(val));
326
327    // Are we casting from an array to a pointer?  If so just pass on
328    // the decayed value.
329    if (castTy->isPointerType())
330      return val;
331
332    // Are we casting from an array to an integer?  If so, cast the decayed
333    // pointer value to an integer.
334    assert(castTy->isIntegerType());
335
336    // FIXME: Keep these here for now in case we decide soon that we
337    // need the original decayed type.
338    //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
339    //    QualType pointerTy = C.getPointerType(elemTy);
340    return evalCastFromLoc(cast<Loc>(val), castTy);
341  }
342
343  // Check for casts from a region to a specific type.
344  if (const MemRegion *R = val.getAsRegion()) {
345    // Handle other casts of locations to integers.
346    if (castTy->isIntegerType())
347      return evalCastFromLoc(loc::MemRegionVal(R), castTy);
348
349    // FIXME: We should handle the case where we strip off view layers to get
350    //  to a desugared type.
351    if (!Loc::isLocType(castTy)) {
352      // FIXME: There can be gross cases where one casts the result of a function
353      // (that returns a pointer) to some other value that happens to fit
354      // within that pointer value.  We currently have no good way to
355      // model such operations.  When this happens, the underlying operation
356      // is that the caller is reasoning about bits.  Conceptually we are
357      // layering a "view" of a location on top of those bits.  Perhaps
358      // we need to be more lazy about mutual possible views, even on an
359      // SVal?  This may be necessary for bit-level reasoning as well.
360      return UnknownVal();
361    }
362
363    // We get a symbolic function pointer for a dereference of a function
364    // pointer, but it is of function type. Example:
365
366    //  struct FPRec {
367    //    void (*my_func)(int * x);
368    //  };
369    //
370    //  int bar(int x);
371    //
372    //  int f1_a(struct FPRec* foo) {
373    //    int x;
374    //    (*foo->my_func)(&x);
375    //    return bar(x)+1; // no-warning
376    //  }
377
378    assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
379           originalTy->isBlockPointerType() || castTy->isReferenceType());
380
381    StoreManager &storeMgr = StateMgr.getStoreManager();
382
383    // Delegate to store manager to get the result of casting a region to a
384    // different type.  If the MemRegion* returned is NULL, this expression
385    // Evaluates to UnknownVal.
386    R = storeMgr.castRegion(R, castTy);
387    return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
388  }
389
390  return dispatchCast(val, castTy);
391}
392