Store.cpp revision aa66b08d2d8bbf05bae8c68f58724f754ab57b35
1//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defined the types Store and StoreManager.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20
21using namespace clang;
22using namespace ento;
23
24StoreManager::StoreManager(ProgramStateManager &stateMgr)
25  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
26    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
27
28StoreRef StoreManager::enterStackFrame(Store OldStore,
29                                       const CallEvent &Call,
30                                       const StackFrameContext *LCtx) {
31  StoreRef Store = StoreRef(OldStore, *this);
32
33  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
34  Call.getInitialStackFrameContents(LCtx, InitialBindings);
35
36  for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
37                                       E = InitialBindings.end();
38       I != E; ++I) {
39    Store = Bind(Store.getStore(), I->first, I->second);
40  }
41
42  return Store;
43}
44
45const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
46                                              QualType EleTy, uint64_t index) {
47  NonLoc idx = svalBuilder.makeArrayIndex(index);
48  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
49}
50
51// FIXME: Merge with the implementation of the same method in MemRegion.cpp
52static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
53  if (const RecordType *RT = Ty->getAs<RecordType>()) {
54    const RecordDecl *D = RT->getDecl();
55    if (!D->getDefinition())
56      return false;
57  }
58
59  return true;
60}
61
62StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
63  return StoreRef(store, *this);
64}
65
66const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
67                                                        QualType T) {
68  NonLoc idx = svalBuilder.makeZeroArrayIndex();
69  assert(!T.isNull());
70  return MRMgr.getElementRegion(T, idx, R, Ctx);
71}
72
73const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
74
75  ASTContext &Ctx = StateMgr.getContext();
76
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79    return R->StripCasts();
80
81  if (CastToTy->isBlockPointerType()) {
82    // FIXME: We may need different solutions, depending on the symbol
83    // involved.  Blocks can be casted to/from 'id', as they can be treated
84    // as Objective-C objects.  This could possibly be handled by enhancing
85    // our reasoning of downcasts of symbolic objects.
86    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87      return R;
88
89    // We don't know what to make of it.  Return a NULL region, which
90    // will be interpretted as UnknownVal.
91    return NULL;
92  }
93
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98
99  // Handle casts to void*.  We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101    return R;
102
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
106      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107      if (CanonPointeeTy == ObjTy)
108        return R;
109    }
110
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113    case MemRegion::CXXThisRegionKind:
114    case MemRegion::GenericMemSpaceRegionKind:
115    case MemRegion::StackLocalsSpaceRegionKind:
116    case MemRegion::StackArgumentsSpaceRegionKind:
117    case MemRegion::HeapSpaceRegionKind:
118    case MemRegion::UnknownSpaceRegionKind:
119    case MemRegion::StaticGlobalSpaceRegionKind:
120    case MemRegion::GlobalInternalSpaceRegionKind:
121    case MemRegion::GlobalSystemSpaceRegionKind:
122    case MemRegion::GlobalImmutableSpaceRegionKind: {
123      llvm_unreachable("Invalid region cast");
124    }
125
126    case MemRegion::FunctionTextRegionKind:
127    case MemRegion::BlockTextRegionKind:
128    case MemRegion::BlockDataRegionKind:
129    case MemRegion::StringRegionKind:
130      // FIXME: Need to handle arbitrary downcasts.
131    case MemRegion::SymbolicRegionKind:
132    case MemRegion::AllocaRegionKind:
133    case MemRegion::CompoundLiteralRegionKind:
134    case MemRegion::FieldRegionKind:
135    case MemRegion::ObjCIvarRegionKind:
136    case MemRegion::ObjCStringRegionKind:
137    case MemRegion::VarRegionKind:
138    case MemRegion::CXXTempObjectRegionKind:
139    case MemRegion::CXXBaseObjectRegionKind:
140      return MakeElementRegion(R, PointeeTy);
141
142    case MemRegion::ElementRegionKind: {
143      // If we are casting from an ElementRegion to another type, the
144      // algorithm is as follows:
145      //
146      // (1) Compute the "raw offset" of the ElementRegion from the
147      //     base region.  This is done by calling 'getAsRawOffset()'.
148      //
149      // (2a) If we get a 'RegionRawOffset' after calling
150      //      'getAsRawOffset()', determine if the absolute offset
151      //      can be exactly divided into chunks of the size of the
152      //      casted-pointee type.  If so, create a new ElementRegion with
153      //      the pointee-cast type as the new ElementType and the index
154      //      being the offset divded by the chunk size.  If not, create
155      //      a new ElementRegion at offset 0 off the raw offset region.
156      //
157      // (2b) If we don't a get a 'RegionRawOffset' after calling
158      //      'getAsRawOffset()', it means that we are at offset 0.
159      //
160      // FIXME: Handle symbolic raw offsets.
161
162      const ElementRegion *elementR = cast<ElementRegion>(R);
163      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
164      const MemRegion *baseR = rawOff.getRegion();
165
166      // If we cannot compute a raw offset, throw up our hands and return
167      // a NULL MemRegion*.
168      if (!baseR)
169        return NULL;
170
171      CharUnits off = rawOff.getOffset();
172
173      if (off.isZero()) {
174        // Edge case: we are at 0 bytes off the beginning of baseR.  We
175        // check to see if type we are casting to is the same as the base
176        // region.  If so, just return the base region.
177        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
178          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
179          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
180          if (CanonPointeeTy == ObjTy)
181            return baseR;
182        }
183
184        // Otherwise, create a new ElementRegion at offset 0.
185        return MakeElementRegion(baseR, PointeeTy);
186      }
187
188      // We have a non-zero offset from the base region.  We want to determine
189      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
190      // we create an ElementRegion whose index is that value.  Otherwise, we
191      // create two ElementRegions, one that reflects a raw offset and the other
192      // that reflects the cast.
193
194      // Compute the index for the new ElementRegion.
195      int64_t newIndex = 0;
196      const MemRegion *newSuperR = 0;
197
198      // We can only compute sizeof(PointeeTy) if it is a complete type.
199      if (IsCompleteType(Ctx, PointeeTy)) {
200        // Compute the size in **bytes**.
201        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
202        if (!pointeeTySize.isZero()) {
203          // Is the offset a multiple of the size?  If so, we can layer the
204          // ElementRegion (with elementType == PointeeTy) directly on top of
205          // the base region.
206          if (off % pointeeTySize == 0) {
207            newIndex = off / pointeeTySize;
208            newSuperR = baseR;
209          }
210        }
211      }
212
213      if (!newSuperR) {
214        // Create an intermediate ElementRegion to represent the raw byte.
215        // This will be the super region of the final ElementRegion.
216        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
217      }
218
219      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
220    }
221  }
222
223  llvm_unreachable("unreachable");
224}
225
226SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
227  // Walk through the cast path to create nested CXXBaseRegions.
228  SVal Result = Derived;
229  for (CastExpr::path_const_iterator I = Cast->path_begin(),
230                                     E = Cast->path_end();
231       I != E; ++I) {
232    Result = evalDerivedToBase(Result, (*I)->getType());
233  }
234  return Result;
235}
236
237SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
238  // Walk through the path to create nested CXXBaseRegions.
239  SVal Result = Derived;
240  for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
241       I != E; ++I) {
242    Result = evalDerivedToBase(Result, I->Base->getType());
243  }
244  return Result;
245}
246
247SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType) {
248  loc::MemRegionVal *DerivedRegVal = dyn_cast<loc::MemRegionVal>(&Derived);
249  if (!DerivedRegVal)
250    return Derived;
251
252  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
253  if (!BaseDecl)
254    BaseDecl = BaseType->getAsCXXRecordDecl();
255  assert(BaseDecl && "not a C++ object?");
256
257  const MemRegion *BaseReg =
258    MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion());
259
260  return loc::MemRegionVal(BaseReg);
261}
262
263SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
264                                   bool &Failed) {
265  Failed = false;
266
267  loc::MemRegionVal *BaseRegVal = dyn_cast<loc::MemRegionVal>(&Base);
268  if (!BaseRegVal)
269    return UnknownVal();
270  const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);
271
272  // Assume the derived class is a pointer or a reference to a CXX record.
273  DerivedType = DerivedType->getPointeeType();
274  assert(!DerivedType.isNull());
275  const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
276  if (!DerivedDecl && !DerivedType->isVoidType())
277    return UnknownVal();
278
279  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
280  // derived to base).
281  const MemRegion *SR = BaseRegion;
282  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
283    QualType BaseType = TSR->getLocationType()->getPointeeType();
284    assert(!BaseType.isNull());
285    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
286    if (!SRDecl)
287      return UnknownVal();
288
289    // If found the derived class, the cast succeeds.
290    if (SRDecl == DerivedDecl)
291      return loc::MemRegionVal(TSR);
292
293    if (!DerivedType->isVoidType()) {
294      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
295      // only happen when multiple or virtual inheritance is involved.
296      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
297                         /*DetectVirtual=*/false);
298      if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
299        return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
300    }
301
302    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
303      // Drill down the chain to get the derived classes.
304      SR = R->getSuperRegion();
305    else {
306      // We reached the bottom of the hierarchy.
307
308      // If this is a cast to void*, return the region.
309      if (DerivedType->isVoidType())
310        return loc::MemRegionVal(TSR);
311
312      // We did not find the derived class. We we must be casting the base to
313      // derived, so the cast should fail.
314      Failed = true;
315      return UnknownVal();
316    }
317  }
318
319  return UnknownVal();
320}
321
322
323/// CastRetrievedVal - Used by subclasses of StoreManager to implement
324///  implicit casts that arise from loads from regions that are reinterpreted
325///  as another region.
326SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
327                                    QualType castTy, bool performTestOnly) {
328
329  if (castTy.isNull() || V.isUnknownOrUndef())
330    return V;
331
332  ASTContext &Ctx = svalBuilder.getContext();
333
334  if (performTestOnly) {
335    // Automatically translate references to pointers.
336    QualType T = R->getValueType();
337    if (const ReferenceType *RT = T->getAs<ReferenceType>())
338      T = Ctx.getPointerType(RT->getPointeeType());
339
340    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
341    return V;
342  }
343
344  return svalBuilder.dispatchCast(V, castTy);
345}
346
347SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
348  if (Base.isUnknownOrUndef())
349    return Base;
350
351  Loc BaseL = cast<Loc>(Base);
352  const MemRegion* BaseR = 0;
353
354  switch (BaseL.getSubKind()) {
355  case loc::MemRegionKind:
356    BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
357    break;
358
359  case loc::GotoLabelKind:
360    // These are anormal cases. Flag an undefined value.
361    return UndefinedVal();
362
363  case loc::ConcreteIntKind:
364    // While these seem funny, this can happen through casts.
365    // FIXME: What we should return is the field offset.  For example,
366    //  add the field offset to the integer value.  That way funny things
367    //  like this work properly:  &(((struct foo *) 0xa)->f)
368    return Base;
369
370  default:
371    llvm_unreachable("Unhandled Base.");
372  }
373
374  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
375  // of FieldDecl.
376  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
377    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
378
379  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
380}
381
382SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
383  return getLValueFieldOrIvar(decl, base);
384}
385
386SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
387                                    SVal Base) {
388
389  // If the base is an unknown or undefined value, just return it back.
390  // FIXME: For absolute pointer addresses, we just return that value back as
391  //  well, although in reality we should return the offset added to that
392  //  value.
393  if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
394    return Base;
395
396  const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
397
398  // Pointer of any type can be cast and used as array base.
399  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
400
401  // Convert the offset to the appropriate size and signedness.
402  Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
403
404  if (!ElemR) {
405    //
406    // If the base region is not an ElementRegion, create one.
407    // This can happen in the following example:
408    //
409    //   char *p = __builtin_alloc(10);
410    //   p[1] = 8;
411    //
412    //  Observe that 'p' binds to an AllocaRegion.
413    //
414    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
415                                                    BaseRegion, Ctx));
416  }
417
418  SVal BaseIdx = ElemR->getIndex();
419
420  if (!isa<nonloc::ConcreteInt>(BaseIdx))
421    return UnknownVal();
422
423  const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
424
425  // Only allow non-integer offsets if the base region has no offset itself.
426  // FIXME: This is a somewhat arbitrary restriction. We should be using
427  // SValBuilder here to add the two offsets without checking their types.
428  if (!isa<nonloc::ConcreteInt>(Offset)) {
429    if (isa<ElementRegion>(BaseRegion->StripCasts()))
430      return UnknownVal();
431
432    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
433                                                    ElemR->getSuperRegion(),
434                                                    Ctx));
435  }
436
437  const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
438  assert(BaseIdxI.isSigned());
439
440  // Compute the new index.
441  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
442                                                                    OffI));
443
444  // Construct the new ElementRegion.
445  const MemRegion *ArrayR = ElemR->getSuperRegion();
446  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
447                                                  Ctx));
448}
449
450StoreManager::BindingsHandler::~BindingsHandler() {}
451
452bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
453                                                    Store store,
454                                                    const MemRegion* R,
455                                                    SVal val) {
456  SymbolRef SymV = val.getAsLocSymbol();
457  if (!SymV || SymV != Sym)
458    return true;
459
460  if (Binding) {
461    First = false;
462    return false;
463  }
464  else
465    Binding = R;
466
467  return true;
468}
469