SimpleSValBuilder.cpp revision 3aa6f431897edf5fec32cbede8fcddbfb8fa16f7
1// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
18using namespace clang;
19using namespace ento;
20
21namespace {
22class SimpleSValBuilder : public SValBuilder {
23protected:
24  virtual SVal dispatchCast(SVal val, QualType castTy);
25  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27
28public:
29  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30                    ProgramStateManager &stateMgr)
31                    : SValBuilder(alloc, context, stateMgr) {}
32  virtual ~SimpleSValBuilder() {}
33
34  virtual SVal evalMinus(NonLoc val);
35  virtual SVal evalComplement(NonLoc val);
36  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37                           NonLoc lhs, NonLoc rhs, QualType resultTy);
38  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39                           Loc lhs, Loc rhs, QualType resultTy);
40  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41                           Loc lhs, NonLoc rhs, QualType resultTy);
42
43  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44  ///  (integer) value, that value is returned. Otherwise, returns NULL.
45  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46
47  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                     const llvm::APSInt &RHS, QualType resultTy);
49};
50} // end anonymous namespace
51
52SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                           ASTContext &context,
54                                           ProgramStateManager &stateMgr) {
55  return new SimpleSValBuilder(alloc, context, stateMgr);
56}
57
58//===----------------------------------------------------------------------===//
59// Transfer function for Casts.
60//===----------------------------------------------------------------------===//
61
62SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63  assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64  return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65                           : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66}
67
68SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69
70  bool isLocType = Loc::isLocType(castTy);
71
72  if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
73    if (isLocType)
74      return LI->getLoc();
75
76    // FIXME: Correctly support promotions/truncations.
77    unsigned castSize = Context.getTypeSize(castTy);
78    if (castSize == LI->getNumBits())
79      return val;
80    return makeLocAsInteger(LI->getLoc(), castSize);
81  }
82
83  if (const SymExpr *se = val.getAsSymbolicExpression()) {
84    QualType T = Context.getCanonicalType(se->getType());
85    // If types are the same or both are integers, ignore the cast.
86    // FIXME: Remove this hack when we support symbolic truncation/extension.
87    // HACK: If both castTy and T are integers, ignore the cast.  This is
88    // not a permanent solution.  Eventually we want to precisely handle
89    // extension/truncation of symbolic integers.  This prevents us from losing
90    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91    // different integer types.
92   if (haveSameType(T, castTy))
93      return val;
94
95    if (!isLocType)
96      return makeNonLoc(se, T, castTy);
97    return UnknownVal();
98  }
99
100  // If value is a non integer constant, produce unknown.
101  if (!val.getAs<nonloc::ConcreteInt>())
102    return UnknownVal();
103
104  // Handle casts to a boolean type.
105  if (castTy->isBooleanType()) {
106    bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
107    return makeTruthVal(b, castTy);
108  }
109
110  // Only handle casts from integers to integers - if val is an integer constant
111  // being cast to a non integer type, produce unknown.
112  if (!isLocType && !castTy->isIntegralOrEnumerationType())
113    return UnknownVal();
114
115  llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
116  BasicVals.getAPSIntType(castTy).apply(i);
117
118  if (isLocType)
119    return makeIntLocVal(i);
120  else
121    return makeIntVal(i);
122}
123
124SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
125
126  // Casts from pointers -> pointers, just return the lval.
127  //
128  // Casts from pointers -> references, just return the lval.  These
129  //   can be introduced by the frontend for corner cases, e.g
130  //   casting from va_list* to __builtin_va_list&.
131  //
132  if (Loc::isLocType(castTy) || castTy->isReferenceType())
133    return val;
134
135  // FIXME: Handle transparent unions where a value can be "transparently"
136  //  lifted into a union type.
137  if (castTy->isUnionType())
138    return UnknownVal();
139
140  // Casting a Loc to a bool will almost always be true,
141  // unless this is a weak function or a symbolic region.
142  if (castTy->isBooleanType()) {
143    switch (val.getSubKind()) {
144      case loc::MemRegionKind: {
145        const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
146        if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R))
147          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
148            if (FD->isWeak())
149              // FIXME: Currently we are using an extent symbol here,
150              // because there are no generic region address metadata
151              // symbols to use, only content metadata.
152              return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
153
154        if (const SymbolicRegion *SymR = R->getSymbolicBase())
155          return nonloc::SymbolVal(SymR->getSymbol());
156
157        // FALL-THROUGH
158      }
159
160      case loc::GotoLabelKind:
161        // Labels and non symbolic memory regions are always true.
162        return makeTruthVal(true, castTy);
163    }
164  }
165
166  if (castTy->isIntegralOrEnumerationType()) {
167    unsigned BitWidth = Context.getTypeSize(castTy);
168
169    if (!val.getAs<loc::ConcreteInt>())
170      return makeLocAsInteger(val, BitWidth);
171
172    llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
173    BasicVals.getAPSIntType(castTy).apply(i);
174    return makeIntVal(i);
175  }
176
177  // All other cases: return 'UnknownVal'.  This includes casting pointers
178  // to floats, which is probably badness it itself, but this is a good
179  // intermediate solution until we do something better.
180  return UnknownVal();
181}
182
183//===----------------------------------------------------------------------===//
184// Transfer function for unary operators.
185//===----------------------------------------------------------------------===//
186
187SVal SimpleSValBuilder::evalMinus(NonLoc val) {
188  switch (val.getSubKind()) {
189  case nonloc::ConcreteIntKind:
190    return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
191  default:
192    return UnknownVal();
193  }
194}
195
196SVal SimpleSValBuilder::evalComplement(NonLoc X) {
197  switch (X.getSubKind()) {
198  case nonloc::ConcreteIntKind:
199    return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
200  default:
201    return UnknownVal();
202  }
203}
204
205//===----------------------------------------------------------------------===//
206// Transfer function for binary operators.
207//===----------------------------------------------------------------------===//
208
209SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
210                                    BinaryOperator::Opcode op,
211                                    const llvm::APSInt &RHS,
212                                    QualType resultTy) {
213  bool isIdempotent = false;
214
215  // Check for a few special cases with known reductions first.
216  switch (op) {
217  default:
218    // We can't reduce this case; just treat it normally.
219    break;
220  case BO_Mul:
221    // a*0 and a*1
222    if (RHS == 0)
223      return makeIntVal(0, resultTy);
224    else if (RHS == 1)
225      isIdempotent = true;
226    break;
227  case BO_Div:
228    // a/0 and a/1
229    if (RHS == 0)
230      // This is also handled elsewhere.
231      return UndefinedVal();
232    else if (RHS == 1)
233      isIdempotent = true;
234    break;
235  case BO_Rem:
236    // a%0 and a%1
237    if (RHS == 0)
238      // This is also handled elsewhere.
239      return UndefinedVal();
240    else if (RHS == 1)
241      return makeIntVal(0, resultTy);
242    break;
243  case BO_Add:
244  case BO_Sub:
245  case BO_Shl:
246  case BO_Shr:
247  case BO_Xor:
248    // a+0, a-0, a<<0, a>>0, a^0
249    if (RHS == 0)
250      isIdempotent = true;
251    break;
252  case BO_And:
253    // a&0 and a&(~0)
254    if (RHS == 0)
255      return makeIntVal(0, resultTy);
256    else if (RHS.isAllOnesValue())
257      isIdempotent = true;
258    break;
259  case BO_Or:
260    // a|0 and a|(~0)
261    if (RHS == 0)
262      isIdempotent = true;
263    else if (RHS.isAllOnesValue()) {
264      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
265      return nonloc::ConcreteInt(Result);
266    }
267    break;
268  }
269
270  // Idempotent ops (like a*1) can still change the type of an expression.
271  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
272  // dirty work.
273  if (isIdempotent)
274      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
275
276  // If we reach this point, the expression cannot be simplified.
277  // Make a SymbolVal for the entire expression, after converting the RHS.
278  const llvm::APSInt *ConvertedRHS = &RHS;
279  if (BinaryOperator::isComparisonOp(op)) {
280    // We're looking for a type big enough to compare the symbolic value
281    // with the given constant.
282    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
283    ASTContext &Ctx = getContext();
284    QualType SymbolType = LHS->getType();
285    uint64_t ValWidth = RHS.getBitWidth();
286    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
287
288    if (ValWidth < TypeWidth) {
289      // If the value is too small, extend it.
290      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
291    } else if (ValWidth == TypeWidth) {
292      // If the value is signed but the symbol is unsigned, do the comparison
293      // in unsigned space. [C99 6.3.1.8]
294      // (For the opposite case, the value is already unsigned.)
295      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
296        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
297    }
298  } else
299    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
300
301  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
302}
303
304SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
305                                  BinaryOperator::Opcode op,
306                                  NonLoc lhs, NonLoc rhs,
307                                  QualType resultTy)  {
308  NonLoc InputLHS = lhs;
309  NonLoc InputRHS = rhs;
310
311  // Handle trivial case where left-side and right-side are the same.
312  if (lhs == rhs)
313    switch (op) {
314      default:
315        break;
316      case BO_EQ:
317      case BO_LE:
318      case BO_GE:
319        return makeTruthVal(true, resultTy);
320      case BO_LT:
321      case BO_GT:
322      case BO_NE:
323        return makeTruthVal(false, resultTy);
324      case BO_Xor:
325      case BO_Sub:
326        if (resultTy->isIntegralOrEnumerationType())
327          return makeIntVal(0, resultTy);
328        return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
329      case BO_Or:
330      case BO_And:
331        return evalCastFromNonLoc(lhs, resultTy);
332    }
333
334  while (1) {
335    switch (lhs.getSubKind()) {
336    default:
337      return makeSymExprValNN(state, op, lhs, rhs, resultTy);
338    case nonloc::LocAsIntegerKind: {
339      Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
340      switch (rhs.getSubKind()) {
341        case nonloc::LocAsIntegerKind:
342          return evalBinOpLL(state, op, lhsL,
343                             rhs.castAs<nonloc::LocAsInteger>().getLoc(),
344                             resultTy);
345        case nonloc::ConcreteIntKind: {
346          // Transform the integer into a location and compare.
347          llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
348          BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
349          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
350        }
351        default:
352          switch (op) {
353            case BO_EQ:
354              return makeTruthVal(false, resultTy);
355            case BO_NE:
356              return makeTruthVal(true, resultTy);
357            default:
358              // This case also handles pointer arithmetic.
359              return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
360          }
361      }
362    }
363    case nonloc::ConcreteIntKind: {
364      llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
365
366      // If we're dealing with two known constants, just perform the operation.
367      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
368        llvm::APSInt RHSValue = *KnownRHSValue;
369        if (BinaryOperator::isComparisonOp(op)) {
370          // We're looking for a type big enough to compare the two values.
371          // FIXME: This is not correct. char + short will result in a promotion
372          // to int. Unfortunately we have lost types by this point.
373          APSIntType CompareType = std::max(APSIntType(LHSValue),
374                                            APSIntType(RHSValue));
375          CompareType.apply(LHSValue);
376          CompareType.apply(RHSValue);
377        } else if (!BinaryOperator::isShiftOp(op)) {
378          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
379          IntType.apply(LHSValue);
380          IntType.apply(RHSValue);
381        }
382
383        const llvm::APSInt *Result =
384          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
385        if (!Result)
386          return UndefinedVal();
387
388        return nonloc::ConcreteInt(*Result);
389      }
390
391      // Swap the left and right sides and flip the operator if doing so
392      // allows us to better reason about the expression (this is a form
393      // of expression canonicalization).
394      // While we're at it, catch some special cases for non-commutative ops.
395      switch (op) {
396      case BO_LT:
397      case BO_GT:
398      case BO_LE:
399      case BO_GE:
400        op = BinaryOperator::reverseComparisonOp(op);
401        // FALL-THROUGH
402      case BO_EQ:
403      case BO_NE:
404      case BO_Add:
405      case BO_Mul:
406      case BO_And:
407      case BO_Xor:
408      case BO_Or:
409        std::swap(lhs, rhs);
410        continue;
411      case BO_Shr:
412        // (~0)>>a
413        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
414          return evalCastFromNonLoc(lhs, resultTy);
415        // FALL-THROUGH
416      case BO_Shl:
417        // 0<<a and 0>>a
418        if (LHSValue == 0)
419          return evalCastFromNonLoc(lhs, resultTy);
420        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
421      default:
422        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
423      }
424    }
425    case nonloc::SymbolValKind: {
426      // We only handle LHS as simple symbols or SymIntExprs.
427      SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
428
429      // LHS is a symbolic expression.
430      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
431
432        // Is this a logical not? (!x is represented as x == 0.)
433        if (op == BO_EQ && rhs.isZeroConstant()) {
434          // We know how to negate certain expressions. Simplify them here.
435
436          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
437          switch (opc) {
438          default:
439            // We don't know how to negate this operation.
440            // Just handle it as if it were a normal comparison to 0.
441            break;
442          case BO_LAnd:
443          case BO_LOr:
444            llvm_unreachable("Logical operators handled by branching logic.");
445          case BO_Assign:
446          case BO_MulAssign:
447          case BO_DivAssign:
448          case BO_RemAssign:
449          case BO_AddAssign:
450          case BO_SubAssign:
451          case BO_ShlAssign:
452          case BO_ShrAssign:
453          case BO_AndAssign:
454          case BO_XorAssign:
455          case BO_OrAssign:
456          case BO_Comma:
457            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
458          case BO_PtrMemD:
459          case BO_PtrMemI:
460            llvm_unreachable("Pointer arithmetic not handled here.");
461          case BO_LT:
462          case BO_GT:
463          case BO_LE:
464          case BO_GE:
465          case BO_EQ:
466          case BO_NE:
467            assert(resultTy->isBooleanType() ||
468                   resultTy == getConditionType());
469            assert(symIntExpr->getType()->isBooleanType() ||
470                   getContext().hasSameUnqualifiedType(symIntExpr->getType(),
471                                                       getConditionType()));
472            // Negate the comparison and make a value.
473            opc = BinaryOperator::negateComparisonOp(opc);
474            return makeNonLoc(symIntExpr->getLHS(), opc,
475                symIntExpr->getRHS(), resultTy);
476          }
477        }
478
479        // For now, only handle expressions whose RHS is a constant.
480        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
481          // If both the LHS and the current expression are additive,
482          // fold their constants and try again.
483          if (BinaryOperator::isAdditiveOp(op)) {
484            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
485            if (BinaryOperator::isAdditiveOp(lop)) {
486              // Convert the two constants to a common type, then combine them.
487
488              // resultTy may not be the best type to convert to, but it's
489              // probably the best choice in expressions with mixed type
490              // (such as x+1U+2LL). The rules for implicit conversions should
491              // choose a reasonable type to preserve the expression, and will
492              // at least match how the value is going to be used.
493              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
494              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
495              const llvm::APSInt &second = IntType.convert(*RHSValue);
496
497              const llvm::APSInt *newRHS;
498              if (lop == op)
499                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
500              else
501                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
502
503              assert(newRHS && "Invalid operation despite common type!");
504              rhs = nonloc::ConcreteInt(*newRHS);
505              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
506              op = lop;
507              continue;
508            }
509          }
510
511          // Otherwise, make a SymIntExpr out of the expression.
512          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
513        }
514      }
515
516      // Does the symbolic expression simplify to a constant?
517      // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
518      // and try again.
519      ConstraintManager &CMgr = state->getConstraintManager();
520      if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
521        lhs = nonloc::ConcreteInt(*Constant);
522        continue;
523      }
524
525      // Is the RHS a constant?
526      if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
527        return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
528
529      // Give up -- this is not a symbolic expression we can handle.
530      return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
531    }
532    }
533  }
534}
535
536static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
537                                            const FieldRegion *RightFR,
538                                            BinaryOperator::Opcode op,
539                                            QualType resultTy,
540                                            SimpleSValBuilder &SVB) {
541  // Only comparisons are meaningful here!
542  if (!BinaryOperator::isComparisonOp(op))
543    return UnknownVal();
544
545  // Next, see if the two FRs have the same super-region.
546  // FIXME: This doesn't handle casts yet, and simply stripping the casts
547  // doesn't help.
548  if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
549    return UnknownVal();
550
551  const FieldDecl *LeftFD = LeftFR->getDecl();
552  const FieldDecl *RightFD = RightFR->getDecl();
553  const RecordDecl *RD = LeftFD->getParent();
554
555  // Make sure the two FRs are from the same kind of record. Just in case!
556  // FIXME: This is probably where inheritance would be a problem.
557  if (RD != RightFD->getParent())
558    return UnknownVal();
559
560  // We know for sure that the two fields are not the same, since that
561  // would have given us the same SVal.
562  if (op == BO_EQ)
563    return SVB.makeTruthVal(false, resultTy);
564  if (op == BO_NE)
565    return SVB.makeTruthVal(true, resultTy);
566
567  // Iterate through the fields and see which one comes first.
568  // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
569  // members and the units in which bit-fields reside have addresses that
570  // increase in the order in which they are declared."
571  bool leftFirst = (op == BO_LT || op == BO_LE);
572  for (RecordDecl::field_iterator I = RD->field_begin(),
573       E = RD->field_end(); I!=E; ++I) {
574    if (*I == LeftFD)
575      return SVB.makeTruthVal(leftFirst, resultTy);
576    if (*I == RightFD)
577      return SVB.makeTruthVal(!leftFirst, resultTy);
578  }
579
580  llvm_unreachable("Fields not found in parent record's definition");
581}
582
583// FIXME: all this logic will change if/when we have MemRegion::getLocation().
584SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
585                                  BinaryOperator::Opcode op,
586                                  Loc lhs, Loc rhs,
587                                  QualType resultTy) {
588  // Only comparisons and subtractions are valid operations on two pointers.
589  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
590  // However, if a pointer is casted to an integer, evalBinOpNN may end up
591  // calling this function with another operation (PR7527). We don't attempt to
592  // model this for now, but it could be useful, particularly when the
593  // "location" is actually an integer value that's been passed through a void*.
594  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
595    return UnknownVal();
596
597  // Special cases for when both sides are identical.
598  if (lhs == rhs) {
599    switch (op) {
600    default:
601      llvm_unreachable("Unimplemented operation for two identical values");
602    case BO_Sub:
603      return makeZeroVal(resultTy);
604    case BO_EQ:
605    case BO_LE:
606    case BO_GE:
607      return makeTruthVal(true, resultTy);
608    case BO_NE:
609    case BO_LT:
610    case BO_GT:
611      return makeTruthVal(false, resultTy);
612    }
613  }
614
615  switch (lhs.getSubKind()) {
616  default:
617    llvm_unreachable("Ordering not implemented for this Loc.");
618
619  case loc::GotoLabelKind:
620    // The only thing we know about labels is that they're non-null.
621    if (rhs.isZeroConstant()) {
622      switch (op) {
623      default:
624        break;
625      case BO_Sub:
626        return evalCastFromLoc(lhs, resultTy);
627      case BO_EQ:
628      case BO_LE:
629      case BO_LT:
630        return makeTruthVal(false, resultTy);
631      case BO_NE:
632      case BO_GT:
633      case BO_GE:
634        return makeTruthVal(true, resultTy);
635      }
636    }
637    // There may be two labels for the same location, and a function region may
638    // have the same address as a label at the start of the function (depending
639    // on the ABI).
640    // FIXME: we can probably do a comparison against other MemRegions, though.
641    // FIXME: is there a way to tell if two labels refer to the same location?
642    return UnknownVal();
643
644  case loc::ConcreteIntKind: {
645    // If one of the operands is a symbol and the other is a constant,
646    // build an expression for use by the constraint manager.
647    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
648      // We can only build expressions with symbols on the left,
649      // so we need a reversible operator.
650      if (!BinaryOperator::isComparisonOp(op))
651        return UnknownVal();
652
653      const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
654      op = BinaryOperator::reverseComparisonOp(op);
655      return makeNonLoc(rSym, op, lVal, resultTy);
656    }
657
658    // If both operands are constants, just perform the operation.
659    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
660      SVal ResultVal =
661          lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
662      if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
663        return evalCastFromNonLoc(*Result, resultTy);
664
665      assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
666      return UnknownVal();
667    }
668
669    // Special case comparisons against NULL.
670    // This must come after the test if the RHS is a symbol, which is used to
671    // build constraints. The address of any non-symbolic region is guaranteed
672    // to be non-NULL, as is any label.
673    assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
674    if (lhs.isZeroConstant()) {
675      switch (op) {
676      default:
677        break;
678      case BO_EQ:
679      case BO_GT:
680      case BO_GE:
681        return makeTruthVal(false, resultTy);
682      case BO_NE:
683      case BO_LT:
684      case BO_LE:
685        return makeTruthVal(true, resultTy);
686      }
687    }
688
689    // Comparing an arbitrary integer to a region or label address is
690    // completely unknowable.
691    return UnknownVal();
692  }
693  case loc::MemRegionKind: {
694    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
695      // If one of the operands is a symbol and the other is a constant,
696      // build an expression for use by the constraint manager.
697      if (SymbolRef lSym = lhs.getAsLocSymbol(true))
698        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
699
700      // Special case comparisons to NULL.
701      // This must come after the test if the LHS is a symbol, which is used to
702      // build constraints. The address of any non-symbolic region is guaranteed
703      // to be non-NULL.
704      if (rInt->isZeroConstant()) {
705        if (op == BO_Sub)
706          return evalCastFromLoc(lhs, resultTy);
707
708        if (BinaryOperator::isComparisonOp(op)) {
709          QualType boolType = getContext().BoolTy;
710          NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
711          NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
712          return evalBinOpNN(state, op, l, r, resultTy);
713        }
714      }
715
716      // Comparing a region to an arbitrary integer is completely unknowable.
717      return UnknownVal();
718    }
719
720    // Get both values as regions, if possible.
721    const MemRegion *LeftMR = lhs.getAsRegion();
722    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
723
724    const MemRegion *RightMR = rhs.getAsRegion();
725    if (!RightMR)
726      // The RHS is probably a label, which in theory could address a region.
727      // FIXME: we can probably make a more useful statement about non-code
728      // regions, though.
729      return UnknownVal();
730
731    const MemRegion *LeftBase = LeftMR->getBaseRegion();
732    const MemRegion *RightBase = RightMR->getBaseRegion();
733    const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
734    const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
735    const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
736
737    // If the two regions are from different known memory spaces they cannot be
738    // equal. Also, assume that no symbolic region (whose memory space is
739    // unknown) is on the stack.
740    if (LeftMS != RightMS &&
741        ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
742         (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
743      switch (op) {
744      default:
745        return UnknownVal();
746      case BO_EQ:
747        return makeTruthVal(false, resultTy);
748      case BO_NE:
749        return makeTruthVal(true, resultTy);
750      }
751    }
752
753    // If both values wrap regions, see if they're from different base regions.
754    // Note, heap base symbolic regions are assumed to not alias with
755    // each other; for example, we assume that malloc returns different address
756    // on each invocation.
757    if (LeftBase != RightBase &&
758        ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
759         (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
760      switch (op) {
761      default:
762        return UnknownVal();
763      case BO_EQ:
764        return makeTruthVal(false, resultTy);
765      case BO_NE:
766        return makeTruthVal(true, resultTy);
767      }
768    }
769
770    // Handle special cases for when both regions are element regions.
771    const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
772    const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
773    if (RightER && LeftER) {
774      // Next, see if the two ERs have the same super-region and matching types.
775      // FIXME: This should do something useful even if the types don't match,
776      // though if both indexes are constant the RegionRawOffset path will
777      // give the correct answer.
778      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
779          LeftER->getElementType() == RightER->getElementType()) {
780        // Get the left index and cast it to the correct type.
781        // If the index is unknown or undefined, bail out here.
782        SVal LeftIndexVal = LeftER->getIndex();
783        Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
784        if (!LeftIndex)
785          return UnknownVal();
786        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
787        LeftIndex = LeftIndexVal.getAs<NonLoc>();
788        if (!LeftIndex)
789          return UnknownVal();
790
791        // Do the same for the right index.
792        SVal RightIndexVal = RightER->getIndex();
793        Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
794        if (!RightIndex)
795          return UnknownVal();
796        RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
797        RightIndex = RightIndexVal.getAs<NonLoc>();
798        if (!RightIndex)
799          return UnknownVal();
800
801        // Actually perform the operation.
802        // evalBinOpNN expects the two indexes to already be the right type.
803        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
804      }
805    }
806
807    // Special handling of the FieldRegions, even with symbolic offsets.
808    const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
809    const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
810    if (RightFR && LeftFR) {
811      SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
812                                               *this);
813      if (!R.isUnknown())
814        return R;
815    }
816
817    // Compare the regions using the raw offsets.
818    RegionOffset LeftOffset = LeftMR->getAsOffset();
819    RegionOffset RightOffset = RightMR->getAsOffset();
820
821    if (LeftOffset.getRegion() != NULL &&
822        LeftOffset.getRegion() == RightOffset.getRegion() &&
823        !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
824      int64_t left = LeftOffset.getOffset();
825      int64_t right = RightOffset.getOffset();
826
827      switch (op) {
828        default:
829          return UnknownVal();
830        case BO_LT:
831          return makeTruthVal(left < right, resultTy);
832        case BO_GT:
833          return makeTruthVal(left > right, resultTy);
834        case BO_LE:
835          return makeTruthVal(left <= right, resultTy);
836        case BO_GE:
837          return makeTruthVal(left >= right, resultTy);
838        case BO_EQ:
839          return makeTruthVal(left == right, resultTy);
840        case BO_NE:
841          return makeTruthVal(left != right, resultTy);
842      }
843    }
844
845    // At this point we're not going to get a good answer, but we can try
846    // conjuring an expression instead.
847    SymbolRef LHSSym = lhs.getAsLocSymbol();
848    SymbolRef RHSSym = rhs.getAsLocSymbol();
849    if (LHSSym && RHSSym)
850      return makeNonLoc(LHSSym, op, RHSSym, resultTy);
851
852    // If we get here, we have no way of comparing the regions.
853    return UnknownVal();
854  }
855  }
856}
857
858SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
859                                  BinaryOperator::Opcode op,
860                                  Loc lhs, NonLoc rhs, QualType resultTy) {
861  assert(!BinaryOperator::isComparisonOp(op) &&
862         "arguments to comparison ops must be of the same type");
863
864  // Special case: rhs is a zero constant.
865  if (rhs.isZeroConstant())
866    return lhs;
867
868  // We are dealing with pointer arithmetic.
869
870  // Handle pointer arithmetic on constant values.
871  if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
872    if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
873      const llvm::APSInt &leftI = lhsInt->getValue();
874      assert(leftI.isUnsigned());
875      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
876
877      // Convert the bitwidth of rightI.  This should deal with overflow
878      // since we are dealing with concrete values.
879      rightI = rightI.extOrTrunc(leftI.getBitWidth());
880
881      // Offset the increment by the pointer size.
882      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
883      rightI *= Multiplicand;
884
885      // Compute the adjusted pointer.
886      switch (op) {
887        case BO_Add:
888          rightI = leftI + rightI;
889          break;
890        case BO_Sub:
891          rightI = leftI - rightI;
892          break;
893        default:
894          llvm_unreachable("Invalid pointer arithmetic operation");
895      }
896      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
897    }
898  }
899
900  // Handle cases where 'lhs' is a region.
901  if (const MemRegion *region = lhs.getAsRegion()) {
902    rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
903    SVal index = UnknownVal();
904    const MemRegion *superR = 0;
905    QualType elementType;
906
907    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
908      assert(op == BO_Add || op == BO_Sub);
909      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
910                          getArrayIndexType());
911      superR = elemReg->getSuperRegion();
912      elementType = elemReg->getElementType();
913    }
914    else if (isa<SubRegion>(region)) {
915      superR = region;
916      index = rhs;
917      if (resultTy->isAnyPointerType())
918        elementType = resultTy->getPointeeType();
919    }
920
921    if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
922      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
923                                                       superR, getContext()));
924    }
925  }
926  return UnknownVal();
927}
928
929const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
930                                                   SVal V) {
931  if (V.isUnknownOrUndef())
932    return NULL;
933
934  if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
935    return &X->getValue();
936
937  if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
938    return &X->getValue();
939
940  if (SymbolRef Sym = V.getAsSymbol())
941    return state->getConstraintManager().getSymVal(state, Sym);
942
943  // FIXME: Add support for SymExprs.
944  return NULL;
945}
946