Store.cpp revision 4411b423e91da0a2c879b70c0222aeba35f72044
1//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defined the types Store and StoreManager.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20
21using namespace clang;
22using namespace ento;
23
24StoreManager::StoreManager(ProgramStateManager &stateMgr)
25  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
26    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
27
28StoreRef StoreManager::enterStackFrame(Store OldStore,
29                                       const CallEvent &Call,
30                                       const StackFrameContext *LCtx) {
31  StoreRef Store = StoreRef(OldStore, *this);
32
33  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
34  Call.getInitialStackFrameContents(LCtx, InitialBindings);
35
36  for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
37                                       E = InitialBindings.end();
38       I != E; ++I) {
39    Store = Bind(Store.getStore(), I->first, I->second);
40  }
41
42  return Store;
43}
44
45const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
46                                              QualType EleTy, uint64_t index) {
47  NonLoc idx = svalBuilder.makeArrayIndex(index);
48  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
49}
50
51// FIXME: Merge with the implementation of the same method in MemRegion.cpp
52static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
53  if (const RecordType *RT = Ty->getAs<RecordType>()) {
54    const RecordDecl *D = RT->getDecl();
55    if (!D->getDefinition())
56      return false;
57  }
58
59  return true;
60}
61
62StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
63  return StoreRef(store, *this);
64}
65
66const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
67                                                        QualType T) {
68  NonLoc idx = svalBuilder.makeZeroArrayIndex();
69  assert(!T.isNull());
70  return MRMgr.getElementRegion(T, idx, R, Ctx);
71}
72
73const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
74
75  ASTContext &Ctx = StateMgr.getContext();
76
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79    return R->StripCasts();
80
81  if (CastToTy->isBlockPointerType()) {
82    // FIXME: We may need different solutions, depending on the symbol
83    // involved.  Blocks can be casted to/from 'id', as they can be treated
84    // as Objective-C objects.  This could possibly be handled by enhancing
85    // our reasoning of downcasts of symbolic objects.
86    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87      return R;
88
89    // We don't know what to make of it.  Return a NULL region, which
90    // will be interpretted as UnknownVal.
91    return NULL;
92  }
93
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98
99  // Handle casts to void*.  We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101    return R;
102
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
106      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107      if (CanonPointeeTy == ObjTy)
108        return R;
109    }
110
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113    case MemRegion::CXXThisRegionKind:
114    case MemRegion::GenericMemSpaceRegionKind:
115    case MemRegion::StackLocalsSpaceRegionKind:
116    case MemRegion::StackArgumentsSpaceRegionKind:
117    case MemRegion::HeapSpaceRegionKind:
118    case MemRegion::UnknownSpaceRegionKind:
119    case MemRegion::StaticGlobalSpaceRegionKind:
120    case MemRegion::GlobalInternalSpaceRegionKind:
121    case MemRegion::GlobalSystemSpaceRegionKind:
122    case MemRegion::GlobalImmutableSpaceRegionKind: {
123      llvm_unreachable("Invalid region cast");
124    }
125
126    case MemRegion::FunctionTextRegionKind:
127    case MemRegion::BlockTextRegionKind:
128    case MemRegion::BlockDataRegionKind:
129    case MemRegion::StringRegionKind:
130      // FIXME: Need to handle arbitrary downcasts.
131    case MemRegion::SymbolicRegionKind:
132    case MemRegion::AllocaRegionKind:
133    case MemRegion::CompoundLiteralRegionKind:
134    case MemRegion::FieldRegionKind:
135    case MemRegion::ObjCIvarRegionKind:
136    case MemRegion::ObjCStringRegionKind:
137    case MemRegion::VarRegionKind:
138    case MemRegion::CXXTempObjectRegionKind:
139    case MemRegion::CXXBaseObjectRegionKind:
140      return MakeElementRegion(R, PointeeTy);
141
142    case MemRegion::ElementRegionKind: {
143      // If we are casting from an ElementRegion to another type, the
144      // algorithm is as follows:
145      //
146      // (1) Compute the "raw offset" of the ElementRegion from the
147      //     base region.  This is done by calling 'getAsRawOffset()'.
148      //
149      // (2a) If we get a 'RegionRawOffset' after calling
150      //      'getAsRawOffset()', determine if the absolute offset
151      //      can be exactly divided into chunks of the size of the
152      //      casted-pointee type.  If so, create a new ElementRegion with
153      //      the pointee-cast type as the new ElementType and the index
154      //      being the offset divded by the chunk size.  If not, create
155      //      a new ElementRegion at offset 0 off the raw offset region.
156      //
157      // (2b) If we don't a get a 'RegionRawOffset' after calling
158      //      'getAsRawOffset()', it means that we are at offset 0.
159      //
160      // FIXME: Handle symbolic raw offsets.
161
162      const ElementRegion *elementR = cast<ElementRegion>(R);
163      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
164      const MemRegion *baseR = rawOff.getRegion();
165
166      // If we cannot compute a raw offset, throw up our hands and return
167      // a NULL MemRegion*.
168      if (!baseR)
169        return NULL;
170
171      CharUnits off = rawOff.getOffset();
172
173      if (off.isZero()) {
174        // Edge case: we are at 0 bytes off the beginning of baseR.  We
175        // check to see if type we are casting to is the same as the base
176        // region.  If so, just return the base region.
177        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
178          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
179          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
180          if (CanonPointeeTy == ObjTy)
181            return baseR;
182        }
183
184        // Otherwise, create a new ElementRegion at offset 0.
185        return MakeElementRegion(baseR, PointeeTy);
186      }
187
188      // We have a non-zero offset from the base region.  We want to determine
189      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
190      // we create an ElementRegion whose index is that value.  Otherwise, we
191      // create two ElementRegions, one that reflects a raw offset and the other
192      // that reflects the cast.
193
194      // Compute the index for the new ElementRegion.
195      int64_t newIndex = 0;
196      const MemRegion *newSuperR = 0;
197
198      // We can only compute sizeof(PointeeTy) if it is a complete type.
199      if (IsCompleteType(Ctx, PointeeTy)) {
200        // Compute the size in **bytes**.
201        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
202        if (!pointeeTySize.isZero()) {
203          // Is the offset a multiple of the size?  If so, we can layer the
204          // ElementRegion (with elementType == PointeeTy) directly on top of
205          // the base region.
206          if (off % pointeeTySize == 0) {
207            newIndex = off / pointeeTySize;
208            newSuperR = baseR;
209          }
210        }
211      }
212
213      if (!newSuperR) {
214        // Create an intermediate ElementRegion to represent the raw byte.
215        // This will be the super region of the final ElementRegion.
216        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
217      }
218
219      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
220    }
221  }
222
223  llvm_unreachable("unreachable");
224}
225
226static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
227  const MemRegion *MR = V.getAsRegion();
228  if (!MR)
229    return true;
230
231  const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
232  if (!TVR)
233    return true;
234
235  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
236  if (!RD)
237    return true;
238
239  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
240  if (!Expected)
241    Expected = Ty->getAsCXXRecordDecl();
242
243  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
244}
245
246SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
247  // Sanity check to avoid doing the wrong thing in the face of
248  // reinterpret_cast.
249  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
250    return UnknownVal();
251
252  // Walk through the cast path to create nested CXXBaseRegions.
253  SVal Result = Derived;
254  for (CastExpr::path_const_iterator I = Cast->path_begin(),
255                                     E = Cast->path_end();
256       I != E; ++I) {
257    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
258  }
259  return Result;
260}
261
262SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
263  // Walk through the path to create nested CXXBaseRegions.
264  SVal Result = Derived;
265  for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
266       I != E; ++I) {
267    Result = evalDerivedToBase(Result, I->Base->getType(),
268                               I->Base->isVirtual());
269  }
270  return Result;
271}
272
273SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
274                                     bool IsVirtual) {
275  Optional<loc::MemRegionVal> DerivedRegVal =
276      Derived.getAs<loc::MemRegionVal>();
277  if (!DerivedRegVal)
278    return Derived;
279
280  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281  if (!BaseDecl)
282    BaseDecl = BaseType->getAsCXXRecordDecl();
283  assert(BaseDecl && "not a C++ object?");
284
285  const MemRegion *BaseReg =
286    MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
287                                 IsVirtual);
288
289  return loc::MemRegionVal(BaseReg);
290}
291
292SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
293                                   bool &Failed) {
294  Failed = false;
295
296  Optional<loc::MemRegionVal> BaseRegVal = Base.getAs<loc::MemRegionVal>();
297  if (!BaseRegVal)
298    return UnknownVal();
299  const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);
300
301  // Assume the derived class is a pointer or a reference to a CXX record.
302  DerivedType = DerivedType->getPointeeType();
303  assert(!DerivedType.isNull());
304  const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
305  if (!DerivedDecl && !DerivedType->isVoidType())
306    return UnknownVal();
307
308  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
309  // derived to base).
310  const MemRegion *SR = BaseRegion;
311  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
312    QualType BaseType = TSR->getLocationType()->getPointeeType();
313    assert(!BaseType.isNull());
314    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
315    if (!SRDecl)
316      return UnknownVal();
317
318    // If found the derived class, the cast succeeds.
319    if (SRDecl == DerivedDecl)
320      return loc::MemRegionVal(TSR);
321
322    if (!DerivedType->isVoidType()) {
323      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
324      // only happen when multiple or virtual inheritance is involved.
325      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
326                         /*DetectVirtual=*/false);
327      if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
328        return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
329    }
330
331    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
332      // Drill down the chain to get the derived classes.
333      SR = R->getSuperRegion();
334    else {
335      // We reached the bottom of the hierarchy.
336
337      // If this is a cast to void*, return the region.
338      if (DerivedType->isVoidType())
339        return loc::MemRegionVal(TSR);
340
341      // We did not find the derived class. We we must be casting the base to
342      // derived, so the cast should fail.
343      Failed = true;
344      return UnknownVal();
345    }
346  }
347
348  return UnknownVal();
349}
350
351
352/// CastRetrievedVal - Used by subclasses of StoreManager to implement
353///  implicit casts that arise from loads from regions that are reinterpreted
354///  as another region.
355SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
356                                    QualType castTy, bool performTestOnly) {
357
358  if (castTy.isNull() || V.isUnknownOrUndef())
359    return V;
360
361  ASTContext &Ctx = svalBuilder.getContext();
362
363  if (performTestOnly) {
364    // Automatically translate references to pointers.
365    QualType T = R->getValueType();
366    if (const ReferenceType *RT = T->getAs<ReferenceType>())
367      T = Ctx.getPointerType(RT->getPointeeType());
368
369    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
370    return V;
371  }
372
373  return svalBuilder.dispatchCast(V, castTy);
374}
375
376SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
377  if (Base.isUnknownOrUndef())
378    return Base;
379
380  Loc BaseL = Base.castAs<Loc>();
381  const MemRegion* BaseR = 0;
382
383  switch (BaseL.getSubKind()) {
384  case loc::MemRegionKind:
385    BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
386    break;
387
388  case loc::GotoLabelKind:
389    // These are anormal cases. Flag an undefined value.
390    return UndefinedVal();
391
392  case loc::ConcreteIntKind:
393    // While these seem funny, this can happen through casts.
394    // FIXME: What we should return is the field offset.  For example,
395    //  add the field offset to the integer value.  That way funny things
396    //  like this work properly:  &(((struct foo *) 0xa)->f)
397    return Base;
398
399  default:
400    llvm_unreachable("Unhandled Base.");
401  }
402
403  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
404  // of FieldDecl.
405  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
406    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
407
408  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
409}
410
411SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
412  return getLValueFieldOrIvar(decl, base);
413}
414
415SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
416                                    SVal Base) {
417
418  // If the base is an unknown or undefined value, just return it back.
419  // FIXME: For absolute pointer addresses, we just return that value back as
420  //  well, although in reality we should return the offset added to that
421  //  value.
422  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
423    return Base;
424
425  const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
426
427  // Pointer of any type can be cast and used as array base.
428  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
429
430  // Convert the offset to the appropriate size and signedness.
431  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
432
433  if (!ElemR) {
434    //
435    // If the base region is not an ElementRegion, create one.
436    // This can happen in the following example:
437    //
438    //   char *p = __builtin_alloc(10);
439    //   p[1] = 8;
440    //
441    //  Observe that 'p' binds to an AllocaRegion.
442    //
443    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
444                                                    BaseRegion, Ctx));
445  }
446
447  SVal BaseIdx = ElemR->getIndex();
448
449  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
450    return UnknownVal();
451
452  const llvm::APSInt &BaseIdxI =
453      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
454
455  // Only allow non-integer offsets if the base region has no offset itself.
456  // FIXME: This is a somewhat arbitrary restriction. We should be using
457  // SValBuilder here to add the two offsets without checking their types.
458  if (!Offset.getAs<nonloc::ConcreteInt>()) {
459    if (isa<ElementRegion>(BaseRegion->StripCasts()))
460      return UnknownVal();
461
462    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
463                                                    ElemR->getSuperRegion(),
464                                                    Ctx));
465  }
466
467  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
468  assert(BaseIdxI.isSigned());
469
470  // Compute the new index.
471  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
472                                                                    OffI));
473
474  // Construct the new ElementRegion.
475  const MemRegion *ArrayR = ElemR->getSuperRegion();
476  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
477                                                  Ctx));
478}
479
480StoreManager::BindingsHandler::~BindingsHandler() {}
481
482bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
483                                                    Store store,
484                                                    const MemRegion* R,
485                                                    SVal val) {
486  SymbolRef SymV = val.getAsLocSymbol();
487  if (!SymV || SymV != Sym)
488    return true;
489
490  if (Binding) {
491    First = false;
492    return false;
493  }
494  else
495    Binding = R;
496
497  return true;
498}
499