SimpleSValBuilder.cpp revision d3b6d99cd57522b15dcec0eb771a97d9599d4db2
1// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
18using namespace clang;
19using namespace ento;
20
21namespace {
22class SimpleSValBuilder : public SValBuilder {
23protected:
24  virtual SVal dispatchCast(SVal val, QualType castTy);
25  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27
28public:
29  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30                    ProgramStateManager &stateMgr)
31                    : SValBuilder(alloc, context, stateMgr) {}
32  virtual ~SimpleSValBuilder() {}
33
34  virtual SVal evalMinus(NonLoc val);
35  virtual SVal evalComplement(NonLoc val);
36  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37                           NonLoc lhs, NonLoc rhs, QualType resultTy);
38  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39                           Loc lhs, Loc rhs, QualType resultTy);
40  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41                           Loc lhs, NonLoc rhs, QualType resultTy);
42
43  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44  ///  (integer) value, that value is returned. Otherwise, returns NULL.
45  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46
47  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                     const llvm::APSInt &RHS, QualType resultTy);
49};
50} // end anonymous namespace
51
52SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                           ASTContext &context,
54                                           ProgramStateManager &stateMgr) {
55  return new SimpleSValBuilder(alloc, context, stateMgr);
56}
57
58//===----------------------------------------------------------------------===//
59// Transfer function for Casts.
60//===----------------------------------------------------------------------===//
61
62SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63  assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
64  return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
65                       : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
66}
67
68SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69
70  bool isLocType = Loc::isLocType(castTy);
71
72  if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
73    if (isLocType)
74      return LI->getLoc();
75
76    // FIXME: Correctly support promotions/truncations.
77    unsigned castSize = Context.getTypeSize(castTy);
78    if (castSize == LI->getNumBits())
79      return val;
80    return makeLocAsInteger(LI->getLoc(), castSize);
81  }
82
83  if (const SymExpr *se = val.getAsSymbolicExpression()) {
84    QualType T = Context.getCanonicalType(se->getType(Context));
85    // If types are the same or both are integers, ignore the cast.
86    // FIXME: Remove this hack when we support symbolic truncation/extension.
87    // HACK: If both castTy and T are integers, ignore the cast.  This is
88    // not a permanent solution.  Eventually we want to precisely handle
89    // extension/truncation of symbolic integers.  This prevents us from losing
90    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91    // different integer types.
92   if (haveSameType(T, castTy))
93      return val;
94
95    if (!isLocType)
96      return makeNonLoc(se, T, castTy);
97    return UnknownVal();
98  }
99
100  // If value is a non integer constant, produce unknown.
101  if (!isa<nonloc::ConcreteInt>(val))
102    return UnknownVal();
103
104  // Only handle casts from integers to integers - if val is an integer constant
105  // being cast to a non integer type, produce unknown.
106  if (!isLocType && !castTy->isIntegerType())
107    return UnknownVal();
108
109  llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
110  BasicVals.getAPSIntType(castTy).apply(i);
111
112  if (isLocType)
113    return makeIntLocVal(i);
114  else
115    return makeIntVal(i);
116}
117
118SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
119
120  // Casts from pointers -> pointers, just return the lval.
121  //
122  // Casts from pointers -> references, just return the lval.  These
123  //   can be introduced by the frontend for corner cases, e.g
124  //   casting from va_list* to __builtin_va_list&.
125  //
126  if (Loc::isLocType(castTy) || castTy->isReferenceType())
127    return val;
128
129  // FIXME: Handle transparent unions where a value can be "transparently"
130  //  lifted into a union type.
131  if (castTy->isUnionType())
132    return UnknownVal();
133
134  if (castTy->isIntegerType()) {
135    unsigned BitWidth = Context.getTypeSize(castTy);
136
137    if (!isa<loc::ConcreteInt>(val))
138      return makeLocAsInteger(val, BitWidth);
139
140    llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
141    BasicVals.getAPSIntType(castTy).apply(i);
142    return makeIntVal(i);
143  }
144
145  // All other cases: return 'UnknownVal'.  This includes casting pointers
146  // to floats, which is probably badness it itself, but this is a good
147  // intermediate solution until we do something better.
148  return UnknownVal();
149}
150
151//===----------------------------------------------------------------------===//
152// Transfer function for unary operators.
153//===----------------------------------------------------------------------===//
154
155SVal SimpleSValBuilder::evalMinus(NonLoc val) {
156  switch (val.getSubKind()) {
157  case nonloc::ConcreteIntKind:
158    return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
159  default:
160    return UnknownVal();
161  }
162}
163
164SVal SimpleSValBuilder::evalComplement(NonLoc X) {
165  switch (X.getSubKind()) {
166  case nonloc::ConcreteIntKind:
167    return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
168  default:
169    return UnknownVal();
170  }
171}
172
173//===----------------------------------------------------------------------===//
174// Transfer function for binary operators.
175//===----------------------------------------------------------------------===//
176
177static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
178  switch (op) {
179  default:
180    llvm_unreachable("Invalid opcode.");
181  case BO_LT: return BO_GE;
182  case BO_GT: return BO_LE;
183  case BO_LE: return BO_GT;
184  case BO_GE: return BO_LT;
185  case BO_EQ: return BO_NE;
186  case BO_NE: return BO_EQ;
187  }
188}
189
190static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
191  switch (op) {
192  default:
193    llvm_unreachable("Invalid opcode.");
194  case BO_LT: return BO_GT;
195  case BO_GT: return BO_LT;
196  case BO_LE: return BO_GE;
197  case BO_GE: return BO_LE;
198  case BO_EQ:
199  case BO_NE:
200    return op;
201  }
202}
203
204SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
205                                    BinaryOperator::Opcode op,
206                                    const llvm::APSInt &RHS,
207                                    QualType resultTy) {
208  bool isIdempotent = false;
209
210  // Check for a few special cases with known reductions first.
211  switch (op) {
212  default:
213    // We can't reduce this case; just treat it normally.
214    break;
215  case BO_Mul:
216    // a*0 and a*1
217    if (RHS == 0)
218      return makeIntVal(0, resultTy);
219    else if (RHS == 1)
220      isIdempotent = true;
221    break;
222  case BO_Div:
223    // a/0 and a/1
224    if (RHS == 0)
225      // This is also handled elsewhere.
226      return UndefinedVal();
227    else if (RHS == 1)
228      isIdempotent = true;
229    break;
230  case BO_Rem:
231    // a%0 and a%1
232    if (RHS == 0)
233      // This is also handled elsewhere.
234      return UndefinedVal();
235    else if (RHS == 1)
236      return makeIntVal(0, resultTy);
237    break;
238  case BO_Add:
239  case BO_Sub:
240  case BO_Shl:
241  case BO_Shr:
242  case BO_Xor:
243    // a+0, a-0, a<<0, a>>0, a^0
244    if (RHS == 0)
245      isIdempotent = true;
246    break;
247  case BO_And:
248    // a&0 and a&(~0)
249    if (RHS == 0)
250      return makeIntVal(0, resultTy);
251    else if (RHS.isAllOnesValue())
252      isIdempotent = true;
253    break;
254  case BO_Or:
255    // a|0 and a|(~0)
256    if (RHS == 0)
257      isIdempotent = true;
258    else if (RHS.isAllOnesValue()) {
259      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
260      return nonloc::ConcreteInt(Result);
261    }
262    break;
263  }
264
265  // Idempotent ops (like a*1) can still change the type of an expression.
266  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
267  // dirty work.
268  if (isIdempotent)
269      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
270
271  // If we reach this point, the expression cannot be simplified.
272  // Make a SymbolVal for the entire expression, after converting the RHS.
273  const llvm::APSInt *ConvertedRHS = &RHS;
274  if (BinaryOperator::isComparisonOp(op)) {
275    // We're looking for a type big enough to compare the symbolic value
276    // with the given constant.
277    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
278    ASTContext &Ctx = getContext();
279    QualType SymbolType = LHS->getType(Ctx);
280    uint64_t ValWidth = RHS.getBitWidth();
281    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
282
283    if (ValWidth < TypeWidth) {
284      // If the value is too small, extend it.
285      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
286    } else if (ValWidth == TypeWidth) {
287      // If the value is signed but the symbol is unsigned, do the comparison
288      // in unsigned space. [C99 6.3.1.8]
289      // (For the opposite case, the value is already unsigned.)
290      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
291        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
292    }
293  } else
294    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
295
296  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
297}
298
299SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
300                                  BinaryOperator::Opcode op,
301                                  NonLoc lhs, NonLoc rhs,
302                                  QualType resultTy)  {
303  NonLoc InputLHS = lhs;
304  NonLoc InputRHS = rhs;
305
306  // Handle trivial case where left-side and right-side are the same.
307  if (lhs == rhs)
308    switch (op) {
309      default:
310        break;
311      case BO_EQ:
312      case BO_LE:
313      case BO_GE:
314        return makeTruthVal(true, resultTy);
315      case BO_LT:
316      case BO_GT:
317      case BO_NE:
318        return makeTruthVal(false, resultTy);
319      case BO_Xor:
320      case BO_Sub:
321        return makeIntVal(0, resultTy);
322      case BO_Or:
323      case BO_And:
324        return evalCastFromNonLoc(lhs, resultTy);
325    }
326
327  while (1) {
328    switch (lhs.getSubKind()) {
329    default:
330      return makeSymExprValNN(state, op, lhs, rhs, resultTy);
331    case nonloc::LocAsIntegerKind: {
332      Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
333      switch (rhs.getSubKind()) {
334        case nonloc::LocAsIntegerKind:
335          return evalBinOpLL(state, op, lhsL,
336                             cast<nonloc::LocAsInteger>(rhs).getLoc(),
337                             resultTy);
338        case nonloc::ConcreteIntKind: {
339          // Transform the integer into a location and compare.
340          llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
341          BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
342          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
343        }
344        default:
345          switch (op) {
346            case BO_EQ:
347              return makeTruthVal(false, resultTy);
348            case BO_NE:
349              return makeTruthVal(true, resultTy);
350            default:
351              // This case also handles pointer arithmetic.
352              return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
353          }
354      }
355    }
356    case nonloc::ConcreteIntKind: {
357      llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
358
359      // If we're dealing with two known constants, just perform the operation.
360      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
361        llvm::APSInt RHSValue = *KnownRHSValue;
362        if (BinaryOperator::isComparisonOp(op)) {
363          // We're looking for a type big enough to compare the two values.
364          // FIXME: This is not correct. char + short will result in a promotion
365          // to int. Unfortunately we have lost types by this point.
366          APSIntType CompareType = std::max(APSIntType(LHSValue),
367                                            APSIntType(RHSValue));
368          CompareType.apply(LHSValue);
369          CompareType.apply(RHSValue);
370        } else if (!BinaryOperator::isShiftOp(op)) {
371          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
372          IntType.apply(LHSValue);
373          IntType.apply(RHSValue);
374        }
375
376        const llvm::APSInt *Result =
377          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
378        if (!Result)
379          return UndefinedVal();
380
381        return nonloc::ConcreteInt(*Result);
382      }
383
384      // Swap the left and right sides and flip the operator if doing so
385      // allows us to better reason about the expression (this is a form
386      // of expression canonicalization).
387      // While we're at it, catch some special cases for non-commutative ops.
388      switch (op) {
389      case BO_LT:
390      case BO_GT:
391      case BO_LE:
392      case BO_GE:
393        op = ReverseComparison(op);
394        // FALL-THROUGH
395      case BO_EQ:
396      case BO_NE:
397      case BO_Add:
398      case BO_Mul:
399      case BO_And:
400      case BO_Xor:
401      case BO_Or:
402        std::swap(lhs, rhs);
403        continue;
404      case BO_Shr:
405        // (~0)>>a
406        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
407          return evalCastFromNonLoc(lhs, resultTy);
408        // FALL-THROUGH
409      case BO_Shl:
410        // 0<<a and 0>>a
411        if (LHSValue == 0)
412          return evalCastFromNonLoc(lhs, resultTy);
413        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
414      default:
415        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
416      }
417    }
418    case nonloc::SymbolValKind: {
419      // We only handle LHS as simple symbols or SymIntExprs.
420      SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
421
422      // LHS is a symbolic expression.
423      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
424
425        // Is this a logical not? (!x is represented as x == 0.)
426        if (op == BO_EQ && rhs.isZeroConstant()) {
427          // We know how to negate certain expressions. Simplify them here.
428
429          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
430          switch (opc) {
431          default:
432            // We don't know how to negate this operation.
433            // Just handle it as if it were a normal comparison to 0.
434            break;
435          case BO_LAnd:
436          case BO_LOr:
437            llvm_unreachable("Logical operators handled by branching logic.");
438          case BO_Assign:
439          case BO_MulAssign:
440          case BO_DivAssign:
441          case BO_RemAssign:
442          case BO_AddAssign:
443          case BO_SubAssign:
444          case BO_ShlAssign:
445          case BO_ShrAssign:
446          case BO_AndAssign:
447          case BO_XorAssign:
448          case BO_OrAssign:
449          case BO_Comma:
450            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
451          case BO_PtrMemD:
452          case BO_PtrMemI:
453            llvm_unreachable("Pointer arithmetic not handled here.");
454          case BO_LT:
455          case BO_GT:
456          case BO_LE:
457          case BO_GE:
458          case BO_EQ:
459          case BO_NE:
460            // Negate the comparison and make a value.
461            opc = NegateComparison(opc);
462            assert(symIntExpr->getType(Context) == resultTy);
463            return makeNonLoc(symIntExpr->getLHS(), opc,
464                symIntExpr->getRHS(), resultTy);
465          }
466        }
467
468        // For now, only handle expressions whose RHS is a constant.
469        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
470          // If both the LHS and the current expression are additive,
471          // fold their constants and try again.
472          if (BinaryOperator::isAdditiveOp(op)) {
473            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
474            if (BinaryOperator::isAdditiveOp(lop)) {
475              // Convert the two constants to a common type, then combine them.
476
477              // resultTy may not be the best type to convert to, but it's
478              // probably the best choice in expressions with mixed type
479              // (such as x+1U+2LL). The rules for implicit conversions should
480              // choose a reasonable type to preserve the expression, and will
481              // at least match how the value is going to be used.
482              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
483              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
484              const llvm::APSInt &second = IntType.convert(*RHSValue);
485
486              const llvm::APSInt *newRHS;
487              if (lop == op)
488                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
489              else
490                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
491
492              assert(newRHS && "Invalid operation despite common type!");
493              rhs = nonloc::ConcreteInt(*newRHS);
494              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
495              op = lop;
496              continue;
497            }
498          }
499
500          // Otherwise, make a SymIntExpr out of the expression.
501          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
502        }
503
504
505      } else if (isa<SymbolData>(Sym)) {
506        // Does the symbol simplify to a constant?  If so, "fold" the constant
507        // by setting 'lhs' to a ConcreteInt and try again.
508        if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
509          lhs = nonloc::ConcreteInt(*Constant);
510          continue;
511        }
512
513        // Is the RHS a constant?
514        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
515          return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
516      }
517
518      // Give up -- this is not a symbolic expression we can handle.
519      return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
520    }
521    }
522  }
523}
524
525// FIXME: all this logic will change if/when we have MemRegion::getLocation().
526SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
527                                  BinaryOperator::Opcode op,
528                                  Loc lhs, Loc rhs,
529                                  QualType resultTy) {
530  // Only comparisons and subtractions are valid operations on two pointers.
531  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
532  // However, if a pointer is casted to an integer, evalBinOpNN may end up
533  // calling this function with another operation (PR7527). We don't attempt to
534  // model this for now, but it could be useful, particularly when the
535  // "location" is actually an integer value that's been passed through a void*.
536  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
537    return UnknownVal();
538
539  // Special cases for when both sides are identical.
540  if (lhs == rhs) {
541    switch (op) {
542    default:
543      llvm_unreachable("Unimplemented operation for two identical values");
544    case BO_Sub:
545      return makeZeroVal(resultTy);
546    case BO_EQ:
547    case BO_LE:
548    case BO_GE:
549      return makeTruthVal(true, resultTy);
550    case BO_NE:
551    case BO_LT:
552    case BO_GT:
553      return makeTruthVal(false, resultTy);
554    }
555  }
556
557  switch (lhs.getSubKind()) {
558  default:
559    llvm_unreachable("Ordering not implemented for this Loc.");
560
561  case loc::GotoLabelKind:
562    // The only thing we know about labels is that they're non-null.
563    if (rhs.isZeroConstant()) {
564      switch (op) {
565      default:
566        break;
567      case BO_Sub:
568        return evalCastFromLoc(lhs, resultTy);
569      case BO_EQ:
570      case BO_LE:
571      case BO_LT:
572        return makeTruthVal(false, resultTy);
573      case BO_NE:
574      case BO_GT:
575      case BO_GE:
576        return makeTruthVal(true, resultTy);
577      }
578    }
579    // There may be two labels for the same location, and a function region may
580    // have the same address as a label at the start of the function (depending
581    // on the ABI).
582    // FIXME: we can probably do a comparison against other MemRegions, though.
583    // FIXME: is there a way to tell if two labels refer to the same location?
584    return UnknownVal();
585
586  case loc::ConcreteIntKind: {
587    // If one of the operands is a symbol and the other is a constant,
588    // build an expression for use by the constraint manager.
589    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
590      // We can only build expressions with symbols on the left,
591      // so we need a reversible operator.
592      if (!BinaryOperator::isComparisonOp(op))
593        return UnknownVal();
594
595      const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
596      return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
597    }
598
599    // If both operands are constants, just perform the operation.
600    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
601      SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
602                                                             *rInt);
603      if (Loc *Result = dyn_cast<Loc>(&ResultVal))
604        return evalCastFromLoc(*Result, resultTy);
605      else
606        return UnknownVal();
607    }
608
609    // Special case comparisons against NULL.
610    // This must come after the test if the RHS is a symbol, which is used to
611    // build constraints. The address of any non-symbolic region is guaranteed
612    // to be non-NULL, as is any label.
613    assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
614    if (lhs.isZeroConstant()) {
615      switch (op) {
616      default:
617        break;
618      case BO_EQ:
619      case BO_GT:
620      case BO_GE:
621        return makeTruthVal(false, resultTy);
622      case BO_NE:
623      case BO_LT:
624      case BO_LE:
625        return makeTruthVal(true, resultTy);
626      }
627    }
628
629    // Comparing an arbitrary integer to a region or label address is
630    // completely unknowable.
631    return UnknownVal();
632  }
633  case loc::MemRegionKind: {
634    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
635      // If one of the operands is a symbol and the other is a constant,
636      // build an expression for use by the constraint manager.
637      if (SymbolRef lSym = lhs.getAsLocSymbol())
638        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
639
640      // Special case comparisons to NULL.
641      // This must come after the test if the LHS is a symbol, which is used to
642      // build constraints. The address of any non-symbolic region is guaranteed
643      // to be non-NULL.
644      if (rInt->isZeroConstant()) {
645        switch (op) {
646        default:
647          break;
648        case BO_Sub:
649          return evalCastFromLoc(lhs, resultTy);
650        case BO_EQ:
651        case BO_LT:
652        case BO_LE:
653          return makeTruthVal(false, resultTy);
654        case BO_NE:
655        case BO_GT:
656        case BO_GE:
657          return makeTruthVal(true, resultTy);
658        }
659      }
660
661      // Comparing a region to an arbitrary integer is completely unknowable.
662      return UnknownVal();
663    }
664
665    // Get both values as regions, if possible.
666    const MemRegion *LeftMR = lhs.getAsRegion();
667    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
668
669    const MemRegion *RightMR = rhs.getAsRegion();
670    if (!RightMR)
671      // The RHS is probably a label, which in theory could address a region.
672      // FIXME: we can probably make a more useful statement about non-code
673      // regions, though.
674      return UnknownVal();
675
676    // If both values wrap regions, see if they're from different base regions.
677    const MemRegion *LeftBase = LeftMR->getBaseRegion();
678    const MemRegion *RightBase = RightMR->getBaseRegion();
679    if (LeftBase != RightBase &&
680        !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
681      switch (op) {
682      default:
683        return UnknownVal();
684      case BO_EQ:
685        return makeTruthVal(false, resultTy);
686      case BO_NE:
687        return makeTruthVal(true, resultTy);
688      }
689    }
690
691    // The two regions are from the same base region. See if they're both a
692    // type of region we know how to compare.
693    const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
694    const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
695
696    // Heuristic: assume that no symbolic region (whose memory space is
697    // unknown) is on the stack.
698    // FIXME: we should be able to be more precise once we can do better
699    // aliasing constraints for symbolic regions, but this is a reasonable,
700    // albeit unsound, assumption that holds most of the time.
701    if (isa<StackSpaceRegion>(LeftMS) ^ isa<StackSpaceRegion>(RightMS)) {
702      switch (op) {
703        default:
704          break;
705        case BO_EQ:
706          return makeTruthVal(false, resultTy);
707        case BO_NE:
708          return makeTruthVal(true, resultTy);
709      }
710    }
711
712    // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
713    // ElementRegion path and the FieldRegion path below should be unified.
714    if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
715      // First see if the right region is also an ElementRegion.
716      const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
717      if (!RightER)
718        return UnknownVal();
719
720      // Next, see if the two ERs have the same super-region and matching types.
721      // FIXME: This should do something useful even if the types don't match,
722      // though if both indexes are constant the RegionRawOffset path will
723      // give the correct answer.
724      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
725          LeftER->getElementType() == RightER->getElementType()) {
726        // Get the left index and cast it to the correct type.
727        // If the index is unknown or undefined, bail out here.
728        SVal LeftIndexVal = LeftER->getIndex();
729        NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
730        if (!LeftIndex)
731          return UnknownVal();
732        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
733        LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
734        if (!LeftIndex)
735          return UnknownVal();
736
737        // Do the same for the right index.
738        SVal RightIndexVal = RightER->getIndex();
739        NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
740        if (!RightIndex)
741          return UnknownVal();
742        RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
743        RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
744        if (!RightIndex)
745          return UnknownVal();
746
747        // Actually perform the operation.
748        // evalBinOpNN expects the two indexes to already be the right type.
749        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
750      }
751
752      // If the element indexes aren't comparable, see if the raw offsets are.
753      RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
754      RegionRawOffset RightOffset = RightER->getAsArrayOffset();
755
756      if (LeftOffset.getRegion() != NULL &&
757          LeftOffset.getRegion() == RightOffset.getRegion()) {
758        CharUnits left = LeftOffset.getOffset();
759        CharUnits right = RightOffset.getOffset();
760
761        switch (op) {
762        default:
763          return UnknownVal();
764        case BO_LT:
765          return makeTruthVal(left < right, resultTy);
766        case BO_GT:
767          return makeTruthVal(left > right, resultTy);
768        case BO_LE:
769          return makeTruthVal(left <= right, resultTy);
770        case BO_GE:
771          return makeTruthVal(left >= right, resultTy);
772        case BO_EQ:
773          return makeTruthVal(left == right, resultTy);
774        case BO_NE:
775          return makeTruthVal(left != right, resultTy);
776        }
777      }
778
779      // If we get here, we have no way of comparing the ElementRegions.
780      return UnknownVal();
781    }
782
783    // See if both regions are fields of the same structure.
784    // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
785    if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
786      // Only comparisons are meaningful here!
787      if (!BinaryOperator::isComparisonOp(op))
788        return UnknownVal();
789
790      // First see if the right region is also a FieldRegion.
791      const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
792      if (!RightFR)
793        return UnknownVal();
794
795      // Next, see if the two FRs have the same super-region.
796      // FIXME: This doesn't handle casts yet, and simply stripping the casts
797      // doesn't help.
798      if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
799        return UnknownVal();
800
801      const FieldDecl *LeftFD = LeftFR->getDecl();
802      const FieldDecl *RightFD = RightFR->getDecl();
803      const RecordDecl *RD = LeftFD->getParent();
804
805      // Make sure the two FRs are from the same kind of record. Just in case!
806      // FIXME: This is probably where inheritance would be a problem.
807      if (RD != RightFD->getParent())
808        return UnknownVal();
809
810      // We know for sure that the two fields are not the same, since that
811      // would have given us the same SVal.
812      if (op == BO_EQ)
813        return makeTruthVal(false, resultTy);
814      if (op == BO_NE)
815        return makeTruthVal(true, resultTy);
816
817      // Iterate through the fields and see which one comes first.
818      // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
819      // members and the units in which bit-fields reside have addresses that
820      // increase in the order in which they are declared."
821      bool leftFirst = (op == BO_LT || op == BO_LE);
822      for (RecordDecl::field_iterator I = RD->field_begin(),
823           E = RD->field_end(); I!=E; ++I) {
824        if (&*I == LeftFD)
825          return makeTruthVal(leftFirst, resultTy);
826        if (&*I == RightFD)
827          return makeTruthVal(!leftFirst, resultTy);
828      }
829
830      llvm_unreachable("Fields not found in parent record's definition");
831    }
832
833    // If we get here, we have no way of comparing the regions.
834    return UnknownVal();
835  }
836  }
837}
838
839SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
840                                  BinaryOperator::Opcode op,
841                                  Loc lhs, NonLoc rhs, QualType resultTy) {
842
843  // Special case: rhs is a zero constant.
844  if (rhs.isZeroConstant())
845    return lhs;
846
847  // Special case: 'rhs' is an integer that has the same width as a pointer and
848  // we are using the integer location in a comparison.  Normally this cannot be
849  // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
850  // can generate comparisons that trigger this code.
851  // FIXME: Are all locations guaranteed to have pointer width?
852  if (BinaryOperator::isComparisonOp(op)) {
853    if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
854      const llvm::APSInt *x = &rhsInt->getValue();
855      ASTContext &ctx = Context;
856      if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
857        // Convert the signedness of the integer (if necessary).
858        if (x->isSigned())
859          x = &getBasicValueFactory().getValue(*x, true);
860
861        return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
862      }
863    }
864    return UnknownVal();
865  }
866
867  // We are dealing with pointer arithmetic.
868
869  // Handle pointer arithmetic on constant values.
870  if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
871    if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
872      const llvm::APSInt &leftI = lhsInt->getValue();
873      assert(leftI.isUnsigned());
874      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
875
876      // Convert the bitwidth of rightI.  This should deal with overflow
877      // since we are dealing with concrete values.
878      rightI = rightI.extOrTrunc(leftI.getBitWidth());
879
880      // Offset the increment by the pointer size.
881      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
882      rightI *= Multiplicand;
883
884      // Compute the adjusted pointer.
885      switch (op) {
886        case BO_Add:
887          rightI = leftI + rightI;
888          break;
889        case BO_Sub:
890          rightI = leftI - rightI;
891          break;
892        default:
893          llvm_unreachable("Invalid pointer arithmetic operation");
894      }
895      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
896    }
897  }
898
899  // Handle cases where 'lhs' is a region.
900  if (const MemRegion *region = lhs.getAsRegion()) {
901    rhs = cast<NonLoc>(convertToArrayIndex(rhs));
902    SVal index = UnknownVal();
903    const MemRegion *superR = 0;
904    QualType elementType;
905
906    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
907      assert(op == BO_Add || op == BO_Sub);
908      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
909                          getArrayIndexType());
910      superR = elemReg->getSuperRegion();
911      elementType = elemReg->getElementType();
912    }
913    else if (isa<SubRegion>(region)) {
914      superR = region;
915      index = rhs;
916      if (const PointerType *PT = resultTy->getAs<PointerType>()) {
917        elementType = PT->getPointeeType();
918      }
919      else {
920        const ObjCObjectPointerType *OT =
921          resultTy->getAs<ObjCObjectPointerType>();
922        elementType = OT->getPointeeType();
923      }
924    }
925
926    if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
927      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
928                                                       superR, getContext()));
929    }
930  }
931  return UnknownVal();
932}
933
934const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
935                                                   SVal V) {
936  if (V.isUnknownOrUndef())
937    return NULL;
938
939  if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
940    return &X->getValue();
941
942  if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
943    return &X->getValue();
944
945  if (SymbolRef Sym = V.getAsSymbol())
946    return state->getSymVal(Sym);
947
948  // FIXME: Add support for SymExprs.
949  return NULL;
950}
951